lirannoc commited on
Commit
94a91a3
·
verified ·
1 Parent(s): 6263455

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -11
README.md CHANGED
@@ -8,7 +8,7 @@ tags:
8
  - pytorch
9
  - fft
10
  model-index:
11
- - name: Super-Linear
12
  results: []
13
  ---
14
 
@@ -42,18 +42,20 @@ import torch
42
  model = AutoModelForCausalLM.from_pretrained("SequentialLearning/SuperLinear", trust_remote_code=True)
43
 
44
  # Prepare input time series data
45
- # Shape: [batch_size, sequence_length, features]
46
- input_data = torch.randn(1, 512, 1)
47
 
48
  # Generate predictions
49
  with torch.no_grad():
50
- outputs = model(inputs_embeds=input_data, pred_len=96)
51
- predictions = outputs.logits # Shape: [batch_size, prediction_length, features]
 
 
52
  ```
53
 
54
  ## Configuration
55
 
56
- Key configuration parameters:
57
 
58
  - `train_seq_len`: Training sequence length (default: 512)
59
  - `train_pred_len`: Training prediction length (default: 96)
@@ -62,18 +64,20 @@ Key configuration parameters:
62
  - `freq_experts`: Frequency-specific expert configuration
63
  - `moe_temp`: Temperature for expert selection during inference (default: 1)
64
 
65
- ## Link to GitHub
66
 
67
- [https://github.com/azencot-group/SuperLinear](https://github.com/azencot-group/SuperLinear)
 
68
 
69
  ## Citation
70
 
71
  If you use SuperLinear in your research, please cite:
72
 
73
  ```bibtex
74
- @article{todo,
75
- title={SuperLinear: todo},
76
- author={Your Name},
 
77
  year={2025}
78
  }
79
  ```
 
8
  - pytorch
9
  - fft
10
  model-index:
11
+ - name: SuperLinear
12
  results: []
13
  ---
14
 
 
42
  model = AutoModelForCausalLM.from_pretrained("SequentialLearning/SuperLinear", trust_remote_code=True)
43
 
44
  # Prepare input time series data
45
+ # Shape: [batch_size, channel, sequence_length] or [batch_size, sequence_length]
46
+ input_data = torch.randn(1, 1, 512)
47
 
48
  # Generate predictions
49
  with torch.no_grad():
50
+ outputs = model(inputs_embeds=input_data, pred_len=96, get_prob = True)
51
+ preds = output.logits # Predicted values
52
+ probs = output.attentions # Expert probabilities stored here
53
+
54
  ```
55
 
56
  ## Configuration
57
 
58
+ Key parameters:
59
 
60
  - `train_seq_len`: Training sequence length (default: 512)
61
  - `train_pred_len`: Training prediction length (default: 96)
 
64
  - `freq_experts`: Frequency-specific expert configuration
65
  - `moe_temp`: Temperature for expert selection during inference (default: 1)
66
 
67
+ ## Links
68
 
69
+ - **GitHub Repository**: [https://github.com/azencot-group/SuperLinear](https://github.com/azencot-group/SuperLinear)
70
+ - **Paper**: [https://arxiv.org/abs/2509.15105](https://arxiv.org/abs/2509.15105)
71
 
72
  ## Citation
73
 
74
  If you use SuperLinear in your research, please cite:
75
 
76
  ```bibtex
77
+ @article{nochumsohn2025super,
78
+ title={Super-Linear: A Lightweight Pretrained Mixture of Linear Experts for Time Series Forecasting},
79
+ author={Nochumsohn, Liran and Marshanski, Raz and Zisling, Hedi and Azencot, Omri},
80
+ journal={arXiv preprint arXiv:2509.15105},
81
  year={2025}
82
  }
83
  ```