Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,95 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
frameworks:
|
| 3 |
+
- Pytorch
|
| 4 |
+
tasks:
|
| 5 |
+
- text-to-image-synthesis
|
| 6 |
+
|
| 7 |
+
#model-type:
|
| 8 |
+
##如 gpt、phi、llama、chatglm、baichuan 等
|
| 9 |
+
#- gpt
|
| 10 |
+
|
| 11 |
+
#domain:
|
| 12 |
+
##如 nlp、cv、audio、multi-modal
|
| 13 |
+
#- nlp
|
| 14 |
+
|
| 15 |
+
#language:
|
| 16 |
+
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
|
| 17 |
+
#- cn
|
| 18 |
+
|
| 19 |
+
#metrics:
|
| 20 |
+
##如 CIDEr、Blue、ROUGE 等
|
| 21 |
+
#- CIDEr
|
| 22 |
+
|
| 23 |
+
#tags:
|
| 24 |
+
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
|
| 25 |
+
#- pretrained
|
| 26 |
+
|
| 27 |
+
#tools:
|
| 28 |
+
##如 vllm、fastchat、llamacpp、AdaSeq 等
|
| 29 |
+
#- vllm
|
| 30 |
+
base_model:
|
| 31 |
+
- Qwen/Qwen-Image
|
| 32 |
+
base_model_relation: adapter
|
| 33 |
+
---
|
| 34 |
+
# Qwen-Image Image Structure Control Model - Depth ControlNet
|
| 35 |
+
|
| 36 |
+

|
| 37 |
+
|
| 38 |
+
## Model Introduction
|
| 39 |
+
|
| 40 |
+
This model is a structure control model for images, trained based on [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image) .The model architecture is ControlNet, which can control the generated image structure according to the depth (Depth) map .The training framework is built on[DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) and the dataset used is [BLIP3o](https://modelscope.cn/datasets/BLIP3o/BLIP3o-60k)。
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
## Effect Demonstration
|
| 44 |
+
|
| 45 |
+
|Structure Map|Generated Image 1|Generated Image 2|
|
| 46 |
+
|-|-|-|
|
| 47 |
+
||||
|
| 48 |
+
||||
|
| 49 |
+
||||
|
| 50 |
+
|
| 51 |
+
## Inference Code
|
| 52 |
+
```
|
| 53 |
+
git clone https://github.com/modelscope/DiffSynth-Studio.git
|
| 54 |
+
cd DiffSynth-Studio
|
| 55 |
+
pip install -e .
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput
|
| 60 |
+
from PIL import Image
|
| 61 |
+
import torch
|
| 62 |
+
from modelscope import dataset_snapshot_download
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
pipe = QwenImagePipeline.from_pretrained(
|
| 66 |
+
torch_dtype=torch.bfloat16,
|
| 67 |
+
device="cuda",
|
| 68 |
+
model_configs=[
|
| 69 |
+
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
|
| 70 |
+
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
|
| 71 |
+
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
|
| 72 |
+
ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Depth", origin_file_pattern="model.safetensors"),
|
| 73 |
+
],
|
| 74 |
+
tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
dataset_snapshot_download(
|
| 78 |
+
dataset_id="DiffSynth-Studio/example_image_dataset",
|
| 79 |
+
local_dir="./data/example_image_dataset",
|
| 80 |
+
allow_file_pattern="depth/image_1.jpg"
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
controlnet_image = Image.open("data/example_image_dataset/depth/image_1.jpg").resize((1328, 1328))
|
| 84 |
+
|
| 85 |
+
prompt = "Exquisite portrait of an underwater girl with flowing blue dress and fluttering hair. Transparent light and shadow, surrounded by bubbles. Her face is serene, with exquisite details and dreamy beauty."
|
| 86 |
+
image = pipe(
|
| 87 |
+
prompt, seed=0,
|
| 88 |
+
blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image)]
|
| 89 |
+
)
|
| 90 |
+
image.save("image.jpg")
|
| 91 |
+
|
| 92 |
+
```
|
| 93 |
+
---
|
| 94 |
+
license: apache-2.0
|
| 95 |
+
---
|