Upload README.md
Browse files
README.md
CHANGED
|
@@ -8,7 +8,7 @@ tags:
|
|
| 8 |
- pytorch
|
| 9 |
- fft
|
| 10 |
model-index:
|
| 11 |
-
- name:
|
| 12 |
results: []
|
| 13 |
---
|
| 14 |
|
|
@@ -42,18 +42,20 @@ import torch
|
|
| 42 |
model = AutoModelForCausalLM.from_pretrained("SequentialLearning/SuperLinear", trust_remote_code=True)
|
| 43 |
|
| 44 |
# Prepare input time series data
|
| 45 |
-
# Shape: [batch_size, sequence_length,
|
| 46 |
-
input_data = torch.randn(1,
|
| 47 |
|
| 48 |
# Generate predictions
|
| 49 |
with torch.no_grad():
|
| 50 |
-
outputs = model(inputs_embeds=input_data, pred_len=96)
|
| 51 |
-
|
|
|
|
|
|
|
| 52 |
```
|
| 53 |
|
| 54 |
## Configuration
|
| 55 |
|
| 56 |
-
Key
|
| 57 |
|
| 58 |
- `train_seq_len`: Training sequence length (default: 512)
|
| 59 |
- `train_pred_len`: Training prediction length (default: 96)
|
|
@@ -62,18 +64,20 @@ Key configuration parameters:
|
|
| 62 |
- `freq_experts`: Frequency-specific expert configuration
|
| 63 |
- `moe_temp`: Temperature for expert selection during inference (default: 1)
|
| 64 |
|
| 65 |
-
##
|
| 66 |
|
| 67 |
-
[https://github.com/azencot-group/SuperLinear](https://github.com/azencot-group/SuperLinear)
|
|
|
|
| 68 |
|
| 69 |
## Citation
|
| 70 |
|
| 71 |
If you use SuperLinear in your research, please cite:
|
| 72 |
|
| 73 |
```bibtex
|
| 74 |
-
@article{
|
| 75 |
-
title={
|
| 76 |
-
author={
|
|
|
|
| 77 |
year={2025}
|
| 78 |
}
|
| 79 |
```
|
|
|
|
| 8 |
- pytorch
|
| 9 |
- fft
|
| 10 |
model-index:
|
| 11 |
+
- name: SuperLinear
|
| 12 |
results: []
|
| 13 |
---
|
| 14 |
|
|
|
|
| 42 |
model = AutoModelForCausalLM.from_pretrained("SequentialLearning/SuperLinear", trust_remote_code=True)
|
| 43 |
|
| 44 |
# Prepare input time series data
|
| 45 |
+
# Shape: [batch_size, channel, sequence_length] or [batch_size, sequence_length]
|
| 46 |
+
input_data = torch.randn(1, 1, 512)
|
| 47 |
|
| 48 |
# Generate predictions
|
| 49 |
with torch.no_grad():
|
| 50 |
+
outputs = model(inputs_embeds=input_data, pred_len=96, get_prob = True)
|
| 51 |
+
preds = output.logits # Predicted values
|
| 52 |
+
probs = output.attentions # Expert probabilities stored here
|
| 53 |
+
|
| 54 |
```
|
| 55 |
|
| 56 |
## Configuration
|
| 57 |
|
| 58 |
+
Key parameters:
|
| 59 |
|
| 60 |
- `train_seq_len`: Training sequence length (default: 512)
|
| 61 |
- `train_pred_len`: Training prediction length (default: 96)
|
|
|
|
| 64 |
- `freq_experts`: Frequency-specific expert configuration
|
| 65 |
- `moe_temp`: Temperature for expert selection during inference (default: 1)
|
| 66 |
|
| 67 |
+
## Links
|
| 68 |
|
| 69 |
+
- **GitHub Repository**: [https://github.com/azencot-group/SuperLinear](https://github.com/azencot-group/SuperLinear)
|
| 70 |
+
- **Paper**: [https://arxiv.org/abs/2509.15105](https://arxiv.org/abs/2509.15105)
|
| 71 |
|
| 72 |
## Citation
|
| 73 |
|
| 74 |
If you use SuperLinear in your research, please cite:
|
| 75 |
|
| 76 |
```bibtex
|
| 77 |
+
@article{nochumsohn2025super,
|
| 78 |
+
title={Super-Linear: A Lightweight Pretrained Mixture of Linear Experts for Time Series Forecasting},
|
| 79 |
+
author={Nochumsohn, Liran and Marshanski, Raz and Zisling, Hedi and Azencot, Omri},
|
| 80 |
+
journal={arXiv preprint arXiv:2509.15105},
|
| 81 |
year={2025}
|
| 82 |
}
|
| 83 |
```
|