Update modeling_super_linear.py
Browse files- modeling_super_linear.py +1 -5
modeling_super_linear.py
CHANGED
|
@@ -191,10 +191,6 @@ class NLinear(nn.Module):
|
|
| 191 |
return x+seq_last # to [Batch, Output length, Channel]
|
| 192 |
|
| 193 |
|
| 194 |
-
import torch
|
| 195 |
-
import torch.nn as nn
|
| 196 |
-
import torch.nn.functional as F
|
| 197 |
-
|
| 198 |
|
| 199 |
class RLinear(nn.Module):
|
| 200 |
"""
|
|
@@ -207,7 +203,7 @@ class RLinear(nn.Module):
|
|
| 207 |
self.horizon = output_len
|
| 208 |
|
| 209 |
# bias=False because you asked to drop the bias
|
| 210 |
-
self.linear = nn.Linear(input_len, output_len
|
| 211 |
|
| 212 |
# your RevIN layer (must be defined elsewhere)
|
| 213 |
self.revin = RevIN(num_features=None, affine=False,
|
|
|
|
| 191 |
return x+seq_last # to [Batch, Output length, Channel]
|
| 192 |
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
class RLinear(nn.Module):
|
| 196 |
"""
|
|
|
|
| 203 |
self.horizon = output_len
|
| 204 |
|
| 205 |
# bias=False because you asked to drop the bias
|
| 206 |
+
self.linear = nn.Linear(input_len, output_len)
|
| 207 |
|
| 208 |
# your RevIN layer (must be defined elsewhere)
|
| 209 |
self.revin = RevIN(num_features=None, affine=False,
|