| import torch.nn as nn | |
| import math | |
| def conv3x3(in_planes, out_planes, stride=1): | |
| """3x3 convolution with padding""" | |
| return nn.Conv2d( | |
| in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False | |
| ) | |
| class BasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(BasicBlock, self).__init__() | |
| self.conv1 = conv3x3(inplanes, planes, stride) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.conv2 = nn.Conv2d( | |
| planes, planes, kernel_size=3, stride=stride, padding=1, bias=False | |
| ) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes * 4) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class ResNet50(nn.Module): | |
| def __init__(self, mode="rgb"): | |
| self.inplanes = 64 | |
| super(ResNet50, self).__init__() | |
| if mode == "rgb": | |
| self.conv1 = nn.Conv2d( | |
| 3, 64, kernel_size=7, stride=2, padding=3, bias=False | |
| ) | |
| elif mode == "rgbd": | |
| self.conv1 = nn.Conv2d( | |
| 1, 64, kernel_size=7, stride=2, padding=3, bias=False | |
| ) | |
| elif mode == "share": | |
| self.conv1 = nn.Conv2d( | |
| 3, 64, kernel_size=7, stride=2, padding=3, bias=False | |
| ) | |
| self.conv1_d = nn.Conv2d( | |
| 1, 64, kernel_size=7, stride=2, padding=3, bias=False | |
| ) | |
| else: | |
| raise | |
| self.bn1 = nn.BatchNorm2d(64) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.layer1 = self._make_layer(Bottleneck, 64, 3) | |
| self.layer2 = self._make_layer(Bottleneck, 128, 4, stride=2) | |
| self.layer3_1 = self._make_layer(Bottleneck, 256, 6, stride=2) | |
| self.layer4_1 = self._make_layer(Bottleneck, 512, 3, stride=2) | |
| self.inplanes = 512 | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| m.weight.data.normal_(0, math.sqrt(2.0 / n)) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| m.weight.data.fill_(1) | |
| m.bias.data.zero_() | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| self.inplanes, | |
| planes * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.maxpool(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x1 = self.layer3_1(x) | |
| x1 = self.layer4_1(x1) | |
| return x1, x1 | |