Update modeling_super_linear.py
Browse files- modeling_super_linear.py +97 -178
modeling_super_linear.py
CHANGED
|
@@ -1,19 +1,22 @@
|
|
|
|
|
| 1 |
from typing import Optional, Tuple
|
| 2 |
import torch, torch.nn as nn, torch.nn.functional as F
|
| 3 |
|
| 4 |
from transformers import (PreTrainedModel,GenerationMixin,AutoConfig,AutoModelForCausalLM,)
|
| 5 |
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
| 6 |
from .configuration_super_linear import SuperLinearConfig
|
| 7 |
-
from torch.nn.functional import interpolate
|
| 8 |
-
|
| 9 |
-
import datetime
|
| 10 |
-
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
import numpy as np
|
|
|
|
|
|
|
| 13 |
import matplotlib.pyplot as plt
|
| 14 |
import os
|
| 15 |
-
|
| 16 |
|
|
|
|
| 17 |
|
| 18 |
"-------------------------------------------------------------------------------------------------------------------"
|
| 19 |
class RevIN(nn.Module):
|
|
@@ -99,7 +102,6 @@ class moving_avg(nn.Module):
|
|
| 99 |
self.kernel_size = kernel_size
|
| 100 |
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)
|
| 101 |
|
| 102 |
-
|
| 103 |
def forward(self, x):
|
| 104 |
# x: [Batch, Input length]
|
| 105 |
# padding on the both ends of time series
|
|
@@ -147,8 +149,12 @@ class Linear(nn.Module):
|
|
| 147 |
|
| 148 |
def forward(self, x):
|
| 149 |
# x: [Batch*Channel, Input length]
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
return x # to [Batch, Output length, Channel]
|
| 153 |
|
| 154 |
class Naive(nn.Module):
|
|
@@ -159,7 +165,11 @@ class Naive(nn.Module):
|
|
| 159 |
|
| 160 |
def forward(self, x):
|
| 161 |
# x: [Batch*Channel, Input length]
|
|
|
|
|
|
|
| 162 |
x = x[:,-1].unsqueeze(1).repeat(1, self.output_len)
|
|
|
|
|
|
|
| 163 |
return x # to [Batch, Output length, Channel]
|
| 164 |
|
| 165 |
class Mean(nn.Module):
|
|
@@ -169,7 +179,9 @@ class Mean(nn.Module):
|
|
| 169 |
|
| 170 |
def forward(self, x):
|
| 171 |
# x: [Batch*Channel, Input length]
|
|
|
|
| 172 |
x = x.mean(dim=1).unsqueeze(1).repeat(1, self.output_len)
|
|
|
|
| 173 |
return x # to [Batch, Output length, Channel]
|
| 174 |
|
| 175 |
|
|
@@ -179,74 +191,31 @@ class NLinear(nn.Module):
|
|
| 179 |
self.Linear = nn.Linear(input_len, output_len)
|
| 180 |
|
| 181 |
def forward(self, x):
|
| 182 |
-
# x: [Batch
|
| 183 |
seq_last = x[:,-1:].detach()
|
| 184 |
x = x - seq_last
|
| 185 |
x = self.Linear(x)
|
| 186 |
-
|
|
|
|
|
|
|
| 187 |
|
| 188 |
|
| 189 |
-
|
| 190 |
class RLinear(nn.Module):
|
| 191 |
def __init__(self, input_len, output_len):
|
| 192 |
super(RLinear, self).__init__()
|
| 193 |
-
self.Linear
|
| 194 |
-
self.
|
| 195 |
-
self.horizon = output_len
|
| 196 |
-
self.revin_layer = RevIN(num_features = None, affine=False, norm_type = None, subtract_last = False)
|
| 197 |
-
self.zero_shot_Linear = None
|
| 198 |
-
|
| 199 |
-
def transform_model(self,new_lookback,mode):
|
| 200 |
-
if mode == 1:
|
| 201 |
-
W = self.Linear.weight.detach()
|
| 202 |
-
new_W = W[:, -new_lookback:]
|
| 203 |
-
original_norm = torch.norm(W, p=2)
|
| 204 |
-
new_norm = torch.norm(new_W, p=2)
|
| 205 |
-
final_scaling = original_norm / new_norm if new_norm.item() != 0 else 1.0
|
| 206 |
-
new_W = new_W * final_scaling
|
| 207 |
-
|
| 208 |
-
self.zero_shot_Linear = new_W
|
| 209 |
-
elif mode ==2:
|
| 210 |
-
W = self.Linear.weight.detach()
|
| 211 |
-
W4d = W.unsqueeze(0).unsqueeze(0) # (1, 1, out, in)
|
| 212 |
-
|
| 213 |
-
# resize H → self.horizon and W → new_lookback
|
| 214 |
-
new_W = F.interpolate(
|
| 215 |
-
W4d,
|
| 216 |
-
size=(self.horizon, new_lookback), # (H_out, W_out)
|
| 217 |
-
mode='bilinear',
|
| 218 |
-
align_corners=False
|
| 219 |
-
)[0, 0] # drop the two singleton dims
|
| 220 |
-
|
| 221 |
-
self.zero_shot_Linear = new_W # shape (self.horizon, new_lookback)
|
| 222 |
-
else:
|
| 223 |
-
W = self.Linear.weight.detach()
|
| 224 |
-
m = nn.AdaptiveAvgPool1d(new_lookback)
|
| 225 |
-
self.zero_shot_Linear = m(W)
|
| 226 |
-
|
| 227 |
|
| 228 |
def forward(self, x):
|
| 229 |
# x: [Batch, Input length,Channel]
|
| 230 |
x_shape = x.shape
|
| 231 |
-
''''if x.shape[1] < self.seq_len:
|
| 232 |
-
#if self.zero_shot_Linear is None:
|
| 233 |
-
#print(F"new Lookkback : {x.shape[1]}")
|
| 234 |
-
|
| 235 |
-
self.transform_model(x.shape[1],1)
|
| 236 |
-
x = self.revin_layer(x, 'norm')
|
| 237 |
-
x = F.linear(x, self.zero_shot_Linear)
|
| 238 |
-
x = self.revin_layer(x, 'denorm')
|
| 239 |
-
return x'''
|
| 240 |
-
|
| 241 |
-
|
| 242 |
if len(x_shape) == 2:
|
| 243 |
x = x.unsqueeze(-1)
|
| 244 |
-
|
| 245 |
x = x.clone()
|
| 246 |
x = self.revin_layer(x, 'norm')
|
|
|
|
| 247 |
x = self.Linear(x.permute(0,2,1)).permute(0,2,1).clone()
|
| 248 |
x = self.revin_layer(x, 'denorm')
|
| 249 |
-
|
| 250 |
if len(x_shape) == 2:
|
| 251 |
x = x.squeeze(-1)
|
| 252 |
return x # to [Batch, Output length, Channel]
|
|
@@ -254,23 +223,27 @@ class RLinear(nn.Module):
|
|
| 254 |
"-------------------------------------------------------------------------------------------------------------------"
|
| 255 |
class SparseNoisyMoE(nn.Module):
|
| 256 |
def __init__(self, configs, experts=None):
|
| 257 |
-
self.i = 0
|
| 258 |
super(SparseNoisyMoE, self).__init__()
|
| 259 |
input_dim = configs.seq_len
|
| 260 |
-
self.lookback = configs.seq_len
|
| 261 |
output_dim = configs.pred_len
|
| 262 |
-
|
| 263 |
self.noise_std = configs.noisy_gating_std
|
| 264 |
self.noise_std_decay = configs.noisy_gating_std_decay
|
| 265 |
self.experts = nn.ModuleList(experts)
|
| 266 |
self.num_experts = len(experts)
|
| 267 |
-
self.
|
| 268 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
self.d_model = configs.d_model
|
| 270 |
self.mlp_gating = configs.mlp_gating
|
| 271 |
self.moe_temp = configs.moe_temp
|
| 272 |
self.use_fft = configs.use_fft
|
| 273 |
self.fft_len = configs.fft_len
|
|
|
|
|
|
|
| 274 |
|
| 275 |
if self.use_fft:
|
| 276 |
if self.mlp_gating:
|
|
@@ -279,12 +252,18 @@ class SparseNoisyMoE(nn.Module):
|
|
| 279 |
nn.ReLU(),
|
| 280 |
nn.Linear(self.d_model, self.num_experts)
|
| 281 |
)
|
|
|
|
| 282 |
else:
|
| 283 |
self.gating_network = nn.Linear(self.fft_len//2, self.num_experts, bias=True)
|
| 284 |
else:
|
| 285 |
self.gating_network = nn.Linear(input_dim, self.num_experts, bias=True)
|
| 286 |
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
if inputs.dim() == 2:
|
| 289 |
x_0 = inputs.unsqueeze(2)
|
| 290 |
else:
|
|
@@ -292,19 +271,6 @@ class SparseNoisyMoE(nn.Module):
|
|
| 292 |
x_0 = x_0 - torch.mean(x_0, dim=1, keepdim=True)
|
| 293 |
|
| 294 |
v = torch.arange(0, n) / n
|
| 295 |
-
if con:
|
| 296 |
-
if ker_len is None:
|
| 297 |
-
ker_len = n // 4
|
| 298 |
-
ker_len = min(ker_len, 50)
|
| 299 |
-
|
| 300 |
-
x_0 = x_0.permute(0, 2, 1)
|
| 301 |
-
ker = (torch.ones(1, 1, ker_len) / ker_len).to(x_0.device)
|
| 302 |
-
x_c = F.conv1d(x_0, ker, padding="same")
|
| 303 |
-
x_c[:, :, :ker_len // 2] = x_c[:, :, ker_len // 2:ker_len // 2 + 1]
|
| 304 |
-
x_c[:, :, -ker_len // 2:] = x_c[:, :, -ker_len // 2 - 1:-ker_len // 2]
|
| 305 |
-
x_0 = x_0 - x_c
|
| 306 |
-
x_0 = x_0.permute(0, 2, 1)
|
| 307 |
-
|
| 308 |
dft = torch.fft.fft(x_0, dim=1, n=n) / np.sqrt(n)
|
| 309 |
dft = dft[:, :n//2, :]
|
| 310 |
I = torch.abs(dft) ** 2
|
|
@@ -322,40 +288,35 @@ class SparseNoisyMoE(nn.Module):
|
|
| 322 |
|
| 323 |
return I
|
| 324 |
|
| 325 |
-
|
| 326 |
-
def fourier_interp_dim1(self,x, target_len: int = 512):
|
| 327 |
-
|
| 328 |
-
L = x.size(1)
|
| 329 |
-
X = torch.fft.rfft(x, dim=1) # (..., 25, ...)
|
| 330 |
-
pad = target_len // 2 + 1 - X.size(1)
|
| 331 |
-
X_pad = torch.cat([X, X.new_zeros(*X.shape[:-1], pad)], dim=1)
|
| 332 |
-
y = torch.fft.irfft(X_pad, n=target_len, dim=1)
|
| 333 |
-
return y
|
| 334 |
-
|
| 335 |
def forward(self, x, get_prob=False):
|
| 336 |
if self.use_fft:
|
| 337 |
-
|
|
|
|
| 338 |
else:
|
| 339 |
x_0 = x
|
| 340 |
|
| 341 |
-
self.gate_outputs = self.gating_network(x_0)
|
| 342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |
if not self.training:
|
| 345 |
self.gate_outputs = self.gate_outputs / self.moe_temp
|
| 346 |
-
|
|
|
|
| 347 |
noise = torch.randn_like(self.gate_outputs).to(x.device) * self.noise_std
|
| 348 |
if self.training:
|
| 349 |
noisy_gate_outputs = self.gate_outputs + noise
|
| 350 |
-
self.topk_values, topk_indices = torch.topk(noisy_gate_outputs, self.k, dim=1)
|
| 351 |
else:
|
| 352 |
self.topk_values, topk_indices = torch.topk(self.gate_outputs, self.k, dim=1)
|
| 353 |
|
|
|
|
| 354 |
self.topk_gates = F.softmax(self.topk_values, dim=1)
|
| 355 |
-
|
| 356 |
batch_size = x.size(0)
|
| 357 |
-
'''if x.shape[1] < 512:
|
| 358 |
-
x = self.fourier_interp_dim1(x)'''
|
| 359 |
expert_outputs = torch.stack([self.experts[i](x) for i in range(self.num_experts)], dim=1)
|
| 360 |
|
| 361 |
topk_indices_expanded = topk_indices.unsqueeze(-1).expand(-1, -1, expert_outputs.size(2))
|
|
@@ -364,10 +325,9 @@ class SparseNoisyMoE(nn.Module):
|
|
| 364 |
output = torch.sum(self.topk_gates.unsqueeze(2) * sparse_expert_outputs, dim=1)
|
| 365 |
|
| 366 |
load_balancing_loss = self.calculate_load_balancing_loss(self.gate_outputs, batch_size)
|
| 367 |
-
|
| 368 |
if get_prob:
|
| 369 |
expert_probs = F.softmax(self.gate_outputs, dim=1)
|
| 370 |
-
print(expert_probs.shape)
|
| 371 |
return output, load_balancing_loss, expert_probs
|
| 372 |
|
| 373 |
return output, load_balancing_loss
|
|
@@ -387,6 +347,7 @@ class SparseNoisyMoE(nn.Module):
|
|
| 387 |
return load_balancing_loss
|
| 388 |
|
| 389 |
|
|
|
|
| 390 |
class superLinear(nn.Module):
|
| 391 |
def __init__(self, configs):
|
| 392 |
super(superLinear, self).__init__()
|
|
@@ -399,13 +360,14 @@ class superLinear(nn.Module):
|
|
| 399 |
self.auto_regressive = configs.auto_regressive
|
| 400 |
self.n_experts = configs.moe_n_experts
|
| 401 |
self.moe = configs.moe
|
|
|
|
| 402 |
|
| 403 |
if configs.freq_experts == "":
|
| 404 |
self.freq_experts = None
|
| 405 |
else:
|
| 406 |
self.freq_experts = configs.freq_experts.split('_')
|
| 407 |
|
| 408 |
-
|
| 409 |
|
| 410 |
self.moe_loss = None
|
| 411 |
self.top_k_experts = configs.top_k_experts
|
|
@@ -415,9 +377,9 @@ class superLinear(nn.Module):
|
|
| 415 |
self.layer_type = configs.layer_type
|
| 416 |
self.model_name = "SuperLinear"
|
| 417 |
|
| 418 |
-
|
| 419 |
self.layer_dict = {'DLinear': DLinear, 'Linear': Linear, 'NLinear': NLinear, 'RLinear': RLinear}
|
| 420 |
-
path = configs.linear_checkpoints_path + configs.linear_checkpoints_dir
|
| 421 |
dirs = os.listdir(path)
|
| 422 |
checkpoints_paths = [path + "/" + d + "/" + "checkpoint.pth" for d in dirs]
|
| 423 |
|
|
@@ -462,12 +424,38 @@ class superLinear(nn.Module):
|
|
| 462 |
|
| 463 |
self.manual_moe = configs.manual_moe
|
| 464 |
|
| 465 |
-
|
| 466 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
|
| 468 |
self.moe = SparseNoisyMoE(configs, experts=self.experts.values())
|
| 469 |
self.dropout = nn.Dropout(configs.dropout)
|
| 470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
def map_to_cycle(self, freq):
|
| 472 |
if "/" in freq:
|
| 473 |
cycle = int(freq.split("/")[1])
|
|
@@ -502,7 +490,7 @@ class superLinear(nn.Module):
|
|
| 502 |
return cycle
|
| 503 |
|
| 504 |
|
| 505 |
-
def forward(self, x_enc, x_mark_enc=None, x_dec=None, x_mark_dec=None, mask=None, freq=[None], get_prob=False
|
| 506 |
|
| 507 |
if inf_pred_len is None:
|
| 508 |
inf_pred_len = self.inf_pred_len
|
|
@@ -511,13 +499,12 @@ class superLinear(nn.Module):
|
|
| 511 |
x = x_enc.permute(0, 2, 1)
|
| 512 |
B, V, L = x.shape
|
| 513 |
else:
|
| 514 |
-
x
|
| 515 |
-
x_enc = x_enc.unsqueeze(-1)
|
| 516 |
B, L = x.shape
|
| 517 |
V = 1
|
| 518 |
|
| 519 |
short_lookback = False
|
| 520 |
-
if L
|
| 521 |
# print("test!")
|
| 522 |
#ceil - very bad heuristic!
|
| 523 |
scale_factor = self.seq_len / L
|
|
@@ -527,13 +514,12 @@ class superLinear(nn.Module):
|
|
| 527 |
inf_pred_len = inf_pred_len*scale_factor
|
| 528 |
x = interpolate(x_enc.permute(0, 2, 1), scale_factor=scale_factor, mode='linear')
|
| 529 |
|
| 530 |
-
|
| 531 |
x = x[:,: , -self.seq_len:]
|
| 532 |
orig_L = L
|
| 533 |
L = self.seq_len
|
| 534 |
|
| 535 |
short_lookback = True
|
| 536 |
-
|
| 537 |
x = x.reshape(B * V, L)
|
| 538 |
|
| 539 |
expert_probs = None
|
|
@@ -556,8 +542,7 @@ class superLinear(nn.Module):
|
|
| 556 |
|
| 557 |
if short_lookback:
|
| 558 |
out = interpolate(out, scale_factor=1/scale_factor, mode='linear')
|
| 559 |
-
|
| 560 |
-
out = out[:, :,:orig_pred_len]
|
| 561 |
result = out.permute(0, 2, 1)
|
| 562 |
if get_prob:
|
| 563 |
expert_probs = expert_probs.reshape(B, V, expert_probs.shape[-1])
|
|
@@ -576,64 +561,9 @@ class SuperLinearForCausalLM(PreTrainedModel, GenerationMixin):
|
|
| 576 |
backbone_cfg = type("Cfg", (), config.to_dict())()
|
| 577 |
self.args = backbone_cfg
|
| 578 |
self.backbone = superLinear(backbone_cfg)
|
| 579 |
-
self.revin_layer = RevIN(num_features = None, affine=False, norm_type = None, subtract_last = False)
|
| 580 |
self.post_init()
|
| 581 |
|
| 582 |
|
| 583 |
-
|
| 584 |
-
def fourier_interp_dim1(self,x, target_len: int = 512):
|
| 585 |
-
|
| 586 |
-
L = x.size(1)
|
| 587 |
-
|
| 588 |
-
X = torch.fft.rfft(x, dim=1) # (..., 25, ...)
|
| 589 |
-
pad = target_len // 2 + 1 - X.size(1)
|
| 590 |
-
X_pad = torch.cat([X, X.new_zeros(*X.shape[:-1], pad)], dim=1)
|
| 591 |
-
y = torch.fft.irfft(X_pad, n=target_len, dim=1)
|
| 592 |
-
return y
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
def fourier_downsample_dim1(self,x,target_len: int):
|
| 596 |
-
|
| 597 |
-
L = x.size(1)
|
| 598 |
-
# 1. Forward real FFT along dim-1
|
| 599 |
-
X = torch.fft.rfft(x, dim=1) # shape (..., L//2 + 1, ...)
|
| 600 |
-
|
| 601 |
-
# 2. Keep only the low-frequency bins needed for the shorter series
|
| 602 |
-
keep = target_len // 2 + 1 # rfft size for the target grid
|
| 603 |
-
X_crop = X[..., :keep] # ideal brick-wall low-pass
|
| 604 |
-
|
| 605 |
-
# 3. Inverse FFT to the shorter grid
|
| 606 |
-
y = torch.fft.irfft(X_crop, n=target_len, dim=1)
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
return y
|
| 610 |
-
|
| 611 |
-
def upsample_interpolate(self, x, scale_factor, target_len: int = 512, mode='bicubic'):
|
| 612 |
-
was_2d = x.dim() == 2
|
| 613 |
-
|
| 614 |
-
if was_2d: # [B, L] -> [B, 1, L]
|
| 615 |
-
x = x.unsqueeze(1)
|
| 616 |
-
else: # [B, L, C] -> [B, C, L]
|
| 617 |
-
x = x.permute(0, 2, 1)
|
| 618 |
-
|
| 619 |
-
# Add support for bicubic interpolation by adding an extra dimension
|
| 620 |
-
if mode == 'bicubic':
|
| 621 |
-
x = x.unsqueeze(2) # [B, C, 1, L]
|
| 622 |
-
x_up = F.interpolate(x, size=(1, target_len), mode='bicubic', align_corners=False)
|
| 623 |
-
x_up = x_up.squeeze(2) # [B, C, L]
|
| 624 |
-
else:
|
| 625 |
-
x_up = F.interpolate(x, size=target_len, mode=mode, align_corners=False)
|
| 626 |
-
|
| 627 |
-
x_up = x_up * scale_factor
|
| 628 |
-
|
| 629 |
-
# Restore original layout
|
| 630 |
-
if was_2d: # back to [B, target_len]
|
| 631 |
-
return x_up.squeeze(1).float()
|
| 632 |
-
else: # back to [B, target_len, C]
|
| 633 |
-
return x_up.permute(0, 2, 1).float()
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
def forward(self,
|
| 638 |
inputs_embeds: torch.Tensor = None,
|
| 639 |
attention_mask: Optional[torch.Tensor] = None,
|
|
@@ -647,19 +577,7 @@ class SuperLinearForCausalLM(PreTrainedModel, GenerationMixin):
|
|
| 647 |
raise ValueError("Pass the time‑series as `inputs_embeds`")
|
| 648 |
|
| 649 |
# backbone expects (B, C, L)
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
if x_enc.shape[1] < 512:
|
| 654 |
-
'''scale_factor = int(np.ceil(512/x_enc.shape[-1]))
|
| 655 |
-
x_enc = self.upsample_interpolate(x_enc,scale_factor,512)
|
| 656 |
-
self.backbone.inf_pred_len = 96*scale_factor
|
| 657 |
-
preds = self.backbone(x_enc)
|
| 658 |
-
preds = self.upsample_interpolate(preds,1/scale_factor,96)'''
|
| 659 |
-
preds = self.backbone(x_enc)
|
| 660 |
-
else:
|
| 661 |
-
preds = self.backbone(x_enc)
|
| 662 |
-
|
| 663 |
return CausalLMOutputWithCrossAttentions(loss=None,logits=preds,past_key_values=None,hidden_states=None,attentions=None,)
|
| 664 |
|
| 665 |
|
|
@@ -673,3 +591,4 @@ class SuperLinearForCausalLM(PreTrainedModel, GenerationMixin):
|
|
| 673 |
return past # backbone keeps no KV cache
|
| 674 |
|
| 675 |
|
|
|
|
|
|
| 1 |
+
|
| 2 |
from typing import Optional, Tuple
|
| 3 |
import torch, torch.nn as nn, torch.nn.functional as F
|
| 4 |
|
| 5 |
from transformers import (PreTrainedModel,GenerationMixin,AutoConfig,AutoModelForCausalLM,)
|
| 6 |
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
| 7 |
from .configuration_super_linear import SuperLinearConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
from layers.Linear_layers import DLinear, Linear, NLinear, RLinear, Naive, Mean
|
| 10 |
+
import math
|
| 11 |
+
import torch
|
| 12 |
import numpy as np
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
import matplotlib.pyplot as plt
|
| 16 |
import os
|
| 17 |
+
from torch.nn.functional import interpolate
|
| 18 |
|
| 19 |
+
import datetime
|
| 20 |
|
| 21 |
"-------------------------------------------------------------------------------------------------------------------"
|
| 22 |
class RevIN(nn.Module):
|
|
|
|
| 102 |
self.kernel_size = kernel_size
|
| 103 |
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)
|
| 104 |
|
|
|
|
| 105 |
def forward(self, x):
|
| 106 |
# x: [Batch, Input length]
|
| 107 |
# padding on the both ends of time series
|
|
|
|
| 149 |
|
| 150 |
def forward(self, x):
|
| 151 |
# x: [Batch*Channel, Input length]
|
| 152 |
+
x_shape = x.shape
|
| 153 |
+
if len(x_shape) == 2:
|
| 154 |
+
x = x.unsqueeze(-1)
|
| 155 |
+
x = self.Linear(x)
|
| 156 |
+
if len(x_shape) == 2:
|
| 157 |
+
x = x.squeeze(-1)
|
| 158 |
return x # to [Batch, Output length, Channel]
|
| 159 |
|
| 160 |
class Naive(nn.Module):
|
|
|
|
| 165 |
|
| 166 |
def forward(self, x):
|
| 167 |
# x: [Batch*Channel, Input length]
|
| 168 |
+
|
| 169 |
+
|
| 170 |
x = x[:,-1].unsqueeze(1).repeat(1, self.output_len)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
return x # to [Batch, Output length, Channel]
|
| 174 |
|
| 175 |
class Mean(nn.Module):
|
|
|
|
| 179 |
|
| 180 |
def forward(self, x):
|
| 181 |
# x: [Batch*Channel, Input length]
|
| 182 |
+
|
| 183 |
x = x.mean(dim=1).unsqueeze(1).repeat(1, self.output_len)
|
| 184 |
+
|
| 185 |
return x # to [Batch, Output length, Channel]
|
| 186 |
|
| 187 |
|
|
|
|
| 191 |
self.Linear = nn.Linear(input_len, output_len)
|
| 192 |
|
| 193 |
def forward(self, x):
|
| 194 |
+
# x: [Batch* Input length,Channel]
|
| 195 |
seq_last = x[:,-1:].detach()
|
| 196 |
x = x - seq_last
|
| 197 |
x = self.Linear(x)
|
| 198 |
+
|
| 199 |
+
x = x + seq_last
|
| 200 |
+
return x
|
| 201 |
|
| 202 |
|
|
|
|
| 203 |
class RLinear(nn.Module):
|
| 204 |
def __init__(self, input_len, output_len):
|
| 205 |
super(RLinear, self).__init__()
|
| 206 |
+
self.Linear = nn.Linear(input_len, output_len)
|
| 207 |
+
self.revin_layer = RevIN(num_features = None, affine=False, norm_type = None, subtract_last = False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
def forward(self, x):
|
| 210 |
# x: [Batch, Input length,Channel]
|
| 211 |
x_shape = x.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
if len(x_shape) == 2:
|
| 213 |
x = x.unsqueeze(-1)
|
|
|
|
| 214 |
x = x.clone()
|
| 215 |
x = self.revin_layer(x, 'norm')
|
| 216 |
+
|
| 217 |
x = self.Linear(x.permute(0,2,1)).permute(0,2,1).clone()
|
| 218 |
x = self.revin_layer(x, 'denorm')
|
|
|
|
| 219 |
if len(x_shape) == 2:
|
| 220 |
x = x.squeeze(-1)
|
| 221 |
return x # to [Batch, Output length, Channel]
|
|
|
|
| 223 |
"-------------------------------------------------------------------------------------------------------------------"
|
| 224 |
class SparseNoisyMoE(nn.Module):
|
| 225 |
def __init__(self, configs, experts=None):
|
|
|
|
| 226 |
super(SparseNoisyMoE, self).__init__()
|
| 227 |
input_dim = configs.seq_len
|
|
|
|
| 228 |
output_dim = configs.pred_len
|
| 229 |
+
|
| 230 |
self.noise_std = configs.noisy_gating_std
|
| 231 |
self.noise_std_decay = configs.noisy_gating_std_decay
|
| 232 |
self.experts = nn.ModuleList(experts)
|
| 233 |
self.num_experts = len(experts)
|
| 234 |
+
self.k = configs.top_k_experts
|
| 235 |
+
if self.k > self.num_experts:
|
| 236 |
+
print(f"Warning: k ({self.k}) is greater than the number of experts ({self.num_experts}). Setting k to {self.num_experts}.")
|
| 237 |
+
self.k = self.num_experts
|
| 238 |
+
# self.ker_len = configs.ker_len
|
| 239 |
+
#self.con = configs.con
|
| 240 |
self.d_model = configs.d_model
|
| 241 |
self.mlp_gating = configs.mlp_gating
|
| 242 |
self.moe_temp = configs.moe_temp
|
| 243 |
self.use_fft = configs.use_fft
|
| 244 |
self.fft_len = configs.fft_len
|
| 245 |
+
self.moe_norm = configs.moe_norm
|
| 246 |
+
|
| 247 |
|
| 248 |
if self.use_fft:
|
| 249 |
if self.mlp_gating:
|
|
|
|
| 252 |
nn.ReLU(),
|
| 253 |
nn.Linear(self.d_model, self.num_experts)
|
| 254 |
)
|
| 255 |
+
|
| 256 |
else:
|
| 257 |
self.gating_network = nn.Linear(self.fft_len//2, self.num_experts, bias=True)
|
| 258 |
else:
|
| 259 |
self.gating_network = nn.Linear(input_dim, self.num_experts, bias=True)
|
| 260 |
|
| 261 |
+
if self.moe_norm:
|
| 262 |
+
self.batch_norm = nn.BatchNorm1d(self.num_experts)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def get_periodogram(self, inputs, n=10000):
|
| 267 |
if inputs.dim() == 2:
|
| 268 |
x_0 = inputs.unsqueeze(2)
|
| 269 |
else:
|
|
|
|
| 271 |
x_0 = x_0 - torch.mean(x_0, dim=1, keepdim=True)
|
| 272 |
|
| 273 |
v = torch.arange(0, n) / n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
dft = torch.fft.fft(x_0, dim=1, n=n) / np.sqrt(n)
|
| 275 |
dft = dft[:, :n//2, :]
|
| 276 |
I = torch.abs(dft) ** 2
|
|
|
|
| 288 |
|
| 289 |
return I
|
| 290 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
def forward(self, x, get_prob=False):
|
| 292 |
if self.use_fft:
|
| 293 |
+
# x_0 = self.get_periodogram(x, ker_len=self.ker_len, n=self.fft_len, con=self.con)
|
| 294 |
+
x_0 = self.get_periodogram(x, n=self.fft_len)
|
| 295 |
else:
|
| 296 |
x_0 = x
|
| 297 |
|
| 298 |
+
self.gate_outputs = self.gating_network(x_0) # g(X)
|
| 299 |
+
if self.moe_norm:
|
| 300 |
+
# self.gate_outputs = self.batch_norm(self.gate_outputs)
|
| 301 |
+
self.gate_outputs = self.batch_norm(self.gate_outputs)
|
| 302 |
+
|
| 303 |
+
#
|
| 304 |
|
| 305 |
if not self.training:
|
| 306 |
self.gate_outputs = self.gate_outputs / self.moe_temp
|
| 307 |
+
|
| 308 |
+
# original
|
| 309 |
noise = torch.randn_like(self.gate_outputs).to(x.device) * self.noise_std
|
| 310 |
if self.training:
|
| 311 |
noisy_gate_outputs = self.gate_outputs + noise
|
| 312 |
+
self.topk_values, topk_indices = torch.topk(noisy_gate_outputs, self.k, dim=1) # N = 35, k=6,12,20
|
| 313 |
else:
|
| 314 |
self.topk_values, topk_indices = torch.topk(self.gate_outputs, self.k, dim=1)
|
| 315 |
|
| 316 |
+
|
| 317 |
self.topk_gates = F.softmax(self.topk_values, dim=1)
|
| 318 |
+
|
| 319 |
batch_size = x.size(0)
|
|
|
|
|
|
|
| 320 |
expert_outputs = torch.stack([self.experts[i](x) for i in range(self.num_experts)], dim=1)
|
| 321 |
|
| 322 |
topk_indices_expanded = topk_indices.unsqueeze(-1).expand(-1, -1, expert_outputs.size(2))
|
|
|
|
| 325 |
output = torch.sum(self.topk_gates.unsqueeze(2) * sparse_expert_outputs, dim=1)
|
| 326 |
|
| 327 |
load_balancing_loss = self.calculate_load_balancing_loss(self.gate_outputs, batch_size)
|
| 328 |
+
|
| 329 |
if get_prob:
|
| 330 |
expert_probs = F.softmax(self.gate_outputs, dim=1)
|
|
|
|
| 331 |
return output, load_balancing_loss, expert_probs
|
| 332 |
|
| 333 |
return output, load_balancing_loss
|
|
|
|
| 347 |
return load_balancing_loss
|
| 348 |
|
| 349 |
|
| 350 |
+
|
| 351 |
class superLinear(nn.Module):
|
| 352 |
def __init__(self, configs):
|
| 353 |
super(superLinear, self).__init__()
|
|
|
|
| 360 |
self.auto_regressive = configs.auto_regressive
|
| 361 |
self.n_experts = configs.moe_n_experts
|
| 362 |
self.moe = configs.moe
|
| 363 |
+
self.model_name = "SuperLinear"
|
| 364 |
|
| 365 |
if configs.freq_experts == "":
|
| 366 |
self.freq_experts = None
|
| 367 |
else:
|
| 368 |
self.freq_experts = configs.freq_experts.split('_')
|
| 369 |
|
| 370 |
+
print("self.freq_experts:", self.freq_experts)
|
| 371 |
|
| 372 |
self.moe_loss = None
|
| 373 |
self.top_k_experts = configs.top_k_experts
|
|
|
|
| 377 |
self.layer_type = configs.layer_type
|
| 378 |
self.model_name = "SuperLinear"
|
| 379 |
|
| 380 |
+
print("self.layer_type", self.layer_type)
|
| 381 |
self.layer_dict = {'DLinear': DLinear, 'Linear': Linear, 'NLinear': NLinear, 'RLinear': RLinear}
|
| 382 |
+
path = configs.linear_checkpoints_path + configs.linear_checkpoints_dir
|
| 383 |
dirs = os.listdir(path)
|
| 384 |
checkpoints_paths = [path + "/" + d + "/" + "checkpoint.pth" for d in dirs]
|
| 385 |
|
|
|
|
| 424 |
|
| 425 |
self.manual_moe = configs.manual_moe
|
| 426 |
|
| 427 |
+
|
| 428 |
+
if configs.misc_moe>0:
|
| 429 |
+
if configs.misc_moe == 1:
|
| 430 |
+
print("Creating misc expert")
|
| 431 |
+
self.experts["misc"] = self.layer_dict[self.layer_type](self.seq_len, self.pred_len)
|
| 432 |
+
else:
|
| 433 |
+
for i in range(configs.misc_moe):
|
| 434 |
+
print(f"Creating misc expert {i}")
|
| 435 |
+
self.experts["misc_"+str(i)] = self.layer_dict[self.layer_type](self.seq_len, self.pred_len)
|
| 436 |
+
if configs.misc_moe2==1:
|
| 437 |
+
print("Creating misc expert")
|
| 438 |
+
self.experts["misc2"] = self.layer_dict[self.layer_type](self.seq_len, self.pred_len)
|
| 439 |
+
|
| 440 |
|
| 441 |
self.moe = SparseNoisyMoE(configs, experts=self.experts.values())
|
| 442 |
self.dropout = nn.Dropout(configs.dropout)
|
| 443 |
|
| 444 |
+
if configs.load_weights:
|
| 445 |
+
print(f"Loading weights from {path}")
|
| 446 |
+
path = configs.load_weights_path + "" + configs.load_weights_dir + "/" + "checkpoint.pth"
|
| 447 |
+
if os.path.exists(path):
|
| 448 |
+
# print(f"Loading weights from {path}")
|
| 449 |
+
checkpoint = torch.load(path)
|
| 450 |
+
print(len(self.experts.keys()))
|
| 451 |
+
print(self.experts.keys())
|
| 452 |
+
print(self.state_dict().keys())
|
| 453 |
+
print(checkpoint.keys())
|
| 454 |
+
self.load_state_dict(checkpoint)
|
| 455 |
+
else:
|
| 456 |
+
print(f"Path {path} does not exist. Skipping loading weights.")
|
| 457 |
+
|
| 458 |
+
|
| 459 |
def map_to_cycle(self, freq):
|
| 460 |
if "/" in freq:
|
| 461 |
cycle = int(freq.split("/")[1])
|
|
|
|
| 490 |
return cycle
|
| 491 |
|
| 492 |
|
| 493 |
+
def forward(self, x_enc, x_mark_enc=None, x_dec=None, x_mark_dec=None, mask=None, freq=[None], get_prob=False):
|
| 494 |
|
| 495 |
if inf_pred_len is None:
|
| 496 |
inf_pred_len = self.inf_pred_len
|
|
|
|
| 499 |
x = x_enc.permute(0, 2, 1)
|
| 500 |
B, V, L = x.shape
|
| 501 |
else:
|
| 502 |
+
x = x_enc
|
|
|
|
| 503 |
B, L = x.shape
|
| 504 |
V = 1
|
| 505 |
|
| 506 |
short_lookback = False
|
| 507 |
+
if L<self.seq_len:
|
| 508 |
# print("test!")
|
| 509 |
#ceil - very bad heuristic!
|
| 510 |
scale_factor = self.seq_len / L
|
|
|
|
| 514 |
inf_pred_len = inf_pred_len*scale_factor
|
| 515 |
x = interpolate(x_enc.permute(0, 2, 1), scale_factor=scale_factor, mode='linear')
|
| 516 |
|
|
|
|
| 517 |
x = x[:,: , -self.seq_len:]
|
| 518 |
orig_L = L
|
| 519 |
L = self.seq_len
|
| 520 |
|
| 521 |
short_lookback = True
|
| 522 |
+
|
| 523 |
x = x.reshape(B * V, L)
|
| 524 |
|
| 525 |
expert_probs = None
|
|
|
|
| 542 |
|
| 543 |
if short_lookback:
|
| 544 |
out = interpolate(out, scale_factor=1/scale_factor, mode='linear')
|
| 545 |
+
out = out[:, :,:orig_pred_len]
|
|
|
|
| 546 |
result = out.permute(0, 2, 1)
|
| 547 |
if get_prob:
|
| 548 |
expert_probs = expert_probs.reshape(B, V, expert_probs.shape[-1])
|
|
|
|
| 561 |
backbone_cfg = type("Cfg", (), config.to_dict())()
|
| 562 |
self.args = backbone_cfg
|
| 563 |
self.backbone = superLinear(backbone_cfg)
|
|
|
|
| 564 |
self.post_init()
|
| 565 |
|
| 566 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
def forward(self,
|
| 568 |
inputs_embeds: torch.Tensor = None,
|
| 569 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
| 577 |
raise ValueError("Pass the time‑series as `inputs_embeds`")
|
| 578 |
|
| 579 |
# backbone expects (B, C, L)
|
| 580 |
+
preds = self.backbone(inputs_embeds)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
return CausalLMOutputWithCrossAttentions(loss=None,logits=preds,past_key_values=None,hidden_states=None,attentions=None,)
|
| 582 |
|
| 583 |
|
|
|
|
| 591 |
return past # backbone keeps no KV cache
|
| 592 |
|
| 593 |
|
| 594 |
+
|