Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- PipableAI/pip-txt-to-sql-spider-bird-dataset
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
| 9 |
+
tags:
|
| 10 |
+
- sql
|
| 11 |
+
- code
|
| 12 |
+
- text2sql
|
| 13 |
+
- instruction_tuned
|
| 14 |
+
- basemodel
|
| 15 |
+
- jax
|
| 16 |
+
- pytorch
|
| 17 |
+
- tensorflow
|
| 18 |
+
- text-generation-inference
|
| 19 |
+
library_name: transformers
|
| 20 |
+
pipeline_tag: text-generation
|
| 21 |
+
---
|
| 22 |
+
# pipSQL-1.3b
|
| 23 |
+
[pipableAi](https://www.linkedin.com/company/pipable.ai/about/)
|
| 24 |
+
|
| 25 |
+
## What have we built?
|
| 26 |
+
A 1.3 bn SQL model that outperforms most SQL expert models and chatgpt on popular benchmarks.
|
| 27 |
+
This is a distilled model built on the deepseek base model.
|
| 28 |
+
|
| 29 |
+
## How we built it?
|
| 30 |
+
|
| 31 |
+
We used softmax cross entropy and a modified form of policy grad along with Q loss, optimized in an EM set up.
|
| 32 |
+
|
| 33 |
+
## Benchmarking :
|
| 34 |
+
For benchmarking purposes we are using Semantic Evaluation for Text-to-SQL with
|
| 35 |
+
Distilled Test Suites, an officially accepted evaluation framework for Spider, SParC, and CoSQL which was proposed by a research team of Yale and Berkeley.
|
| 36 |
+
The benchmark contains 2200 test data points
|
| 37 |
+
Here is the link to run the evaluation:
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
[Test Suite SQL Eval](https://github.com/taoyds/test-suite-sql-eval)
|
| 41 |
+
|
| 42 |
+
|model|easy|medium|hard|extra|
|
| 43 |
+
|-----|----|------|----|-----|
|
| 44 |
+
|sqlcoder-7b-2|72.0|58.0|40.6|37.3|
|
| 45 |
+
|pip-sql-1b-Qstar|74.0|54.0|36.5|30.0|
|
| 46 |
+
|pipSQL-7b|63.0|40.0|30.2|25.0|
|
| 47 |
+
|sqlcoder-7b|60.6|48.2|28.3|20.4|
|
| 48 |
+
|gpt-3.5|58.8|44.7|31.0|28.4|
|
| 49 |
+
|
| 50 |
+
We have also benchmarked it on defog eval.
|
| 51 |
+
It contains 200 test data points handpicked by defog team.
|
| 52 |
+
Here is the link to it:
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
[Defog SQL-Eval](https://github.com/defog-ai/sql-eval)
|
| 56 |
+
These are the results -
|
| 57 |
+
|
| 58 |
+

|
| 59 |
+
|
| 60 |
+
## License
|
| 61 |
+
The model is open source under apache 2.0. License
|
| 62 |
+
|
| 63 |
+
## Usage
|
| 64 |
+
|
| 65 |
+
### Installation
|
| 66 |
+
|
| 67 |
+
```bash
|
| 68 |
+
pip install transformers
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
### Prompt
|
| 72 |
+
```python
|
| 73 |
+
prompt = f"""<schema>{schema}</schema>
|
| 74 |
+
<question>{question}</question>
|
| 75 |
+
<sql>"""
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
### PyTorch
|
| 79 |
+
```python
|
| 80 |
+
from transformers import AutoModelForCasualLM, AutoTokenizer
|
| 81 |
+
device = "cuda"
|
| 82 |
+
model = AutoModelForCausalLM.from_pretrained("PipableAI/pipSQL-1.3b")
|
| 83 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL-1.3b")
|
| 84 |
+
|
| 85 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 86 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
| 87 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
### Flax
|
| 91 |
+
```python
|
| 92 |
+
from transfomers import FlaxAutoModelForCausalLM, AutoTokenizer
|
| 93 |
+
device = "cuda"
|
| 94 |
+
model = FlaxAutoModelForCausalLM.from_pretrained("PipableAI/pipSQL-1.3b")
|
| 95 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL-1.3b")
|
| 96 |
+
|
| 97 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 98 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
| 99 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
### TensorFlow
|
| 103 |
+
```python
|
| 104 |
+
from transfomers import TFAutoModelForCausalLM, AutoTokenizer
|
| 105 |
+
device = "cuda"
|
| 106 |
+
model = TFAutoModelForCausalLM.from_pretrained("PipableAI/pipSQL-1.3b")
|
| 107 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL-1.3b")
|
| 108 |
+
|
| 109 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 110 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
| 111 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
|
| 112 |
+
```
|