Update README.md
Browse files
README.md
CHANGED
|
@@ -3,153 +3,11 @@ tags:
|
|
| 3 |
- sentence-transformers
|
| 4 |
- sentence-similarity
|
| 5 |
- feature-extraction
|
| 6 |
-
- generated_from_trainer
|
| 7 |
-
- dataset_size:1431743
|
| 8 |
-
- loss:MultipleNegativesRankingLoss
|
| 9 |
base_model: Shuu12121/CodeModernBERT-Owl
|
| 10 |
-
widget:
|
| 11 |
-
- source_sentence: return predicted ADEV of noise-type at given tau
|
| 12 |
-
sentences:
|
| 13 |
-
- "def get_instances(self):\n \n services = []\n for resource\
|
| 14 |
-
\ in self._get_instances():\n services.append(resource['entity']['name'])\n\
|
| 15 |
-
\n return services"
|
| 16 |
-
- "def handle_exception(self, *args):\n \n\n if not self.__enabled:\n\
|
| 17 |
-
\ return\n\n cls, instance, trcback = foundations.exceptions.extract_exception(*args)\n\
|
| 18 |
-
\n LOGGER.info(\"{0} | Handling '{1}' exception!\".format(\n \
|
| 19 |
-
\ self.__class__.__name__, foundations.strings.to_string(cls)))\n\n self.__initialize_context_ui()\n\
|
| 20 |
-
\n self.__update_html(self.format_html_exception(cls, instance, trcback))\n\
|
| 21 |
-
\n self.show()\n self.__report and self.report_exception_to_crittercism(cls,\
|
| 22 |
-
\ instance, trcback)\n foundations.exceptions.base_exception_handler(cls,\
|
| 23 |
-
\ instance, trcback)\n self.exec_()"
|
| 24 |
-
- "def adev(self, tau0, tau):\n \n prefactor = self.adev_from_qd(tau0=tau0,\
|
| 25 |
-
\ tau=tau)\n c = self.c_avar()\n avar = pow(prefactor, 2)*pow(tau,\
|
| 26 |
-
\ c)\n return np.sqrt(avar)"
|
| 27 |
-
- source_sentence: "Edit a IP4\n\n :param ip4: An IP4 available to save in\
|
| 28 |
-
\ format x.x.x.x.\n :param id_ip: IP identifier. Integer value and greater\
|
| 29 |
-
\ than zero.\n :param descricao: IP description.\n\n :return: None"
|
| 30 |
-
sentences:
|
| 31 |
-
- "def _vec_alpha(self, donor_catchments):\n \n return np.dot(linalg.inv(self._matrix_omega(donor_catchments)),\
|
| 32 |
-
\ self._vec_b(donor_catchments))"
|
| 33 |
-
- "def sync_balancer_files(self):\n \n\n def sync():\n \
|
| 34 |
-
\ for balancer in self.configurables[Balancer].values():\n balancer.sync_file(self.configurables[Cluster].values())\n\
|
| 35 |
-
\n self.work_pool.submit(sync)"
|
| 36 |
-
- "def edit_ipv4(self, ip4, descricao, id_ip):\n \n\n if not is_valid_int_param(id_ip):\n\
|
| 37 |
-
\ raise InvalidParameterError(\n u'Ip identifier is\
|
| 38 |
-
\ invalid or was not informed.')\n\n if ip4 is None or ip4 == \"\":\n \
|
| 39 |
-
\ raise InvalidParameterError(\n u'The IP4 is invalid\
|
| 40 |
-
\ or was not informed.')\n\n ip_map = dict()\n ip_map['descricao']\
|
| 41 |
-
\ = descricao\n ip_map['ip4'] = ip4\n ip_map['id_ip'] = id_ip\n\n\
|
| 42 |
-
\ url = \"ip4/edit/\"\n\n code, xml = self.submit({'ip_map': ip_map},\
|
| 43 |
-
\ 'POST', url)\n\n return self.response(code, xml)"
|
| 44 |
-
- source_sentence: "Check if health check is disabled.\n\n It logs a message\
|
| 45 |
-
\ if health check is disabled and it also adds an item\n to the action\
|
| 46 |
-
\ queue based on 'on_disabled' setting.\n\n Returns:\n True\
|
| 47 |
-
\ if check is disabled otherwise False."
|
| 48 |
-
sentences:
|
| 49 |
-
- "def find_guest(name, quiet=False, path=None):\n '''\n Returns the host\
|
| 50 |
-
\ for a container.\n\n path\n path to the container parent\n \
|
| 51 |
-
\ default: /var/lib/lxc (system default)\n\n .. versionadded:: 2015.8.0\n\
|
| 52 |
-
\n\n .. code-block:: bash\n\n salt-run lxc.find_guest name\n '''\n\
|
| 53 |
-
\ if quiet:\n log.warning(\"'quiet' argument is being deprecated.\"\n\
|
| 54 |
-
\ ' Please migrate to --quiet')\n for data in _list_iter(path=path):\n\
|
| 55 |
-
\ host, l = next(six.iteritems(data))\n for x in 'running', 'frozen',\
|
| 56 |
-
\ 'stopped':\n if name in l[x]:\n if not quiet:\n \
|
| 57 |
-
\ __jid_event__.fire_event(\n {'data':\
|
| 58 |
-
\ host,\n 'outputter': 'lxc_find_host'},\n \
|
| 59 |
-
\ 'progress')\n return host\n return None"
|
| 60 |
-
- "def iter_wave_values(self):\n \n typecode = self.get_typecode(self.samplewidth)\n\
|
| 61 |
-
\n if log.level >= 5:\n if self.cfg.AVG_COUNT > 1:\n \
|
| 62 |
-
\ # merge samples -> log output in iter_avg_wave_values\n \
|
| 63 |
-
\ tlm = None\n else:\n tlm = TextLevelMeter(self.max_value,\
|
| 64 |
-
\ 79)\n\n # Use only a read size which is a quare divider of the samplewidth\n\
|
| 65 |
-
\ # Otherwise array.array will raise: ValueError: string length not a multiple\
|
| 66 |
-
\ of item size\n divider = int(round(float(WAVE_READ_SIZE) / self.samplewidth))\n\
|
| 67 |
-
\ read_size = self.samplewidth * divider\n if read_size != WAVE_READ_SIZE:\n\
|
| 68 |
-
\ log.info(\"Real use wave read size: %i Bytes\" % read_size)\n\n \
|
| 69 |
-
\ get_wave_block_func = functools.partial(self.wavefile.readframes, read_size)\n\
|
| 70 |
-
\ skip_count = 0\n\n manually_audioop_bias = self.samplewidth ==\
|
| 71 |
-
\ 1 and audioop is None\n\n for frames in iter(get_wave_block_func, \"\"\
|
| 72 |
-
):\n\n if self.samplewidth == 1:\n if audioop is None:\n\
|
| 73 |
-
\ log.warning(\"use audioop.bias() work-a-round for missing\
|
| 74 |
-
\ audioop.\")\n else:\n # 8 bit samples are\
|
| 75 |
-
\ unsigned, see:\n # http://docs.python.org/2/library/audioop.html#audioop.lin2lin\n\
|
| 76 |
-
\ frames = audioop.bias(frames, 1, 128)\n\n try:\n\
|
| 77 |
-
\ values = array.array(typecode, frames)\n except ValueError,\
|
| 78 |
-
\ err:\n # e.g.:\n # ValueError: string length\
|
| 79 |
-
\ not a multiple of item size\n # Work-a-round: Skip the last frames\
|
| 80 |
-
\ of this block\n frame_count = len(frames)\n divider\
|
| 81 |
-
\ = int(math.floor(float(frame_count) / self.samplewidth))\n new_count\
|
| 82 |
-
\ = self.samplewidth * divider\n frames = frames[:new_count] #\
|
| 83 |
-
\ skip frames\n log.error(\n \"Can't make array\
|
| 84 |
-
\ from %s frames: Value error: %s (Skip %i and use %i frames)\" % (\n \
|
| 85 |
-
\ frame_count, err, frame_count - new_count, len(frames)\n \
|
| 86 |
-
\ ))\n values = array.array(typecode, frames)\n\n \
|
| 87 |
-
\ for value in values:\n self.wave_pos += 1 # Absolute\
|
| 88 |
-
\ position in the frame stream\n\n if manually_audioop_bias:\n\
|
| 89 |
-
\ # audioop.bias can't be used.\n # See:\
|
| 90 |
-
\ http://hg.python.org/cpython/file/482590320549/Modules/audioop.c#l957\n \
|
| 91 |
-
\ value = value % 0xff - 128\n\n# if abs(value)\
|
| 92 |
-
\ < self.min_volume:\n# # log.log(5, \"Ignore to lower amplitude\"\
|
| 93 |
-
)\n# skip_count += 1\n# continue\n\n \
|
| 94 |
-
\ yield (self.wave_pos, value)\n\n log.info(\"Skip %i samples\
|
| 95 |
-
\ that are lower than %i\" % (\n skip_count, self.min_volume\n \
|
| 96 |
-
\ ))\n log.info(\"Last readed Frame is: %s\" % self.pformat_pos())"
|
| 97 |
-
- "def _check_disabled(self):\n \n if self.config['check_disabled']:\n\
|
| 98 |
-
\ if self.config['on_disabled'] == 'withdraw':\n self.log.info(\"\
|
| 99 |
-
Check is disabled and ip_prefix will be \"\n \"withdrawn\"\
|
| 100 |
-
)\n self.log.info(\"adding %s in the queue\", self.ip_with_prefixlen)\n\
|
| 101 |
-
\ self.action.put(self.del_operation)\n self.log.info(\"\
|
| 102 |
-
Check is now permanently disabled\")\n elif self.config['on_disabled']\
|
| 103 |
-
\ == 'advertise':\n self.log.info(\"check is disabled, ip_prefix\
|
| 104 |
-
\ wont be withdrawn\")\n self.log.info(\"adding %s in the queue\"\
|
| 105 |
-
, self.ip_with_prefixlen)\n self.action.put(self.add_operation)\n\
|
| 106 |
-
\ self.log.info('check is now permanently disabled')\n\n \
|
| 107 |
-
\ return True\n\n return False"
|
| 108 |
-
- source_sentence: "When serializing an agent distribution, remove the thresholds,\
|
| 109 |
-
\ in order\n to avoid cluttering the YAML definition file."
|
| 110 |
-
sentences:
|
| 111 |
-
- "def serialize_distribution(network_agents, known_modules=[]):\n '''\n When\
|
| 112 |
-
\ serializing an agent distribution, remove the thresholds, in order\n to avoid\
|
| 113 |
-
\ cluttering the YAML definition file.\n '''\n d = deepcopy(list(network_agents))\n\
|
| 114 |
-
\ for v in d:\n if 'threshold' in v:\n del v['threshold']\n\
|
| 115 |
-
\ v['agent_type'] = serialize_type(v['agent_type'],\n \
|
| 116 |
-
\ known_modules=known_modules)\n return d"
|
| 117 |
-
- "def disconnect(self):\n \n if self.root.ref is not None:\n \
|
| 118 |
-
\ self.api.disconnect()\n self.root = None"
|
| 119 |
-
- "def make_tarball(src_dir):\n \n if type(src_dir) != str:\n raise\
|
| 120 |
-
\ TypeError('src_dir must be str')\n output_file = src_dir + \".tar.gz\"\n\
|
| 121 |
-
\ log.msg(\"Wrapping tarball '{out}' ...\".format(out=output_file))\n if\
|
| 122 |
-
\ not _dry_run:\n with tarfile.open(output_file, \"w:gz\") as tar:\n \
|
| 123 |
-
\ tar.add(src_dir, arcname=os.path.basename(src_dir))\n return output_file"
|
| 124 |
-
- source_sentence: Encrypts the zip file
|
| 125 |
-
sentences:
|
| 126 |
-
- "def nsUriMatch(self, value, wanted, strict=0, tt=type(())):\n \n \
|
| 127 |
-
\ if value == wanted or (type(wanted) is tt) and value in wanted:\n \
|
| 128 |
-
\ return 1\n if not strict and value is not None:\n wanted\
|
| 129 |
-
\ = type(wanted) is tt and wanted or (wanted,)\n value = value[-1:]\
|
| 130 |
-
\ != '/' and value or value[:-1]\n for item in wanted:\n \
|
| 131 |
-
\ if item == value or item[:-1] == value:\n return 1\n\
|
| 132 |
-
\ return 0"
|
| 133 |
-
- "def transform(self, sents):\n \n\n def convert(tokens):\n \
|
| 134 |
-
\ return torch.tensor([self.vocab.stoi[t] for t in tokens], dtype=torch.long)\n\
|
| 135 |
-
\n if self.vocab is None:\n raise Exception(\n \
|
| 136 |
-
\ \"Must run .fit() for .fit_transform() before \" \"calling .transform().\"\
|
| 137 |
-
\n )\n\n seqs = sorted([convert(s) for s in sents], key=lambda\
|
| 138 |
-
\ x: -len(x))\n X = torch.LongTensor(pad_sequence(seqs, batch_first=True))\n\
|
| 139 |
-
\ return X"
|
| 140 |
-
- "def freeze_encrypt(dest_dir, zip_filename, config, opt):\n \n pgp_keys\
|
| 141 |
-
\ = grok_keys(config)\n icefile_prefix = \"aomi-%s\" % \\\n \
|
| 142 |
-
\ os.path.basename(os.path.dirname(opt.secretfile))\n if opt.icefile_prefix:\n\
|
| 143 |
-
\ icefile_prefix = opt.icefile_prefix\n\n timestamp = time.strftime(\"\
|
| 144 |
-
%H%M%S-%m-%d-%Y\",\n datetime.datetime.now().timetuple())\n\
|
| 145 |
-
\ ice_file = \"%s/%s-%s.ice\" % (dest_dir, icefile_prefix, timestamp)\n \
|
| 146 |
-
\ if not encrypt(zip_filename, ice_file, pgp_keys):\n raise aomi.exceptions.GPG(\"\
|
| 147 |
-
Unable to encrypt zipfile\")\n\n return ice_file"
|
| 148 |
pipeline_tag: sentence-similarity
|
| 149 |
library_name: sentence-transformers
|
| 150 |
metrics:
|
| 151 |
-
-
|
| 152 |
-
- spearman_cosine
|
| 153 |
model-index:
|
| 154 |
- name: SentenceTransformer based on Shuu12121/CodeModernBERT-Owl
|
| 155 |
results:
|
|
@@ -161,664 +19,117 @@ model-index:
|
|
| 161 |
type: code-docstring-dev
|
| 162 |
metrics:
|
| 163 |
- type: pearson_cosine
|
| 164 |
-
value:
|
| 165 |
name: Pearson Cosine
|
| 166 |
- type: spearman_cosine
|
| 167 |
-
value:
|
| 168 |
name: Spearman Cosine
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
---
|
| 170 |
|
| 171 |
-
# SentenceTransformer based on Shuu12121/CodeModernBERT-Owl
|
| 172 |
|
| 173 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Owl](https://huggingface.co/Shuu12121/CodeModernBERT-Owl). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 174 |
|
| 175 |
-
##
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
- **Base model:** [Shuu12121/CodeModernBERT-Owl](https://huggingface.co/Shuu12121/CodeModernBERT-Owl) <!-- at revision d403250d7979eb141409c611c0a39fd7110543a4 -->
|
| 180 |
-
- **Maximum Sequence Length:** 2048 tokens
|
| 181 |
-
- **Output Dimensionality:** 768 dimensions
|
| 182 |
-
- **Similarity Function:** Cosine Similarity
|
| 183 |
-
<!-- - **Training Dataset:** Unknown -->
|
| 184 |
-
<!-- - **Language:** Unknown -->
|
| 185 |
-
<!-- - **License:** Unknown -->
|
| 186 |
|
| 187 |
-
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
-
|
| 203 |
|
| 204 |
-
|
| 205 |
|
| 206 |
-
|
| 207 |
|
| 208 |
```bash
|
| 209 |
pip install -U sentence-transformers
|
| 210 |
```
|
| 211 |
|
| 212 |
-
|
|
|
|
| 213 |
```python
|
| 214 |
from sentence_transformers import SentenceTransformer
|
| 215 |
|
| 216 |
-
#
|
| 217 |
-
model = SentenceTransformer("
|
| 218 |
-
|
|
|
|
| 219 |
sentences = [
|
| 220 |
'Encrypts the zip file',
|
| 221 |
'def freeze_encrypt(dest_dir, zip_filename, config, opt):\n \n pgp_keys = grok_keys(config)\n icefile_prefix = "aomi-%s" % \\\n os.path.basename(os.path.dirname(opt.secretfile))\n if opt.icefile_prefix:\n icefile_prefix = opt.icefile_prefix\n\n timestamp = time.strftime("%H%M%S-%m-%d-%Y",\n datetime.datetime.now().timetuple())\n ice_file = "%s/%s-%s.ice" % (dest_dir, icefile_prefix, timestamp)\n if not encrypt(zip_filename, ice_file, pgp_keys):\n raise aomi.exceptions.GPG("Unable to encrypt zipfile")\n\n return ice_file',
|
| 222 |
'def transform(self, sents):\n \n\n def convert(tokens):\n return torch.tensor([self.vocab.stoi[t] for t in tokens], dtype=torch.long)\n\n if self.vocab is None:\n raise Exception(\n "Must run .fit() for .fit_transform() before " "calling .transform()."\n )\n\n seqs = sorted([convert(s) for s in sents], key=lambda x: -len(x))\n X = torch.LongTensor(pad_sequence(seqs, batch_first=True))\n return X',
|
| 223 |
]
|
|
|
|
|
|
|
| 224 |
embeddings = model.encode(sentences)
|
| 225 |
-
print(embeddings.shape)
|
| 226 |
-
# [3, 768]
|
| 227 |
|
| 228 |
-
#
|
| 229 |
similarities = model.similarity(embeddings, embeddings)
|
| 230 |
-
print(similarities.shape)
|
| 231 |
-
# [3, 3]
|
| 232 |
```
|
| 233 |
|
| 234 |
-
|
| 235 |
-
### Direct Usage (Transformers)
|
| 236 |
-
|
| 237 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 238 |
-
|
| 239 |
-
</details>
|
| 240 |
-
-->
|
| 241 |
-
|
| 242 |
-
<!--
|
| 243 |
-
### Downstream Usage (Sentence Transformers)
|
| 244 |
-
|
| 245 |
-
You can finetune this model on your own dataset.
|
| 246 |
-
|
| 247 |
-
<details><summary>Click to expand</summary>
|
| 248 |
-
|
| 249 |
-
</details>
|
| 250 |
-
-->
|
| 251 |
-
|
| 252 |
-
<!--
|
| 253 |
-
### Out-of-Scope Use
|
| 254 |
-
|
| 255 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 256 |
-
-->
|
| 257 |
-
|
| 258 |
-
## Evaluation
|
| 259 |
-
|
| 260 |
-
### Metrics
|
| 261 |
-
|
| 262 |
-
#### Semantic Similarity
|
| 263 |
-
|
| 264 |
-
* Dataset: `code-docstring-dev`
|
| 265 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 266 |
-
|
| 267 |
-
| Metric | Value |
|
| 268 |
-
|:--------------------|:--------|
|
| 269 |
-
| pearson_cosine | nan |
|
| 270 |
-
| **spearman_cosine** | **nan** |
|
| 271 |
-
|
| 272 |
-
<!--
|
| 273 |
-
## Bias, Risks and Limitations
|
| 274 |
-
|
| 275 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 276 |
-
-->
|
| 277 |
-
|
| 278 |
-
<!--
|
| 279 |
-
### Recommendations
|
| 280 |
-
|
| 281 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 282 |
-
-->
|
| 283 |
-
|
| 284 |
-
## Training Details
|
| 285 |
-
|
| 286 |
-
### Training Dataset
|
| 287 |
-
|
| 288 |
-
#### Unnamed Dataset
|
| 289 |
-
|
| 290 |
-
* Size: 1,431,743 training samples
|
| 291 |
-
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
| 292 |
-
* Approximate statistics based on the first 1000 samples:
|
| 293 |
-
| | sentence_0 | sentence_1 | label |
|
| 294 |
-
|:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
| 295 |
-
| type | string | string | float |
|
| 296 |
-
| details | <ul><li>min: 5 tokens</li><li>mean: 63.94 tokens</li><li>max: 1310 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 173.04 tokens</li><li>max: 1801 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
| 297 |
-
* Samples:
|
| 298 |
-
| sentence_0 | sentence_1 | label |
|
| 299 |
-
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
| 300 |
-
| <code>Serves a cross-domain policy which can allow other policies<br> to exist on the same domain.<br><br> Note that this view, if used, must be the master policy for the<br> domain, and so must be served from the URL ``/crossdomain.xml`` on<br> the domain: setting metapolicy information in other policy files<br> is forbidden by the cross-domain policy specification.<br><br> **Required arguments:**<br><br> ``permitted``<br> A string indicating the extent to which other policies are<br> permitted. A set of constants is available in<br> ``flashpolicies.policies``, defining acceptable values for<br> this argument.<br><br> **Optional arguments:**<br><br> ``domains``<br> A list of domains from which to allow access. Each value may<br> be either a domain name (e.g., ``example.com``) or a wildcard<br> (e.g., ``*.example.com``). Due to serious potential security<br> issues, it is strongly recommended that you not use wildcard<br> domain values.</code> | <code>def metapolicy(request, permitted, domains=None):<br> <br> if domains is None:<br> domains = []<br> policy = policies.Policy(*domains)<br> policy.metapolicy(permitted)<br> return serve(request, policy)</code> | <code>1.0</code> |
|
| 301 |
-
| <code>Puts a value from a VEX temporary register into a machine register.<br> This is how the results of operations done to registers get committed to the machine's state.<br><br> :param val: The VexValue to store (Want to store a constant? See Constant() first)<br> :param reg: The integer register number to store into, or register name<br> :return: None</code> | <code>def put(self, val, reg):<br> <br> offset = self.lookup_register(self.irsb_c.irsb.arch, reg)<br> self.irsb_c.put(val.rdt, offset)</code> | <code>1.0</code> |
|
| 302 |
-
| <code>Like `get_token`, but using an OAuth 2 authorization code.<br><br> Use this method if you run a webserver that serves as an endpoint for<br> the redirect URI. The webserver can retrieve the authorization code<br> from the URL that is requested by ORCID.<br><br> Parameters<br> ----------<br> :param redirect_uri: string<br> The redirect uri of the institution.<br> :param authorization_code: string<br> The authorization code.<br><br> Returns<br> -------<br> :returns: dict<br> All data of the access token. The access token itself is in the<br> ``"access_token"`` key.</code> | <code>def get_token_from_authorization_code(self,<br> authorization_code, redirect_uri):<br> <br> token_dict = {<br> "client_id": self._key,<br> "client_secret": self._secret,<br> "grant_type": "authorization_code",<br> "code": authorization_code,<br> "redirect_uri": redirect_uri,<br> }<br> response = requests.post(self._token_url, data=token_dict,<br> headers={'Accept': 'application/json'},<br> timeout=self._timeout)<br> response.raise_for_status()<br> if self.do_store_raw_response:<br> self.raw_response = response<br> return json.loads(response.text)</code> | <code>1.0</code> |
|
| 303 |
-
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 304 |
-
```json
|
| 305 |
-
{
|
| 306 |
-
"scale": 20.0,
|
| 307 |
-
"similarity_fct": "cos_sim"
|
| 308 |
-
}
|
| 309 |
-
```
|
| 310 |
-
|
| 311 |
-
### Training Hyperparameters
|
| 312 |
-
#### Non-Default Hyperparameters
|
| 313 |
-
|
| 314 |
-
- `eval_strategy`: steps
|
| 315 |
-
- `per_device_train_batch_size`: 24
|
| 316 |
-
- `per_device_eval_batch_size`: 24
|
| 317 |
-
- `fp16`: True
|
| 318 |
-
- `multi_dataset_batch_sampler`: round_robin
|
| 319 |
-
|
| 320 |
-
#### All Hyperparameters
|
| 321 |
-
<details><summary>Click to expand</summary>
|
| 322 |
-
|
| 323 |
-
- `overwrite_output_dir`: False
|
| 324 |
-
- `do_predict`: False
|
| 325 |
-
- `eval_strategy`: steps
|
| 326 |
-
- `prediction_loss_only`: True
|
| 327 |
-
- `per_device_train_batch_size`: 24
|
| 328 |
-
- `per_device_eval_batch_size`: 24
|
| 329 |
-
- `per_gpu_train_batch_size`: None
|
| 330 |
-
- `per_gpu_eval_batch_size`: None
|
| 331 |
-
- `gradient_accumulation_steps`: 1
|
| 332 |
-
- `eval_accumulation_steps`: None
|
| 333 |
-
- `torch_empty_cache_steps`: None
|
| 334 |
-
- `learning_rate`: 5e-05
|
| 335 |
-
- `weight_decay`: 0.0
|
| 336 |
-
- `adam_beta1`: 0.9
|
| 337 |
-
- `adam_beta2`: 0.999
|
| 338 |
-
- `adam_epsilon`: 1e-08
|
| 339 |
-
- `max_grad_norm`: 1
|
| 340 |
-
- `num_train_epochs`: 3
|
| 341 |
-
- `max_steps`: -1
|
| 342 |
-
- `lr_scheduler_type`: linear
|
| 343 |
-
- `lr_scheduler_kwargs`: {}
|
| 344 |
-
- `warmup_ratio`: 0.0
|
| 345 |
-
- `warmup_steps`: 0
|
| 346 |
-
- `log_level`: passive
|
| 347 |
-
- `log_level_replica`: warning
|
| 348 |
-
- `log_on_each_node`: True
|
| 349 |
-
- `logging_nan_inf_filter`: True
|
| 350 |
-
- `save_safetensors`: True
|
| 351 |
-
- `save_on_each_node`: False
|
| 352 |
-
- `save_only_model`: False
|
| 353 |
-
- `restore_callback_states_from_checkpoint`: False
|
| 354 |
-
- `no_cuda`: False
|
| 355 |
-
- `use_cpu`: False
|
| 356 |
-
- `use_mps_device`: False
|
| 357 |
-
- `seed`: 42
|
| 358 |
-
- `data_seed`: None
|
| 359 |
-
- `jit_mode_eval`: False
|
| 360 |
-
- `use_ipex`: False
|
| 361 |
-
- `bf16`: False
|
| 362 |
-
- `fp16`: True
|
| 363 |
-
- `fp16_opt_level`: O1
|
| 364 |
-
- `half_precision_backend`: auto
|
| 365 |
-
- `bf16_full_eval`: False
|
| 366 |
-
- `fp16_full_eval`: False
|
| 367 |
-
- `tf32`: None
|
| 368 |
-
- `local_rank`: 0
|
| 369 |
-
- `ddp_backend`: None
|
| 370 |
-
- `tpu_num_cores`: None
|
| 371 |
-
- `tpu_metrics_debug`: False
|
| 372 |
-
- `debug`: []
|
| 373 |
-
- `dataloader_drop_last`: False
|
| 374 |
-
- `dataloader_num_workers`: 0
|
| 375 |
-
- `dataloader_prefetch_factor`: None
|
| 376 |
-
- `past_index`: -1
|
| 377 |
-
- `disable_tqdm`: False
|
| 378 |
-
- `remove_unused_columns`: True
|
| 379 |
-
- `label_names`: None
|
| 380 |
-
- `load_best_model_at_end`: False
|
| 381 |
-
- `ignore_data_skip`: False
|
| 382 |
-
- `fsdp`: []
|
| 383 |
-
- `fsdp_min_num_params`: 0
|
| 384 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 385 |
-
- `tp_size`: 0
|
| 386 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 387 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 388 |
-
- `deepspeed`: None
|
| 389 |
-
- `label_smoothing_factor`: 0.0
|
| 390 |
-
- `optim`: adamw_torch
|
| 391 |
-
- `optim_args`: None
|
| 392 |
-
- `adafactor`: False
|
| 393 |
-
- `group_by_length`: False
|
| 394 |
-
- `length_column_name`: length
|
| 395 |
-
- `ddp_find_unused_parameters`: None
|
| 396 |
-
- `ddp_bucket_cap_mb`: None
|
| 397 |
-
- `ddp_broadcast_buffers`: False
|
| 398 |
-
- `dataloader_pin_memory`: True
|
| 399 |
-
- `dataloader_persistent_workers`: False
|
| 400 |
-
- `skip_memory_metrics`: True
|
| 401 |
-
- `use_legacy_prediction_loop`: False
|
| 402 |
-
- `push_to_hub`: False
|
| 403 |
-
- `resume_from_checkpoint`: None
|
| 404 |
-
- `hub_model_id`: None
|
| 405 |
-
- `hub_strategy`: every_save
|
| 406 |
-
- `hub_private_repo`: None
|
| 407 |
-
- `hub_always_push`: False
|
| 408 |
-
- `gradient_checkpointing`: False
|
| 409 |
-
- `gradient_checkpointing_kwargs`: None
|
| 410 |
-
- `include_inputs_for_metrics`: False
|
| 411 |
-
- `include_for_metrics`: []
|
| 412 |
-
- `eval_do_concat_batches`: True
|
| 413 |
-
- `fp16_backend`: auto
|
| 414 |
-
- `push_to_hub_model_id`: None
|
| 415 |
-
- `push_to_hub_organization`: None
|
| 416 |
-
- `mp_parameters`:
|
| 417 |
-
- `auto_find_batch_size`: False
|
| 418 |
-
- `full_determinism`: False
|
| 419 |
-
- `torchdynamo`: None
|
| 420 |
-
- `ray_scope`: last
|
| 421 |
-
- `ddp_timeout`: 1800
|
| 422 |
-
- `torch_compile`: False
|
| 423 |
-
- `torch_compile_backend`: None
|
| 424 |
-
- `torch_compile_mode`: None
|
| 425 |
-
- `dispatch_batches`: None
|
| 426 |
-
- `split_batches`: None
|
| 427 |
-
- `include_tokens_per_second`: False
|
| 428 |
-
- `include_num_input_tokens_seen`: False
|
| 429 |
-
- `neftune_noise_alpha`: None
|
| 430 |
-
- `optim_target_modules`: None
|
| 431 |
-
- `batch_eval_metrics`: False
|
| 432 |
-
- `eval_on_start`: False
|
| 433 |
-
- `use_liger_kernel`: False
|
| 434 |
-
- `eval_use_gather_object`: False
|
| 435 |
-
- `average_tokens_across_devices`: False
|
| 436 |
-
- `prompts`: None
|
| 437 |
-
- `batch_sampler`: batch_sampler
|
| 438 |
-
- `multi_dataset_batch_sampler`: round_robin
|
| 439 |
-
|
| 440 |
-
</details>
|
| 441 |
-
|
| 442 |
-
### Training Logs
|
| 443 |
-
<details><summary>Click to expand</summary>
|
| 444 |
-
|
| 445 |
-
| Epoch | Step | Training Loss | code-docstring-dev_spearman_cosine |
|
| 446 |
-
|:------:|:------:|:-------------:|:----------------------------------:|
|
| 447 |
-
| 0.0084 | 500 | 0.9451 | - |
|
| 448 |
-
| 0.0168 | 1000 | 0.1154 | - |
|
| 449 |
-
| 0.0251 | 1500 | 0.0817 | - |
|
| 450 |
-
| 0.0335 | 2000 | 0.0733 | - |
|
| 451 |
-
| 0.0419 | 2500 | 0.0751 | - |
|
| 452 |
-
| 0.0503 | 3000 | 0.0629 | - |
|
| 453 |
-
| 0.0587 | 3500 | 0.0551 | - |
|
| 454 |
-
| 0.0671 | 4000 | 0.0604 | - |
|
| 455 |
-
| 0.0754 | 4500 | 0.0628 | - |
|
| 456 |
-
| 0.0838 | 5000 | 0.0548 | nan |
|
| 457 |
-
| 0.0922 | 5500 | 0.054 | - |
|
| 458 |
-
| 0.1006 | 6000 | 0.0538 | - |
|
| 459 |
-
| 0.1090 | 6500 | 0.0518 | - |
|
| 460 |
-
| 0.1173 | 7000 | 0.0543 | - |
|
| 461 |
-
| 0.1257 | 7500 | 0.0491 | - |
|
| 462 |
-
| 0.1341 | 8000 | 0.0446 | - |
|
| 463 |
-
| 0.1425 | 8500 | 0.049 | - |
|
| 464 |
-
| 0.1509 | 9000 | 0.0477 | - |
|
| 465 |
-
| 0.1592 | 9500 | 0.0458 | - |
|
| 466 |
-
| 0.1676 | 10000 | 0.0425 | nan |
|
| 467 |
-
| 0.1760 | 10500 | 0.0445 | - |
|
| 468 |
-
| 0.1844 | 11000 | 0.0397 | - |
|
| 469 |
-
| 0.1928 | 11500 | 0.044 | - |
|
| 470 |
-
| 0.2012 | 12000 | 0.0432 | - |
|
| 471 |
-
| 0.2095 | 12500 | 0.0402 | - |
|
| 472 |
-
| 0.2179 | 13000 | 0.0483 | - |
|
| 473 |
-
| 0.2263 | 13500 | 0.0434 | - |
|
| 474 |
-
| 0.2347 | 14000 | 0.0425 | - |
|
| 475 |
-
| 0.2431 | 14500 | 0.0464 | - |
|
| 476 |
-
| 0.2514 | 15000 | 0.038 | nan |
|
| 477 |
-
| 0.2598 | 15500 | 0.0391 | - |
|
| 478 |
-
| 0.2682 | 16000 | 0.0385 | - |
|
| 479 |
-
| 0.2766 | 16500 | 0.0383 | - |
|
| 480 |
-
| 0.2850 | 17000 | 0.0396 | - |
|
| 481 |
-
| 0.2933 | 17500 | 0.0394 | - |
|
| 482 |
-
| 0.3017 | 18000 | 0.0407 | - |
|
| 483 |
-
| 0.3101 | 18500 | 0.0437 | - |
|
| 484 |
-
| 0.3185 | 19000 | 0.0362 | - |
|
| 485 |
-
| 0.3269 | 19500 | 0.0398 | - |
|
| 486 |
-
| 0.3353 | 20000 | 0.0379 | nan |
|
| 487 |
-
| 0.3436 | 20500 | 0.0418 | - |
|
| 488 |
-
| 0.3520 | 21000 | 0.0348 | - |
|
| 489 |
-
| 0.3604 | 21500 | 0.0382 | - |
|
| 490 |
-
| 0.3688 | 22000 | 0.0374 | - |
|
| 491 |
-
| 0.3772 | 22500 | 0.038 | - |
|
| 492 |
-
| 0.3855 | 23000 | 0.0365 | - |
|
| 493 |
-
| 0.3939 | 23500 | 0.0348 | - |
|
| 494 |
-
| 0.4023 | 24000 | 0.0405 | - |
|
| 495 |
-
| 0.4107 | 24500 | 0.04 | - |
|
| 496 |
-
| 0.4191 | 25000 | 0.0362 | nan |
|
| 497 |
-
| 0.4275 | 25500 | 0.0327 | - |
|
| 498 |
-
| 0.4358 | 26000 | 0.0331 | - |
|
| 499 |
-
| 0.4442 | 26500 | 0.0309 | - |
|
| 500 |
-
| 0.4526 | 27000 | 0.0348 | - |
|
| 501 |
-
| 0.4610 | 27500 | 0.0295 | - |
|
| 502 |
-
| 0.4694 | 28000 | 0.0378 | - |
|
| 503 |
-
| 0.4777 | 28500 | 0.0318 | - |
|
| 504 |
-
| 0.4861 | 29000 | 0.0323 | - |
|
| 505 |
-
| 0.4945 | 29500 | 0.0315 | - |
|
| 506 |
-
| 0.5029 | 30000 | 0.0336 | nan |
|
| 507 |
-
| 0.5113 | 30500 | 0.0334 | - |
|
| 508 |
-
| 0.5196 | 31000 | 0.0342 | - |
|
| 509 |
-
| 0.5280 | 31500 | 0.0289 | - |
|
| 510 |
-
| 0.5364 | 32000 | 0.0332 | - |
|
| 511 |
-
| 0.5448 | 32500 | 0.0305 | - |
|
| 512 |
-
| 0.5532 | 33000 | 0.0349 | - |
|
| 513 |
-
| 0.5616 | 33500 | 0.0309 | - |
|
| 514 |
-
| 0.5699 | 34000 | 0.0352 | - |
|
| 515 |
-
| 0.5783 | 34500 | 0.035 | - |
|
| 516 |
-
| 0.5867 | 35000 | 0.0316 | nan |
|
| 517 |
-
| 0.5951 | 35500 | 0.0342 | - |
|
| 518 |
-
| 0.6035 | 36000 | 0.0274 | - |
|
| 519 |
-
| 0.6118 | 36500 | 0.0333 | - |
|
| 520 |
-
| 0.6202 | 37000 | 0.0294 | - |
|
| 521 |
-
| 0.6286 | 37500 | 0.029 | - |
|
| 522 |
-
| 0.6370 | 38000 | 0.0302 | - |
|
| 523 |
-
| 0.6454 | 38500 | 0.0292 | - |
|
| 524 |
-
| 0.6537 | 39000 | 0.032 | - |
|
| 525 |
-
| 0.6621 | 39500 | 0.03 | - |
|
| 526 |
-
| 0.6705 | 40000 | 0.0246 | nan |
|
| 527 |
-
| 0.6789 | 40500 | 0.0277 | - |
|
| 528 |
-
| 0.6873 | 41000 | 0.0262 | - |
|
| 529 |
-
| 0.6957 | 41500 | 0.0293 | - |
|
| 530 |
-
| 0.7040 | 42000 | 0.0284 | - |
|
| 531 |
-
| 0.7124 | 42500 | 0.028 | - |
|
| 532 |
-
| 0.7208 | 43000 | 0.0321 | - |
|
| 533 |
-
| 0.7292 | 43500 | 0.0283 | - |
|
| 534 |
-
| 0.7376 | 44000 | 0.0295 | - |
|
| 535 |
-
| 0.7459 | 44500 | 0.0279 | - |
|
| 536 |
-
| 0.7543 | 45000 | 0.0249 | nan |
|
| 537 |
-
| 0.7627 | 45500 | 0.0299 | - |
|
| 538 |
-
| 0.7711 | 46000 | 0.0258 | - |
|
| 539 |
-
| 0.7795 | 46500 | 0.0257 | - |
|
| 540 |
-
| 0.7879 | 47000 | 0.0256 | - |
|
| 541 |
-
| 0.7962 | 47500 | 0.0281 | - |
|
| 542 |
-
| 0.8046 | 48000 | 0.0279 | - |
|
| 543 |
-
| 0.8130 | 48500 | 0.0299 | - |
|
| 544 |
-
| 0.8214 | 49000 | 0.027 | - |
|
| 545 |
-
| 0.8298 | 49500 | 0.0271 | - |
|
| 546 |
-
| 0.8381 | 50000 | 0.0281 | nan |
|
| 547 |
-
| 0.8465 | 50500 | 0.0274 | - |
|
| 548 |
-
| 0.8549 | 51000 | 0.0262 | - |
|
| 549 |
-
| 0.8633 | 51500 | 0.0306 | - |
|
| 550 |
-
| 0.8717 | 52000 | 0.0262 | - |
|
| 551 |
-
| 0.8800 | 52500 | 0.0241 | - |
|
| 552 |
-
| 0.8884 | 53000 | 0.0235 | - |
|
| 553 |
-
| 0.8968 | 53500 | 0.0268 | - |
|
| 554 |
-
| 0.9052 | 54000 | 0.0251 | - |
|
| 555 |
-
| 0.9136 | 54500 | 0.0328 | - |
|
| 556 |
-
| 0.9220 | 55000 | 0.0235 | nan |
|
| 557 |
-
| 0.9303 | 55500 | 0.0261 | - |
|
| 558 |
-
| 0.9387 | 56000 | 0.0249 | - |
|
| 559 |
-
| 0.9471 | 56500 | 0.0262 | - |
|
| 560 |
-
| 0.9555 | 57000 | 0.0231 | - |
|
| 561 |
-
| 0.9639 | 57500 | 0.0249 | - |
|
| 562 |
-
| 0.9722 | 58000 | 0.0246 | - |
|
| 563 |
-
| 0.9806 | 58500 | 0.0299 | - |
|
| 564 |
-
| 0.9890 | 59000 | 0.0238 | - |
|
| 565 |
-
| 0.9974 | 59500 | 0.0215 | - |
|
| 566 |
-
| 1.0 | 59656 | - | nan |
|
| 567 |
-
| 1.0058 | 60000 | 0.0157 | nan |
|
| 568 |
-
| 1.0141 | 60500 | 0.0095 | - |
|
| 569 |
-
| 1.0225 | 61000 | 0.012 | - |
|
| 570 |
-
| 1.0309 | 61500 | 0.0105 | - |
|
| 571 |
-
| 1.0393 | 62000 | 0.01 | - |
|
| 572 |
-
| 1.0477 | 62500 | 0.0101 | - |
|
| 573 |
-
| 1.0561 | 63000 | 0.0107 | - |
|
| 574 |
-
| 1.0644 | 63500 | 0.0102 | - |
|
| 575 |
-
| 1.0728 | 64000 | 0.011 | - |
|
| 576 |
-
| 1.0812 | 64500 | 0.0088 | - |
|
| 577 |
-
| 1.0896 | 65000 | 0.0106 | nan |
|
| 578 |
-
| 1.0980 | 65500 | 0.0108 | - |
|
| 579 |
-
| 1.1063 | 66000 | 0.0108 | - |
|
| 580 |
-
| 1.1147 | 66500 | 0.011 | - |
|
| 581 |
-
| 1.1231 | 67000 | 0.0082 | - |
|
| 582 |
-
| 1.1315 | 67500 | 0.0092 | - |
|
| 583 |
-
| 1.1399 | 68000 | 0.0106 | - |
|
| 584 |
-
| 1.1482 | 68500 | 0.0117 | - |
|
| 585 |
-
| 1.1566 | 69000 | 0.0096 | - |
|
| 586 |
-
| 1.1650 | 69500 | 0.0094 | - |
|
| 587 |
-
| 1.1734 | 70000 | 0.0098 | nan |
|
| 588 |
-
| 1.1818 | 70500 | 0.0084 | - |
|
| 589 |
-
| 1.1902 | 71000 | 0.0103 | - |
|
| 590 |
-
| 1.1985 | 71500 | 0.0112 | - |
|
| 591 |
-
| 1.2069 | 72000 | 0.0108 | - |
|
| 592 |
-
| 1.2153 | 72500 | 0.0121 | - |
|
| 593 |
-
| 1.2237 | 73000 | 0.0103 | - |
|
| 594 |
-
| 1.2321 | 73500 | 0.012 | - |
|
| 595 |
-
| 1.2404 | 74000 | 0.0134 | - |
|
| 596 |
-
| 1.2488 | 74500 | 0.0097 | - |
|
| 597 |
-
| 1.2572 | 75000 | 0.0121 | nan |
|
| 598 |
-
| 1.2656 | 75500 | 0.0117 | - |
|
| 599 |
-
| 1.2740 | 76000 | 0.0108 | - |
|
| 600 |
-
| 1.2824 | 76500 | 0.0106 | - |
|
| 601 |
-
| 1.2907 | 77000 | 0.0085 | - |
|
| 602 |
-
| 1.2991 | 77500 | 0.0119 | - |
|
| 603 |
-
| 1.3075 | 78000 | 0.0099 | - |
|
| 604 |
-
| 1.3159 | 78500 | 0.0102 | - |
|
| 605 |
-
| 1.3243 | 79000 | 0.011 | - |
|
| 606 |
-
| 1.3326 | 79500 | 0.0108 | - |
|
| 607 |
-
| 1.3410 | 80000 | 0.0097 | nan |
|
| 608 |
-
| 1.3494 | 80500 | 0.0101 | - |
|
| 609 |
-
| 1.3578 | 81000 | 0.0082 | - |
|
| 610 |
-
| 1.3662 | 81500 | 0.0107 | - |
|
| 611 |
-
| 1.3745 | 82000 | 0.013 | - |
|
| 612 |
-
| 1.3829 | 82500 | 0.0068 | - |
|
| 613 |
-
| 1.3913 | 83000 | 0.0102 | - |
|
| 614 |
-
| 1.3997 | 83500 | 0.0079 | - |
|
| 615 |
-
| 1.4081 | 84000 | 0.0116 | - |
|
| 616 |
-
| 1.4165 | 84500 | 0.0095 | - |
|
| 617 |
-
| 1.4248 | 85000 | 0.0105 | nan |
|
| 618 |
-
| 1.4332 | 85500 | 0.011 | - |
|
| 619 |
-
| 1.4416 | 86000 | 0.0131 | - |
|
| 620 |
-
| 1.4500 | 86500 | 0.012 | - |
|
| 621 |
-
| 1.4584 | 87000 | 0.0105 | - |
|
| 622 |
-
| 1.4667 | 87500 | 0.0117 | - |
|
| 623 |
-
| 1.4751 | 88000 | 0.0101 | - |
|
| 624 |
-
| 1.4835 | 88500 | 0.0108 | - |
|
| 625 |
-
| 1.4919 | 89000 | 0.0091 | - |
|
| 626 |
-
| 1.5003 | 89500 | 0.0086 | - |
|
| 627 |
-
| 1.5086 | 90000 | 0.0093 | nan |
|
| 628 |
-
| 1.5170 | 90500 | 0.0102 | - |
|
| 629 |
-
| 1.5254 | 91000 | 0.0078 | - |
|
| 630 |
-
| 1.5338 | 91500 | 0.0096 | - |
|
| 631 |
-
| 1.5422 | 92000 | 0.0103 | - |
|
| 632 |
-
| 1.5506 | 92500 | 0.0099 | - |
|
| 633 |
-
| 1.5589 | 93000 | 0.011 | - |
|
| 634 |
-
| 1.5673 | 93500 | 0.0079 | - |
|
| 635 |
-
| 1.5757 | 94000 | 0.0108 | - |
|
| 636 |
-
| 1.5841 | 94500 | 0.0089 | - |
|
| 637 |
-
| 1.5925 | 95000 | 0.0115 | nan |
|
| 638 |
-
| 1.6008 | 95500 | 0.0092 | - |
|
| 639 |
-
| 1.6092 | 96000 | 0.0093 | - |
|
| 640 |
-
| 1.6176 | 96500 | 0.0083 | - |
|
| 641 |
-
| 1.6260 | 97000 | 0.0103 | - |
|
| 642 |
-
| 1.6344 | 97500 | 0.01 | - |
|
| 643 |
-
| 1.6428 | 98000 | 0.0091 | - |
|
| 644 |
-
| 1.6511 | 98500 | 0.0106 | - |
|
| 645 |
-
| 1.6595 | 99000 | 0.0105 | - |
|
| 646 |
-
| 1.6679 | 99500 | 0.0096 | - |
|
| 647 |
-
| 1.6763 | 100000 | 0.0116 | nan |
|
| 648 |
-
| 1.6847 | 100500 | 0.0093 | - |
|
| 649 |
-
| 1.6930 | 101000 | 0.01 | - |
|
| 650 |
-
| 1.7014 | 101500 | 0.0076 | - |
|
| 651 |
-
| 1.7098 | 102000 | 0.0078 | - |
|
| 652 |
-
| 1.7182 | 102500 | 0.0089 | - |
|
| 653 |
-
| 1.7266 | 103000 | 0.0082 | - |
|
| 654 |
-
| 1.7349 | 103500 | 0.0081 | - |
|
| 655 |
-
| 1.7433 | 104000 | 0.009 | - |
|
| 656 |
-
| 1.7517 | 104500 | 0.0082 | - |
|
| 657 |
-
| 1.7601 | 105000 | 0.008 | nan |
|
| 658 |
-
| 1.7685 | 105500 | 0.0082 | - |
|
| 659 |
-
| 1.7769 | 106000 | 0.0077 | - |
|
| 660 |
-
| 1.7852 | 106500 | 0.0103 | - |
|
| 661 |
-
| 1.7936 | 107000 | 0.0103 | - |
|
| 662 |
-
| 1.8020 | 107500 | 0.0103 | - |
|
| 663 |
-
| 1.8104 | 108000 | 0.0079 | - |
|
| 664 |
-
| 1.8188 | 108500 | 0.0082 | - |
|
| 665 |
-
| 1.8271 | 109000 | 0.0088 | - |
|
| 666 |
-
| 1.8355 | 109500 | 0.0096 | - |
|
| 667 |
-
| 1.8439 | 110000 | 0.0097 | nan |
|
| 668 |
-
| 1.8523 | 110500 | 0.0085 | - |
|
| 669 |
-
| 1.8607 | 111000 | 0.01 | - |
|
| 670 |
-
| 1.8690 | 111500 | 0.0114 | - |
|
| 671 |
-
| 1.8774 | 112000 | 0.0075 | - |
|
| 672 |
-
| 1.8858 | 112500 | 0.0083 | - |
|
| 673 |
-
| 1.8942 | 113000 | 0.0113 | - |
|
| 674 |
-
| 1.9026 | 113500 | 0.0077 | - |
|
| 675 |
-
| 1.9110 | 114000 | 0.0077 | - |
|
| 676 |
-
| 1.9193 | 114500 | 0.0107 | - |
|
| 677 |
-
| 1.9277 | 115000 | 0.0077 | nan |
|
| 678 |
-
| 1.9361 | 115500 | 0.0094 | - |
|
| 679 |
-
| 1.9445 | 116000 | 0.0082 | - |
|
| 680 |
-
| 1.9529 | 116500 | 0.0089 | - |
|
| 681 |
-
| 1.9612 | 117000 | 0.0066 | - |
|
| 682 |
-
| 1.9696 | 117500 | 0.0102 | - |
|
| 683 |
-
| 1.9780 | 118000 | 0.0097 | - |
|
| 684 |
-
| 1.9864 | 118500 | 0.0081 | - |
|
| 685 |
-
| 1.9948 | 119000 | 0.0086 | - |
|
| 686 |
-
| 2.0 | 119312 | - | nan |
|
| 687 |
-
| 2.0032 | 119500 | 0.0063 | - |
|
| 688 |
-
| 2.0115 | 120000 | 0.0051 | nan |
|
| 689 |
-
| 2.0199 | 120500 | 0.0037 | - |
|
| 690 |
-
| 2.0283 | 121000 | 0.0062 | - |
|
| 691 |
-
| 2.0367 | 121500 | 0.0045 | - |
|
| 692 |
-
| 2.0451 | 122000 | 0.0046 | - |
|
| 693 |
-
| 2.0534 | 122500 | 0.0038 | - |
|
| 694 |
-
| 2.0618 | 123000 | 0.0044 | - |
|
| 695 |
-
| 2.0702 | 123500 | 0.0042 | - |
|
| 696 |
-
| 2.0786 | 124000 | 0.0029 | - |
|
| 697 |
-
| 2.0870 | 124500 | 0.0029 | - |
|
| 698 |
-
| 2.0953 | 125000 | 0.0067 | nan |
|
| 699 |
-
| 2.1037 | 125500 | 0.0067 | - |
|
| 700 |
-
| 2.1121 | 126000 | 0.005 | - |
|
| 701 |
-
| 2.1205 | 126500 | 0.005 | - |
|
| 702 |
-
| 2.1289 | 127000 | 0.0037 | - |
|
| 703 |
-
| 2.1373 | 127500 | 0.0043 | - |
|
| 704 |
-
| 2.1456 | 128000 | 0.0036 | - |
|
| 705 |
-
| 2.1540 | 128500 | 0.0042 | - |
|
| 706 |
-
| 2.1624 | 129000 | 0.0039 | - |
|
| 707 |
-
| 2.1708 | 129500 | 0.0032 | - |
|
| 708 |
-
| 2.1792 | 130000 | 0.0046 | nan |
|
| 709 |
-
| 2.1875 | 130500 | 0.0037 | - |
|
| 710 |
-
| 2.1959 | 131000 | 0.0036 | - |
|
| 711 |
-
| 2.2043 | 131500 | 0.0042 | - |
|
| 712 |
-
| 2.2127 | 132000 | 0.0044 | - |
|
| 713 |
-
| 2.2211 | 132500 | 0.0028 | - |
|
| 714 |
-
| 2.2294 | 133000 | 0.0043 | - |
|
| 715 |
-
| 2.2378 | 133500 | 0.0052 | - |
|
| 716 |
-
| 2.2462 | 134000 | 0.0031 | - |
|
| 717 |
-
| 2.2546 | 134500 | 0.0048 | - |
|
| 718 |
-
| 2.2630 | 135000 | 0.0031 | nan |
|
| 719 |
-
| 2.2714 | 135500 | 0.0054 | - |
|
| 720 |
-
| 2.2797 | 136000 | 0.0033 | - |
|
| 721 |
-
| 2.2881 | 136500 | 0.0036 | - |
|
| 722 |
-
| 2.2965 | 137000 | 0.0033 | - |
|
| 723 |
-
| 2.3049 | 137500 | 0.0039 | - |
|
| 724 |
-
| 2.3133 | 138000 | 0.0044 | - |
|
| 725 |
-
| 2.3216 | 138500 | 0.0034 | - |
|
| 726 |
-
| 2.3300 | 139000 | 0.0058 | - |
|
| 727 |
-
| 2.3384 | 139500 | 0.0036 | - |
|
| 728 |
-
| 2.3468 | 140000 | 0.0033 | nan |
|
| 729 |
-
| 2.3552 | 140500 | 0.0034 | - |
|
| 730 |
-
| 2.3636 | 141000 | 0.0032 | - |
|
| 731 |
-
| 2.3719 | 141500 | 0.0036 | - |
|
| 732 |
-
| 2.3803 | 142000 | 0.0038 | - |
|
| 733 |
-
| 2.3887 | 142500 | 0.0036 | - |
|
| 734 |
-
| 2.3971 | 143000 | 0.0045 | - |
|
| 735 |
-
| 2.4055 | 143500 | 0.0035 | - |
|
| 736 |
-
| 2.4138 | 144000 | 0.0042 | - |
|
| 737 |
-
| 2.4222 | 144500 | 0.0029 | - |
|
| 738 |
-
| 2.4306 | 145000 | 0.005 | nan |
|
| 739 |
-
| 2.4390 | 145500 | 0.0045 | - |
|
| 740 |
-
| 2.4474 | 146000 | 0.0035 | - |
|
| 741 |
-
| 2.4557 | 146500 | 0.004 | - |
|
| 742 |
-
| 2.4641 | 147000 | 0.0044 | - |
|
| 743 |
-
| 2.4725 | 147500 | 0.0036 | - |
|
| 744 |
-
| 2.4809 | 148000 | 0.0047 | - |
|
| 745 |
-
| 2.4893 | 148500 | 0.0035 | - |
|
| 746 |
-
| 2.4977 | 149000 | 0.0048 | - |
|
| 747 |
-
| 2.5060 | 149500 | 0.0041 | - |
|
| 748 |
-
| 2.5144 | 150000 | 0.0029 | nan |
|
| 749 |
-
| 2.5228 | 150500 | 0.0038 | - |
|
| 750 |
-
| 2.5312 | 151000 | 0.0032 | - |
|
| 751 |
-
| 2.5396 | 151500 | 0.0043 | - |
|
| 752 |
-
| 2.5479 | 152000 | 0.0038 | - |
|
| 753 |
-
| 2.5563 | 152500 | 0.0037 | - |
|
| 754 |
-
| 2.5647 | 153000 | 0.0023 | - |
|
| 755 |
-
| 2.5731 | 153500 | 0.0041 | - |
|
| 756 |
-
| 2.5815 | 154000 | 0.0049 | - |
|
| 757 |
-
| 2.5898 | 154500 | 0.0048 | - |
|
| 758 |
-
| 2.5982 | 155000 | 0.0034 | nan |
|
| 759 |
-
| 2.6066 | 155500 | 0.0031 | - |
|
| 760 |
-
| 2.6150 | 156000 | 0.0036 | - |
|
| 761 |
-
| 2.6234 | 156500 | 0.0034 | - |
|
| 762 |
-
| 2.6318 | 157000 | 0.0037 | - |
|
| 763 |
-
| 2.6401 | 157500 | 0.0035 | - |
|
| 764 |
-
| 2.6485 | 158000 | 0.0037 | - |
|
| 765 |
-
| 2.6569 | 158500 | 0.0043 | - |
|
| 766 |
-
| 2.6653 | 159000 | 0.0042 | - |
|
| 767 |
-
| 2.6737 | 159500 | 0.0049 | - |
|
| 768 |
-
| 2.6820 | 160000 | 0.0035 | nan |
|
| 769 |
-
| 2.6904 | 160500 | 0.0026 | - |
|
| 770 |
-
| 2.6988 | 161000 | 0.0049 | - |
|
| 771 |
-
| 2.7072 | 161500 | 0.0034 | - |
|
| 772 |
-
| 2.7156 | 162000 | 0.0039 | - |
|
| 773 |
-
| 2.7240 | 162500 | 0.0042 | - |
|
| 774 |
-
| 2.7323 | 163000 | 0.0052 | - |
|
| 775 |
-
| 2.7407 | 163500 | 0.0045 | - |
|
| 776 |
-
| 2.7491 | 164000 | 0.0043 | - |
|
| 777 |
-
| 2.7575 | 164500 | 0.0034 | - |
|
| 778 |
-
| 2.7659 | 165000 | 0.0038 | nan |
|
| 779 |
-
| 2.7742 | 165500 | 0.0029 | - |
|
| 780 |
-
| 2.7826 | 166000 | 0.0041 | - |
|
| 781 |
-
| 2.7910 | 166500 | 0.0041 | - |
|
| 782 |
-
| 2.7994 | 167000 | 0.0048 | - |
|
| 783 |
-
| 2.8078 | 167500 | 0.0044 | - |
|
| 784 |
-
| 2.8161 | 168000 | 0.0041 | - |
|
| 785 |
-
| 2.8245 | 168500 | 0.0035 | - |
|
| 786 |
-
| 2.8329 | 169000 | 0.0026 | - |
|
| 787 |
-
| 2.8413 | 169500 | 0.0033 | - |
|
| 788 |
-
| 2.8497 | 170000 | 0.0048 | nan |
|
| 789 |
-
| 2.8581 | 170500 | 0.0046 | - |
|
| 790 |
-
| 2.8664 | 171000 | 0.0027 | - |
|
| 791 |
-
| 2.8748 | 171500 | 0.0037 | - |
|
| 792 |
-
| 2.8832 | 172000 | 0.0028 | - |
|
| 793 |
-
| 2.8916 | 172500 | 0.0032 | - |
|
| 794 |
-
| 2.9000 | 173000 | 0.0029 | - |
|
| 795 |
-
| 2.9083 | 173500 | 0.0043 | - |
|
| 796 |
-
| 2.9167 | 174000 | 0.0048 | - |
|
| 797 |
-
| 2.9251 | 174500 | 0.0037 | - |
|
| 798 |
-
| 2.9335 | 175000 | 0.003 | nan |
|
| 799 |
-
| 2.9419 | 175500 | 0.0034 | - |
|
| 800 |
-
| 2.9502 | 176000 | 0.0035 | - |
|
| 801 |
-
| 2.9586 | 176500 | 0.0042 | - |
|
| 802 |
-
| 2.9670 | 177000 | 0.005 | - |
|
| 803 |
-
| 2.9754 | 177500 | 0.0038 | - |
|
| 804 |
-
| 2.9838 | 178000 | 0.0032 | - |
|
| 805 |
-
| 2.9922 | 178500 | 0.0028 | - |
|
| 806 |
-
| 3.0 | 178968 | - | nan |
|
| 807 |
|
| 808 |
-
|
| 809 |
|
| 810 |
-
|
| 811 |
-
-
|
| 812 |
-
-
|
| 813 |
-
-
|
| 814 |
-
-
|
| 815 |
-
-
|
| 816 |
-
-
|
| 817 |
-
- Tokenizers: 0.21.1
|
| 818 |
|
| 819 |
-
|
| 820 |
|
| 821 |
-
###
|
| 822 |
|
| 823 |
#### Sentence Transformers
|
| 824 |
```bibtex
|
|
@@ -843,22 +154,4 @@ You can finetune this model on your own dataset.
|
|
| 843 |
archivePrefix={arXiv},
|
| 844 |
primaryClass={cs.CL}
|
| 845 |
}
|
| 846 |
-
```
|
| 847 |
-
|
| 848 |
-
<!--
|
| 849 |
-
## Glossary
|
| 850 |
-
|
| 851 |
-
*Clearly define terms in order to be accessible across audiences.*
|
| 852 |
-
-->
|
| 853 |
-
|
| 854 |
-
<!--
|
| 855 |
-
## Model Card Authors
|
| 856 |
-
|
| 857 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 858 |
-
-->
|
| 859 |
-
|
| 860 |
-
<!--
|
| 861 |
-
## Model Card Contact
|
| 862 |
-
|
| 863 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 864 |
-
-->
|
|
|
|
| 3 |
- sentence-transformers
|
| 4 |
- sentence-similarity
|
| 5 |
- feature-extraction
|
|
|
|
|
|
|
|
|
|
| 6 |
base_model: Shuu12121/CodeModernBERT-Owl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
pipeline_tag: sentence-similarity
|
| 8 |
library_name: sentence-transformers
|
| 9 |
metrics:
|
| 10 |
+
- code_eval
|
|
|
|
| 11 |
model-index:
|
| 12 |
- name: SentenceTransformer based on Shuu12121/CodeModernBERT-Owl
|
| 13 |
results:
|
|
|
|
| 19 |
type: code-docstring-dev
|
| 20 |
metrics:
|
| 21 |
- type: pearson_cosine
|
| 22 |
+
value: null
|
| 23 |
name: Pearson Cosine
|
| 24 |
- type: spearman_cosine
|
| 25 |
+
value: null
|
| 26 |
name: Spearman Cosine
|
| 27 |
+
license: apache-2.0
|
| 28 |
+
datasets:
|
| 29 |
+
- code-search-net/code_search_net
|
| 30 |
+
- Shuu12121/java-codesearch-dataset-open
|
| 31 |
+
- Shuu12121/rust-codesearch-dataset-open
|
| 32 |
+
- google/code_x_glue_ct_code_to_text
|
| 33 |
+
language:
|
| 34 |
+
- en
|
| 35 |
---
|
| 36 |
|
|
|
|
| 37 |
|
|
|
|
| 38 |
|
| 39 |
+
## SentenceTransformer based on Shuu12121/CodeModernBERT-Owl
|
| 40 |
|
| 41 |
+
このモデルは、[Shuu12121/CodeModernBERT-Owl](https://huggingface.co/Shuu12121/CodeModernBERT-Owl) をベースにファインチューニングされた [sentence-transformers](https://www.SBERT.net) モデルです。
|
| 42 |
+
**特にコードサーチに特化しており、コード片やドキュメントから効果的に意味的類似性を計算できる** ように設計されています。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
---
|
| 45 |
|
| 46 |
+
### モデル評価
|
| 47 |
+
|
| 48 |
+
#### CoIRにおける評価結果
|
| 49 |
+
|
| 50 |
+
本モデルは、150M程度と比較的小さいモデルながら**コードサーチタスクにおける評価指標である CodeSearchNet で 76.89** を達成しました。
|
| 51 |
+
他のタスクには対応していないため、評価値は提供されていません。
|
| 52 |
+
CodeSearchNetタスクにおける評価値としては、他の有名なモデルと比較しても高いパフォーマンスを示しています。
|
| 53 |
+
|
| 54 |
+
| モデル名 | CodeSearchNet 評価値 |
|
| 55 |
+
|----------------------------------------------|-----------------------|
|
| 56 |
+
| **Shuu12121/CodeModernBERT-Owl** | **76.89** |
|
| 57 |
+
| Salesforce/SFR-Embedding-Code-2B_R | 73.5 |
|
| 58 |
+
| CodeSage-large-v2 | 94.26 |
|
| 59 |
+
| Salesforce/SFR-Embedding-Code-400M_R | 72.53 |
|
| 60 |
+
| CodeSage-large | 90.58 |
|
| 61 |
+
| Voyage-Code-002 | 81.79 |
|
| 62 |
+
| E5-Mistral | 54.25 |
|
| 63 |
+
| E5-Base-v2 | 67.99 |
|
| 64 |
+
| OpenAI-Ada-002 | 74.21 |
|
| 65 |
+
| BGE-Base-en-v1.5 | 69.6 |
|
| 66 |
+
| BGE-M3 | 43.23 |
|
| 67 |
+
| UniXcoder | 60.2 |
|
| 68 |
+
| GTE-Base-en-v1.5 | 43.35 |
|
| 69 |
+
| Contriever | 34.72 |
|
| 70 |
|
| 71 |
+
---
|
| 72 |
|
| 73 |
+
### モデル詳細
|
| 74 |
+
|
| 75 |
+
- **モデルタイプ:** Sentence Transformer
|
| 76 |
+
- **ベースモデル:** [Shuu12121/CodeModernBERT-Owl](https://huggingface.co/Shuu12121/CodeModernBERT-Owl)
|
| 77 |
+
- **最大シーケンス長:** 2048トークン
|
| 78 |
+
- **出力次元:** 768次元
|
| 79 |
+
- **類似度関数:** コサイン類似度
|
| 80 |
+
- **ライセンス:** Apache-2.0
|
| 81 |
+
|
| 82 |
+
---
|
| 83 |
|
| 84 |
+
### 使用方法
|
| 85 |
|
| 86 |
+
#### Sentence Transformers ライブラリのインストール
|
| 87 |
|
| 88 |
+
以下のコマンドで Sentence Transformers をインストールします。
|
| 89 |
|
| 90 |
```bash
|
| 91 |
pip install -U sentence-transformers
|
| 92 |
```
|
| 93 |
|
| 94 |
+
#### モデルのロードと推論
|
| 95 |
+
|
| 96 |
```python
|
| 97 |
from sentence_transformers import SentenceTransformer
|
| 98 |
|
| 99 |
+
# モデルをダウンロードしてロード
|
| 100 |
+
model = SentenceTransformer("Shuu12121/CodeSearch-ModernBERT-Owl")
|
| 101 |
+
|
| 102 |
+
# 推論用の文リスト
|
| 103 |
sentences = [
|
| 104 |
'Encrypts the zip file',
|
| 105 |
'def freeze_encrypt(dest_dir, zip_filename, config, opt):\n \n pgp_keys = grok_keys(config)\n icefile_prefix = "aomi-%s" % \\\n os.path.basename(os.path.dirname(opt.secretfile))\n if opt.icefile_prefix:\n icefile_prefix = opt.icefile_prefix\n\n timestamp = time.strftime("%H%M%S-%m-%d-%Y",\n datetime.datetime.now().timetuple())\n ice_file = "%s/%s-%s.ice" % (dest_dir, icefile_prefix, timestamp)\n if not encrypt(zip_filename, ice_file, pgp_keys):\n raise aomi.exceptions.GPG("Unable to encrypt zipfile")\n\n return ice_file',
|
| 106 |
'def transform(self, sents):\n \n\n def convert(tokens):\n return torch.tensor([self.vocab.stoi[t] for t in tokens], dtype=torch.long)\n\n if self.vocab is None:\n raise Exception(\n "Must run .fit() for .fit_transform() before " "calling .transform()."\n )\n\n seqs = sorted([convert(s) for s in sents], key=lambda x: -len(x))\n X = torch.LongTensor(pad_sequence(seqs, batch_first=True))\n return X',
|
| 107 |
]
|
| 108 |
+
|
| 109 |
+
# 埋め込みベクトルの生成
|
| 110 |
embeddings = model.encode(sentences)
|
| 111 |
+
print(embeddings.shape) # [3, 768]
|
|
|
|
| 112 |
|
| 113 |
+
# 類似度スコアの計算
|
| 114 |
similarities = model.similarity(embeddings, embeddings)
|
| 115 |
+
print(similarities.shape) # [3, 3]
|
|
|
|
| 116 |
```
|
| 117 |
|
| 118 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
### ライブラリバージョン
|
| 121 |
|
| 122 |
+
- Python: 3.11.11
|
| 123 |
+
- Sentence Transformers: 3.4.1
|
| 124 |
+
- Transformers: 4.50.0
|
| 125 |
+
- PyTorch: 2.6.0+cu124
|
| 126 |
+
- Accelerate: 1.5.2
|
| 127 |
+
- Datasets: 3.4.1
|
| 128 |
+
- Tokenizers: 0.21.1
|
|
|
|
| 129 |
|
| 130 |
+
---
|
| 131 |
|
| 132 |
+
### 引用情報
|
| 133 |
|
| 134 |
#### Sentence Transformers
|
| 135 |
```bibtex
|
|
|
|
| 154 |
archivePrefix={arXiv},
|
| 155 |
primaryClass={cs.CL}
|
| 156 |
}
|
| 157 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|