| import onnxruntime as rt | |
| from sentence_transformers.util import cos_sim | |
| from sentence_transformers import SentenceTransformer | |
| import transformers | |
| import gc | |
| import json | |
| with open('conversion_config.json') as json_file: | |
| conversion_config = json.load(json_file) | |
| model_id = conversion_config["model_id"] | |
| number_of_generated_embeddings = conversion_config["number_of_generated_embeddings"] | |
| precision_to_filename_map = conversion_config["precision_to_filename_map"] | |
| sentences_1 = 'How is the weather today?' | |
| sentences_2 = 'What is the current weather like today?' | |
| print(f"Testing on cosine similiarity between sentences: \n'{sentences_1}'\n'{sentences_2}'\n\n\n") | |
| tokenizer = transformers.AutoTokenizer.from_pretrained("./") | |
| enc1 = tokenizer(sentences_1) | |
| enc2 = tokenizer(sentences_2) | |
| for precision, file_name in precision_to_filename_map.items(): | |
| onnx_session = rt.InferenceSession(file_name) | |
| embeddings_1_onnx = onnx_session.run(None, {"input_ids": [enc1.input_ids], | |
| "attention_mask": [enc1.attention_mask]})[1][0] | |
| embeddings_2_onnx = onnx_session.run(None, {"input_ids": [enc2.input_ids], | |
| "attention_mask": [enc2.attention_mask]})[1][0] | |
| del onnx_session | |
| gc.collect() | |
| print(f'Cosine similiarity for ONNX model with precision "{precision}" is {str(cos_sim(embeddings_1_onnx, embeddings_2_onnx))}') | |
| model = SentenceTransformer(model_id, trust_remote_code=True) | |
| embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True) | |
| embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True) | |
| print('Cosine similiarity for original sentence transformer model is '+str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer))) | 
