|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch Bamboo model.""" | 
					
						
						|  | import torch | 
					
						
						|  | import inspect | 
					
						
						|  | import math | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  |  | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  |  | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast,MoeModelOutputWithPast,MoeCausalLMOutputWithPast,TokenClassifierOutput | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.pytorch_utils import ( | 
					
						
						|  | is_torch_greater_or_equal_than_1_13 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | is_torch_fx_available, | 
					
						
						|  | ) | 
					
						
						|  | from .configuration_turbosparsemixtral import TurboSparseMixtralConfig | 
					
						
						|  | @dataclass | 
					
						
						|  | class AttentionMaskConverter: | 
					
						
						|  | """ | 
					
						
						|  | A utility attention mask class that allows one to: | 
					
						
						|  | - Create a causal 4d mask | 
					
						
						|  | - Create a causal 4d mask with slided window | 
					
						
						|  | - Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length, | 
					
						
						|  | key_value_length) that can be multiplied with attention scores | 
					
						
						|  | Examples: | 
					
						
						|  | ```python | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter | 
					
						
						|  | >>> converter = AttentionMaskConverter(True) | 
					
						
						|  | >>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32) | 
					
						
						|  | tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], | 
					
						
						|  | [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], | 
					
						
						|  | [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], | 
					
						
						|  | [-3.4028e+38, -3.4028e+38, -3.4028e+38,  0.0000e+00, -3.4028e+38], | 
					
						
						|  | [-3.4028e+38, -3.4028e+38, -3.4028e+38,  0.0000e+00,  0.0000e+00]]]]) | 
					
						
						|  | ``` | 
					
						
						|  | Parameters: | 
					
						
						|  | is_causal (`bool`): | 
					
						
						|  | Whether the attention mask should be a uni-directional (causal) or bi-directional mask. | 
					
						
						|  | sliding_window (`int`, *optional*): | 
					
						
						|  | Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | is_causal: bool | 
					
						
						|  | sliding_window: int | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, is_causal: bool, sliding_window: Optional[int] = None): | 
					
						
						|  | self.is_causal = is_causal | 
					
						
						|  | self.sliding_window = sliding_window | 
					
						
						|  |  | 
					
						
						|  | if self.sliding_window is not None and self.sliding_window <= 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def to_causal_4d( | 
					
						
						|  | self, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | query_length: int, | 
					
						
						|  | key_value_length: int, | 
					
						
						|  | dtype: torch.dtype, | 
					
						
						|  | device: Union[torch.device, "str"] = "cpu", | 
					
						
						|  | ) -> Optional[torch.Tensor]: | 
					
						
						|  | """ | 
					
						
						|  | Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative | 
					
						
						|  | bias to upper right hand triangular matrix (causal mask). | 
					
						
						|  | """ | 
					
						
						|  | if not self.is_causal: | 
					
						
						|  | raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_shape = (batch_size, query_length) | 
					
						
						|  | past_key_values_length = key_value_length - query_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_4d_mask = None | 
					
						
						|  | if input_shape[-1] > 1 or self.sliding_window is not None: | 
					
						
						|  | causal_4d_mask = self._make_causal_mask( | 
					
						
						|  | input_shape, | 
					
						
						|  | dtype, | 
					
						
						|  | device=device, | 
					
						
						|  | past_key_values_length=past_key_values_length, | 
					
						
						|  | sliding_window=self.sliding_window, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return causal_4d_mask | 
					
						
						|  |  | 
					
						
						|  | def to_4d( | 
					
						
						|  | self, | 
					
						
						|  | attention_mask_2d: torch.Tensor, | 
					
						
						|  | query_length: int, | 
					
						
						|  | dtype: torch.dtype, | 
					
						
						|  | key_value_length: Optional[int] = None, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length, | 
					
						
						|  | key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is | 
					
						
						|  | causal, a causal mask will be added. | 
					
						
						|  | """ | 
					
						
						|  | input_shape = (attention_mask_2d.shape[0], query_length) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_4d_mask = None | 
					
						
						|  | if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal: | 
					
						
						|  | if key_value_length is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | past_key_values_length = key_value_length - query_length | 
					
						
						|  | causal_4d_mask = self._make_causal_mask( | 
					
						
						|  | input_shape, | 
					
						
						|  | dtype, | 
					
						
						|  | device=attention_mask_2d.device, | 
					
						
						|  | past_key_values_length=past_key_values_length, | 
					
						
						|  | sliding_window=self.sliding_window, | 
					
						
						|  | ) | 
					
						
						|  | elif self.sliding_window is not None: | 
					
						
						|  | raise NotImplementedError("Sliding window is currently only implemented for causal masking") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to( | 
					
						
						|  | attention_mask_2d.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if causal_4d_mask is not None: | 
					
						
						|  | expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | expanded_4d_mask = expanded_attn_mask | 
					
						
						|  |  | 
					
						
						|  | return expanded_4d_mask | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _make_causal_mask( | 
					
						
						|  | input_ids_shape: torch.Size, | 
					
						
						|  | dtype: torch.dtype, | 
					
						
						|  | device: torch.device, | 
					
						
						|  | past_key_values_length: int = 0, | 
					
						
						|  | sliding_window: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Make causal mask used for bi-directional self-attention. | 
					
						
						|  | """ | 
					
						
						|  | bsz, tgt_len = input_ids_shape | 
					
						
						|  | mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | 
					
						
						|  | mask_cond = torch.arange(mask.size(-1), device=device) | 
					
						
						|  | mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | 
					
						
						|  |  | 
					
						
						|  | mask = mask.to(dtype) | 
					
						
						|  |  | 
					
						
						|  | if past_key_values_length > 0: | 
					
						
						|  | mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if sliding_window is not None: | 
					
						
						|  | diagonal = past_key_values_length - sliding_window + 1 | 
					
						
						|  |  | 
					
						
						|  | context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal) | 
					
						
						|  | mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min) | 
					
						
						|  |  | 
					
						
						|  | return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | 
					
						
						|  | """ | 
					
						
						|  | Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | 
					
						
						|  | """ | 
					
						
						|  | bsz, src_len = mask.size() | 
					
						
						|  | tgt_len = tgt_len if tgt_len is not None else src_len | 
					
						
						|  |  | 
					
						
						|  | expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | 
					
						
						|  |  | 
					
						
						|  | inverted_mask = 1.0 - expanded_mask | 
					
						
						|  |  | 
					
						
						|  | return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _unmask_unattended( | 
					
						
						|  | expanded_mask: torch.Tensor, attention_mask: torch.Tensor, unmasked_value: Union[bool, float] | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when | 
					
						
						|  | using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | 
					
						
						|  | Details: https://github.com/pytorch/pytorch/issues/110213 | 
					
						
						|  | `expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len]. | 
					
						
						|  | `attention_mask` is [bsz, src_seq_len]. | 
					
						
						|  | The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias. | 
					
						
						|  | For example, if `attention_mask` is | 
					
						
						|  | ``` | 
					
						
						|  | [[0, 0, 1], | 
					
						
						|  | [1, 1, 1], | 
					
						
						|  | [0, 1, 1]] | 
					
						
						|  | ``` | 
					
						
						|  | and `expanded_mask` is (e.g. here left-padding case) | 
					
						
						|  | ``` | 
					
						
						|  | [[[[0, 0, 0], | 
					
						
						|  | [0, 0, 0], | 
					
						
						|  | [0, 0, 1]]], | 
					
						
						|  | [[[1, 0, 0], | 
					
						
						|  | [1, 1, 0], | 
					
						
						|  | [1, 1, 1]]], | 
					
						
						|  | [[[0, 0, 0], | 
					
						
						|  | [0, 1, 0], | 
					
						
						|  | [0, 1, 1]]]] | 
					
						
						|  | ``` | 
					
						
						|  | then the modified `expanded_mask` will be | 
					
						
						|  | ``` | 
					
						
						|  | [[[[1, 1, 1],   <-- modified | 
					
						
						|  | [1, 1, 1],   <-- modified | 
					
						
						|  | [0, 0, 1]]], | 
					
						
						|  | [[[1, 0, 0], | 
					
						
						|  | [1, 1, 0], | 
					
						
						|  | [1, 1, 1]]], | 
					
						
						|  | [[[1, 1, 1],   <-- modified | 
					
						
						|  | [0, 1, 0], | 
					
						
						|  | [0, 1, 1]]]] | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tmp = torch.arange(attention_mask.shape[1], 0, -1) | 
					
						
						|  | indices = torch.argmax(attention_mask.cpu() * tmp, 1, keepdim=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | left_masked_rows = torch.where(indices > 0)[0] | 
					
						
						|  |  | 
					
						
						|  | if left_masked_rows.shape[0] == 0: | 
					
						
						|  | return expanded_mask | 
					
						
						|  | indices = indices[left_masked_rows] | 
					
						
						|  |  | 
					
						
						|  | max_len = torch.max(indices) | 
					
						
						|  | range_tensor = torch.arange(max_len).unsqueeze(0) | 
					
						
						|  | range_tensor = range_tensor.repeat(indices.size(0), 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | range_tensor[range_tensor >= indices] = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if expanded_mask.dim() == 4: | 
					
						
						|  | num_masks = expanded_mask.shape[1] | 
					
						
						|  | if num_masks == 1: | 
					
						
						|  |  | 
					
						
						|  | mask_slice = (left_masked_rows[:, None], 0, range_tensor) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | mask_slice = ( | 
					
						
						|  | left_masked_rows[:, None, None], | 
					
						
						|  | torch.arange(num_masks)[None, :, None], | 
					
						
						|  | range_tensor[:, None, :], | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | mask_slice = (left_masked_rows[:, None], range_tensor) | 
					
						
						|  |  | 
					
						
						|  | expanded_mask[mask_slice] = unmasked_value | 
					
						
						|  |  | 
					
						
						|  | return expanded_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask: Optional[torch.Tensor], | 
					
						
						|  | input_shape: Union[torch.Size, Tuple, List], | 
					
						
						|  | inputs_embeds: torch.Tensor, | 
					
						
						|  | past_key_values_length: int, | 
					
						
						|  | sliding_window: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
						
						|  | `(batch_size, key_value_length)` | 
					
						
						|  | Args: | 
					
						
						|  | attention_mask (`torch.Tensor` or `None`): | 
					
						
						|  | A 2D attention mask of shape `(batch_size, key_value_length)` | 
					
						
						|  | input_shape (`tuple(int)` or `list(int)` or `torch.Size`): | 
					
						
						|  | The input shape should be a tuple that defines `(batch_size, query_length)`. | 
					
						
						|  | inputs_embeds (`torch.Tensor`): | 
					
						
						|  | The embedded inputs as a torch Tensor. | 
					
						
						|  | past_key_values_length (`int`): | 
					
						
						|  | The length of the key value cache. | 
					
						
						|  | sliding_window (`int`, *optional*): | 
					
						
						|  | If the model uses windowed attention, a sliding window should be passed. | 
					
						
						|  | """ | 
					
						
						|  | attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) | 
					
						
						|  |  | 
					
						
						|  | key_value_length = input_shape[-1] + past_key_values_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and len(attention_mask.shape) == 2: | 
					
						
						|  | attention_mask = attn_mask_converter.to_4d( | 
					
						
						|  | attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype | 
					
						
						|  | ) | 
					
						
						|  | elif attention_mask is not None and len(attention_mask.shape) == 4: | 
					
						
						|  | expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) | 
					
						
						|  | if tuple(attention_mask.shape) != expected_shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | inverted_mask = 1.0 - attention_mask | 
					
						
						|  | attention_mask = inverted_mask.masked_fill( | 
					
						
						|  | inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = attn_mask_converter.to_causal_4d( | 
					
						
						|  | input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _prepare_4d_causal_attention_mask_for_sdpa( | 
					
						
						|  | attention_mask: Optional[torch.Tensor], | 
					
						
						|  | input_shape: Union[torch.Size, Tuple, List], | 
					
						
						|  | inputs_embeds: torch.Tensor, | 
					
						
						|  | past_key_values_length: int, | 
					
						
						|  | sliding_window: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`. | 
					
						
						|  | In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and | 
					
						
						|  | `key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks, | 
					
						
						|  | allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed). | 
					
						
						|  | """ | 
					
						
						|  | attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) | 
					
						
						|  |  | 
					
						
						|  | key_value_length = input_shape[-1] + past_key_values_length | 
					
						
						|  | batch_size, query_length = input_shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_tracing = torch.jit.is_tracing() or isinstance(inputs_embeds, torch.fx.Proxy) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | if len(attention_mask.shape) == 4: | 
					
						
						|  | expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) | 
					
						
						|  | if tuple(attention_mask.shape) != expected_shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype) | 
					
						
						|  | attention_mask = inverted_mask.masked_fill( | 
					
						
						|  | inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min | 
					
						
						|  | ) | 
					
						
						|  | return attention_mask | 
					
						
						|  |  | 
					
						
						|  | elif not is_tracing and torch.all(attention_mask == 1): | 
					
						
						|  | if query_length == 1: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = None | 
					
						
						|  | elif key_value_length == query_length: | 
					
						
						|  | attention_mask = None | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pass | 
					
						
						|  | elif query_length > 1 and key_value_length != query_length: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = True | 
					
						
						|  | elif is_tracing: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | 'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.' | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | expanded_4d_mask = None | 
					
						
						|  | elif attention_mask is True: | 
					
						
						|  | expanded_4d_mask = attn_mask_converter.to_causal_4d( | 
					
						
						|  | input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | expanded_4d_mask = attn_mask_converter.to_4d( | 
					
						
						|  | attention_mask, | 
					
						
						|  | input_shape[-1], | 
					
						
						|  | dtype=inputs_embeds.dtype, | 
					
						
						|  | key_value_length=key_value_length, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_length > 1 and not is_tracing: | 
					
						
						|  | expanded_4d_mask = AttentionMaskConverter._unmask_unattended( | 
					
						
						|  | expanded_4d_mask, attention_mask, unmasked_value=0.0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return expanded_4d_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | 
					
						
						|  | """ | 
					
						
						|  | Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
						
						|  | `(batch_size, key_value_length)` | 
					
						
						|  | Args: | 
					
						
						|  | mask (`torch.Tensor` or `None`): | 
					
						
						|  | A 2D attention mask of shape `(batch_size, key_value_length)` | 
					
						
						|  | dtype (`torch.dtype`): | 
					
						
						|  | The torch dtype the created mask shall have. | 
					
						
						|  | tgt_len (`int`): | 
					
						
						|  | The target length or query length the created mask shall have. | 
					
						
						|  | """ | 
					
						
						|  | return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | 
					
						
						|  | """ | 
					
						
						|  | Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
						
						|  | `(batch_size, key_value_length)` | 
					
						
						|  | Args: | 
					
						
						|  | mask (`torch.Tensor` or `None`): | 
					
						
						|  | A 2D attention mask of shape `(batch_size, key_value_length)` | 
					
						
						|  | dtype (`torch.dtype`): | 
					
						
						|  | The torch dtype the created mask shall have. | 
					
						
						|  | tgt_len (`int`): | 
					
						
						|  | The target length or query length the created mask shall have. | 
					
						
						|  | """ | 
					
						
						|  | batch_size, key_value_length = mask.shape | 
					
						
						|  | tgt_len = tgt_len if tgt_len is not None else key_value_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_tracing = torch.jit.is_tracing() | 
					
						
						|  |  | 
					
						
						|  | if torch.all(mask == 1): | 
					
						
						|  | if is_tracing: | 
					
						
						|  | pass | 
					
						
						|  | elif tgt_len == 1: | 
					
						
						|  |  | 
					
						
						|  | return None | 
					
						
						|  | elif key_value_length == tgt_len: | 
					
						
						|  | return None | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) | 
					
						
						|  | else: | 
					
						
						|  | return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _create_4d_causal_attention_mask( | 
					
						
						|  | input_shape: Union[torch.Size, Tuple, List], | 
					
						
						|  | dtype: torch.dtype, | 
					
						
						|  | device: torch.device, | 
					
						
						|  | past_key_values_length: int = 0, | 
					
						
						|  | sliding_window: Optional[int] = None, | 
					
						
						|  | ) -> Optional[torch.Tensor]: | 
					
						
						|  | """ | 
					
						
						|  | Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` | 
					
						
						|  | Args: | 
					
						
						|  | input_shape (`tuple(int)` or `list(int)` or `torch.Size`): | 
					
						
						|  | The input shape should be a tuple that defines `(batch_size, query_length)`. | 
					
						
						|  | dtype (`torch.dtype`): | 
					
						
						|  | The torch dtype the created mask shall have. | 
					
						
						|  | device (`int`): | 
					
						
						|  | The torch device the created mask shall have. | 
					
						
						|  | sliding_window (`int`, *optional*): | 
					
						
						|  | If the model uses windowed attention, a sliding window should be passed. | 
					
						
						|  | """ | 
					
						
						|  | attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) | 
					
						
						|  |  | 
					
						
						|  | key_value_length = past_key_values_length + input_shape[-1] | 
					
						
						|  | attention_mask = attn_mask_converter.to_causal_4d( | 
					
						
						|  | input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attention_mask | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  |  | 
					
						
						|  | _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_torch_fx_available(): | 
					
						
						|  | if not is_torch_greater_or_equal_than_1_13: | 
					
						
						|  | import torch.fx | 
					
						
						|  |  | 
					
						
						|  | _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "TurboSparseMixtralConfig" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_balancing_loss_func( | 
					
						
						|  | gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None | 
					
						
						|  | ) -> float: | 
					
						
						|  | r""" | 
					
						
						|  | Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | 
					
						
						|  |  | 
					
						
						|  | See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | 
					
						
						|  | function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | 
					
						
						|  | experts is too unbalanced. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): | 
					
						
						|  | Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of | 
					
						
						|  | shape [batch_size X sequence_length, num_experts]. | 
					
						
						|  | attention_mask (`torch.Tensor`, None): | 
					
						
						|  | The attention_mask used in forward function | 
					
						
						|  | shape [batch_size X sequence_length] if not None. | 
					
						
						|  | num_experts (`int`, *optional*): | 
					
						
						|  | Number of experts | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | The auxiliary loss. | 
					
						
						|  | """ | 
					
						
						|  | if gate_logits is None or not isinstance(gate_logits, tuple): | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | if isinstance(gate_logits, tuple): | 
					
						
						|  | compute_device = gate_logits[0].device | 
					
						
						|  | concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) | 
					
						
						|  |  | 
					
						
						|  | routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  |  | 
					
						
						|  | tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | router_prob_per_expert = torch.mean(routing_weights, dim=0) | 
					
						
						|  | else: | 
					
						
						|  | batch_size, sequence_length = attention_mask.shape | 
					
						
						|  | num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | expert_attention_mask = ( | 
					
						
						|  | attention_mask[None, :, :, None, None] | 
					
						
						|  | .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) | 
					
						
						|  | .reshape(-1, top_k, num_experts) | 
					
						
						|  | .to(compute_device) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | 
					
						
						|  | expert_attention_mask, dim=0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | router_per_expert_attention_mask = ( | 
					
						
						|  | attention_mask[None, :, :, None] | 
					
						
						|  | .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) | 
					
						
						|  | .reshape(-1, num_experts) | 
					
						
						|  | .to(compute_device) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( | 
					
						
						|  | router_per_expert_attention_mask, dim=0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) | 
					
						
						|  | return overall_loss * num_experts | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralRMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | MixtralRMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralRotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  | inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._set_cos_sin_cache( | 
					
						
						|  | seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, seq_len=None): | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_seq_len_cached: | 
					
						
						|  | self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | self.cos_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | self.sin_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`): | 
					
						
						|  | The position indices of the tokens corresponding to the query and key tensors. For example, this can be | 
					
						
						|  | used to pass offsetted position ids when working with a KV-cache. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralAttention(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | 
					
						
						|  | and "Generating Long Sequences with Sparse Transformers". | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: TurboSparseMixtralConfig, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
						
						|  | "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.is_causal = True | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
						
						|  | f" and `num_heads`: {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  | self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | 
					
						
						|  | self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | 
					
						
						|  | self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | 
					
						
						|  | self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.rotary_emb = TurboSparseMixtralRotaryEmbedding( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
						
						|  | return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralFlashAttention2(TurboSparseMixtralAttention): | 
					
						
						|  | """ | 
					
						
						|  | Mixtral flash attention module. This module inherits from `MixtralAttention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | use_sliding_windows = ( | 
					
						
						|  | _flash_supports_window_size | 
					
						
						|  | and getattr(self.config, "sliding_window", None) is not None | 
					
						
						|  | and kv_seq_len > self.config.sliding_window | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not _flash_supports_window_size: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" | 
					
						
						|  | " make sure to upgrade flash-attn library." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | 
					
						
						|  | if ( | 
					
						
						|  | getattr(self.config, "sliding_window", None) is not None | 
					
						
						|  | and kv_seq_len > self.config.sliding_window | 
					
						
						|  | and cache_has_contents | 
					
						
						|  | ): | 
					
						
						|  | slicing_tokens = 1 - self.config.sliding_window | 
					
						
						|  |  | 
					
						
						|  | past_key = past_key_value[self.layer_idx][0] | 
					
						
						|  | past_value = past_key_value[self.layer_idx][1] | 
					
						
						|  |  | 
					
						
						|  | past_key = past_key[:, :, slicing_tokens:, :].contiguous() | 
					
						
						|  | past_value = past_value[:, :, slicing_tokens:, :].contiguous() | 
					
						
						|  |  | 
					
						
						|  | if past_key.shape[-2] != self.config.sliding_window - 1: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | 
					
						
						|  | f" {past_key.shape}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attention_mask[:, slicing_tokens:] | 
					
						
						|  | attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  | dropout_rate = 0.0 if not self.training else self.attention_dropout | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.q_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | q_len, | 
					
						
						|  | dropout=dropout_rate, | 
					
						
						|  | use_sliding_windows=use_sliding_windows, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | query_length, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | softmax_scale=None, | 
					
						
						|  | use_sliding_windows=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
						
						|  | first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | query_states (`torch.Tensor`): | 
					
						
						|  | Input query states to be passed to Flash Attention API | 
					
						
						|  | key_states (`torch.Tensor`): | 
					
						
						|  | Input key states to be passed to Flash Attention API | 
					
						
						|  | value_states (`torch.Tensor`): | 
					
						
						|  | Input value states to be passed to Flash Attention API | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
						
						|  | position of padding tokens and 1 for the position of non-padding tokens. | 
					
						
						|  | dropout (`float`): | 
					
						
						|  | Attention dropout | 
					
						
						|  | softmax_scale (`float`, *optional*): | 
					
						
						|  | The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
						
						|  | use_sliding_windows (`bool *optional*): | 
					
						
						|  | Whether to activate sliding window attention. | 
					
						
						|  | """ | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | if not use_sliding_windows: | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | window_size=(self.config.sliding_window, self.config.sliding_window), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
						
						|  | else: | 
					
						
						|  | if not use_sliding_windows: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | window_size=(self.config.sliding_window, self.config.sliding_window), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  | def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
						
						|  | batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if kv_seq_len != attention_mask.shape[-1]: | 
					
						
						|  | attention_mask_num_tokens = attention_mask.shape[-1] | 
					
						
						|  | attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] | 
					
						
						|  |  | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | 
					
						
						|  | value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | 
					
						
						|  |  | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | macu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralSdpaAttention(TurboSparseMixtralAttention): | 
					
						
						|  | """ | 
					
						
						|  | Mixtral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `MixtralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
						
						|  | SDPA API. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "MixtralModel is using MixtralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
						
						|  | 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and attention_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=attention_mask, | 
					
						
						|  | dropout_p=self.attention_dropout if self.training else 0.0, | 
					
						
						|  | is_causal=is_causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.view(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MIXTRAL_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": TurboSparseMixtralAttention, | 
					
						
						|  | "flash_attention_2": TurboSparseMixtralFlashAttention2, | 
					
						
						|  | "sdpa": TurboSparseMixtralSdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | class MLP(nn.Module): | 
					
						
						|  | def __init__(self, input_dim, hidden_dim, output_dim): | 
					
						
						|  | super(MLP, self).__init__() | 
					
						
						|  | self.fc1 = nn.Linear(input_dim, hidden_dim,bias=False) | 
					
						
						|  | self.relu = nn.ReLU() | 
					
						
						|  | self.fc2 = nn.Linear(hidden_dim, output_dim,bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.fc1(x) | 
					
						
						|  | x = self.relu(x) | 
					
						
						|  | x = self.fc2(x) | 
					
						
						|  | x = x.sigmoid() | 
					
						
						|  | return x | 
					
						
						|  | class TurboSparseMixtralBlockSparseTop2MLP(nn.Module): | 
					
						
						|  | def __init__(self, config: TurboSparseMixtralConfig, layer_id): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.ffn_dim = config.intermediate_size | 
					
						
						|  | self.hidden_dim = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) | 
					
						
						|  | self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) | 
					
						
						|  | self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) | 
					
						
						|  | self.predictor_dim = [896, 896, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1088, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1088, 1088, 1088, 1088, 1344] | 
					
						
						|  | self.predictor = MLP(4096, self.predictor_dim[layer_id], 14336) | 
					
						
						|  |  | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | mask = self.predictor(hidden_states) | 
					
						
						|  | current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.act_fn(self.w3(hidden_states)) | 
					
						
						|  | hard_mask = torch.round(mask) | 
					
						
						|  | mask = mask + (hard_mask - mask).detach() | 
					
						
						|  | current_hidden_states = torch.mul(current_hidden_states, mask) | 
					
						
						|  | current_hidden_states = self.w2(current_hidden_states) | 
					
						
						|  | return current_hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralSparseMoeBlock(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | This implementation is | 
					
						
						|  | strictly equivalent to standard MoE with full capacity (no | 
					
						
						|  | dropped tokens). It's faster since it formulates MoE operations | 
					
						
						|  | in terms of block-sparse operations to accomodate imbalanced | 
					
						
						|  | assignments of tokens to experts, whereas standard MoE either | 
					
						
						|  | (1) drop tokens at the cost of reduced performance or (2) set | 
					
						
						|  | capacity factor to number of experts and thus waste computation | 
					
						
						|  | and memory on padding. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config, layer_id): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_dim = config.hidden_size | 
					
						
						|  | self.ffn_dim = config.intermediate_size | 
					
						
						|  | self.num_experts = config.num_local_experts | 
					
						
						|  | self.top_k = config.num_experts_per_tok | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.experts = nn.ModuleList([TurboSparseMixtralBlockSparseTop2MLP(config, layer_id) for _ in range(self.num_experts)]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.jitter_noise = config.router_jitter_noise | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """ """ | 
					
						
						|  | batch_size, sequence_length, hidden_dim = hidden_states.shape | 
					
						
						|  | if self.training and self.jitter_noise > 0: | 
					
						
						|  | hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) | 
					
						
						|  | hidden_states = hidden_states.view(-1, hidden_dim) | 
					
						
						|  |  | 
					
						
						|  | router_logits = self.gate(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | 
					
						
						|  | routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | 
					
						
						|  | routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | routing_weights = routing_weights.to(hidden_states.dtype) | 
					
						
						|  |  | 
					
						
						|  | final_hidden_states = torch.zeros( | 
					
						
						|  | (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for expert_idx in range(self.num_experts): | 
					
						
						|  | expert_layer = self.experts[expert_idx] | 
					
						
						|  | idx, top_x = torch.where(expert_mask[expert_idx]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | 
					
						
						|  | current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | 
					
						
						|  | final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) | 
					
						
						|  | return final_hidden_states, router_logits | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralDecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: TurboSparseMixtralConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = MIXTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | 
					
						
						|  |  | 
					
						
						|  | self.block_sparse_moe = TurboSparseMixtralSparseMoeBlock(config, layer_idx) | 
					
						
						|  | self.input_layernorm = TurboSparseMixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.post_attention_layernorm = TurboSparseMixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | output_router_logits: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
						
						|  | `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | output_router_logits (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | 
					
						
						|  | should not be returned during inference. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states, router_logits = self.block_sparse_moe(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | if output_router_logits: | 
					
						
						|  | outputs += (router_logits,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MIXTRAL_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`MixtralConfig`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Mixtral Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | MIXTRAL_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = TurboSparseMixtralConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["TurboSparseMixtralDecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MIXTRAL_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | 
					
						
						|  | `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | 
					
						
						|  | `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | 
					
						
						|  | don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | 
					
						
						|  | `decoder_input_ids` of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | output_router_logits (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | 
					
						
						|  | should not be returned during inference. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Mixtral Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | MIXTRAL_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralModel(TurboSparseMixtralPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: MixtralConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: TurboSparseMixtralConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [TurboSparseMixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self._attn_implementation = config._attn_implementation | 
					
						
						|  | self.norm = TurboSparseMixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | output_router_logits: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, MoeModelOutputWithPast]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_router_logits = ( | 
					
						
						|  | output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
						
						|  | ) | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | batch_size, seq_length = input_ids.shape | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | batch_size, seq_length, _ = inputs_embeds.shape | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | past_key_values_length = 0 | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | use_legacy_cache = not isinstance(past_key_values, Cache) | 
					
						
						|  | if use_legacy_cache: | 
					
						
						|  | past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
						
						|  | past_key_values_length = past_key_values.get_usable_length(seq_length) | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
						
						|  | position_ids = torch.arange( | 
					
						
						|  | past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | 
					
						
						|  | ) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | 
					
						
						|  | else: | 
					
						
						|  | position_ids = position_ids.view(-1, seq_length).long() | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: | 
					
						
						|  | is_padding_right = attention_mask[:, -1].sum().item() != batch_size | 
					
						
						|  | if is_padding_right: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You are attempting to perform batched generation with padding_side='right'" | 
					
						
						|  | " this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to " | 
					
						
						|  | " call `tokenizer.padding_side  = 'left'` before tokenizing the input. " | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self._attn_implementation == "flash_attention_2": | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | 
					
						
						|  | elif self._attn_implementation == "sdpa" and not output_attentions: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | sliding_window=self.config.sliding_window, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | sliding_window=self.config.sliding_window, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | all_router_logits = () if output_router_logits else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | output_router_logits, | 
					
						
						|  | use_cache, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_router_logits=output_router_logits, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_router_logits: | 
					
						
						|  | all_router_logits += (layer_outputs[-1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = None | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return MoeModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | router_logits=all_router_logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralForCausalLM(TurboSparseMixtralPreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = TurboSparseMixtralModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  | self.router_aux_loss_coef = config.router_aux_loss_coef | 
					
						
						|  | self.num_experts = config.num_local_experts | 
					
						
						|  | self.num_experts_per_tok = config.num_experts_per_tok | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | output_router_logits: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, MoeCausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, MixtralForCausalLM | 
					
						
						|  |  | 
					
						
						|  | >>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1") | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_router_logits = ( | 
					
						
						|  | output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | output_router_logits=output_router_logits, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | logits = self.lm_head(hidden_states) | 
					
						
						|  | logits = logits.float() | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  | loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  |  | 
					
						
						|  | aux_loss = None | 
					
						
						|  | if output_router_logits: | 
					
						
						|  | aux_loss = load_balancing_loss_func( | 
					
						
						|  | outputs.router_logits if return_dict else outputs[-1], | 
					
						
						|  | self.num_experts, | 
					
						
						|  | self.num_experts_per_tok, | 
					
						
						|  | attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss += self.router_aux_loss_coef * aux_loss.to(loss.device) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | if output_router_logits: | 
					
						
						|  | output = (aux_loss,) + output | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return MoeCausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | aux_loss=aux_loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | router_logits=outputs.router_logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | output_router_logits=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | if isinstance(past_key_values, Cache): | 
					
						
						|  | cache_length = past_key_values.get_seq_length() | 
					
						
						|  | past_length = past_key_values.seen_tokens | 
					
						
						|  | max_cache_length = past_key_values.get_max_length() | 
					
						
						|  | else: | 
					
						
						|  | cache_length = past_length = past_key_values[0][0].shape[2] | 
					
						
						|  | max_cache_length = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif past_length < input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, past_length:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | max_cache_length is not None | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and cache_length + input_ids.shape[1] > max_cache_length | 
					
						
						|  | ): | 
					
						
						|  | attention_mask = attention_mask[:, -max_cache_length:] | 
					
						
						|  |  | 
					
						
						|  | position_ids = kwargs.get("position_ids", None) | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and past_key_values is None: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  | model_inputs = {"input_ids": input_ids} | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": kwargs.get("use_cache"), | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "output_router_logits": output_router_logits, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache(past_key_values, beam_idx): | 
					
						
						|  | reordered_past = () | 
					
						
						|  | for layer_past in past_key_values: | 
					
						
						|  | reordered_past += ( | 
					
						
						|  | tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | 
					
						
						|  | ) | 
					
						
						|  | return reordered_past | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The Mixtral Model transformer with a sequence classification head on top (linear layer). | 
					
						
						|  |  | 
					
						
						|  | [`MixtralForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
						
						|  | (e.g. GPT-2) do. | 
					
						
						|  |  | 
					
						
						|  | Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
						
						|  | `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
						
						|  | no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
						
						|  | padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
						
						|  | each row of the batch). | 
					
						
						|  | """, | 
					
						
						|  | MIXTRAL_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralForSequenceClassification(TurboSparseMixtralPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = TurboSparseMixtralModel(config) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | logits = self.score(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | batch_size = input_ids.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | batch_size = inputs_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if self.config.pad_token_id is None and batch_size != 1: | 
					
						
						|  | raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
						
						|  | if self.config.pad_token_id is None: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  | else: | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  |  | 
					
						
						|  | sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
						
						|  | sequence_lengths = sequence_lengths % input_ids.shape[-1] | 
					
						
						|  | sequence_lengths = sequence_lengths.to(logits.device) | 
					
						
						|  | else: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  |  | 
					
						
						|  | pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (pooled_logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=pooled_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The Mixtral Model transformer with a token classification head on top (a linear layer on top of the hidden-states | 
					
						
						|  | output) e.g. for Named-Entity-Recognition (NER) tasks. | 
					
						
						|  | """, | 
					
						
						|  | MIXTRAL_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class TurboSparseMixtralForTokenClassification(TurboSparseMixtralPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = TurboSparseMixtralModel(config) | 
					
						
						|  | if getattr(config, "classifier_dropout", None) is not None: | 
					
						
						|  | classifier_dropout = config.classifier_dropout | 
					
						
						|  | elif getattr(config, "hidden_dropout", None) is not None: | 
					
						
						|  | classifier_dropout = config.hidden_dropout | 
					
						
						|  | else: | 
					
						
						|  | classifier_dropout = 0.1 | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | sequence_output = self.dropout(sequence_output) | 
					
						
						|  | logits = self.score(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return TokenClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |