ThomasTheMaker commited on
Commit
3b448ed
·
verified ·
1 Parent(s): f44ef3c

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/config.json +22 -0
  2. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/fabric_state/checkpoint.pt +3 -0
  3. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_activations.pt +3 -0
  4. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
  5. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_data/dataset_info.json +19 -0
  6. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_data/state.json +13 -0
  7. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_gradients.pt +3 -0
  8. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_weights.pt +3 -0
  9. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/model.safetensors +3 -0
  10. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/pico_decoder.py +608 -0
  11. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/special_tokens_map.json +16 -0
  12. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/tokenizer.json +0 -0
  13. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/tokenizer_config.json +239 -0
  14. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/config.json +22 -0
  15. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/fabric_state/checkpoint.pt +3 -0
  16. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/model.safetensors +3 -0
  17. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/pico_decoder.py +608 -0
  18. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/special_tokens_map.json +16 -0
  19. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/tokenizer.json +0 -0
  20. pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/tokenizer_config.json +239 -0
  21. pico-decoder-tiny-dolma-teensy-v0/eval_results/step_0.json +1 -0
  22. pico-decoder-tiny-dolma-teensy-v0/eval_results/step_27.json +1 -0
  23. pico-decoder-tiny-dolma-teensy-v0/logs/log_20250828_210922.log +113 -0
  24. pico-decoder-tiny-dolma-teensy-v0/training_config.yaml +74 -0
  25. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/config.json +22 -0
  26. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/fabric_state/checkpoint.pt +3 -0
  27. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/generation_config.json +4 -0
  28. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_activations.pt +3 -0
  29. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
  30. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_data/dataset_info.json +19 -0
  31. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_data/state.json +13 -0
  32. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_gradients.pt +3 -0
  33. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_weights.pt +3 -0
  34. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/model.safetensors +3 -0
  35. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/pico_decoder.py +856 -0
  36. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/special_tokens_map.json +16 -0
  37. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/tokenizer.json +0 -0
  38. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/tokenizer_config.json +239 -0
  39. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/config.json +22 -0
  40. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/fabric_state/checkpoint.pt +3 -0
  41. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/generation_config.json +4 -0
  42. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_activations.pt +3 -0
  43. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
  44. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_data/dataset_info.json +19 -0
  45. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_data/state.json +13 -0
  46. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_gradients.pt +3 -0
  47. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_weights.pt +3 -0
  48. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/model.safetensors +3 -0
  49. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/pico_decoder.py +871 -0
  50. pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/special_tokens_map.json +16 -0
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 384,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 96,
14
+ "max_seq_len": 2048,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50304
22
+ }
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/fabric_state/checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b50a50fd67e7a1dfa214a074549428c03047ccc26357734db80084015a538b90
3
+ size 45187997
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_activations.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6e6e181e18c36507d7cb053f37008011d6846e06f9e345baf9d0663fb288d53
3
+ size 1388635
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_data/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cf7fcdfd88a10fcfc5c173847b1b6f8926953cc585a896149edefcde9308ba8
3
+ size 4121312
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_data/dataset_info.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "input_ids": {
6
+ "feature": {
7
+ "dtype": "int32",
8
+ "_type": "Value"
9
+ },
10
+ "_type": "Sequence"
11
+ },
12
+ "text": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ }
16
+ },
17
+ "homepage": "",
18
+ "license": ""
19
+ }
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_data/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "6848e6167d9ecc18",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_gradients.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27e73f3bd443e10701a6786ae83543453f0ffe514be04040edb55b9ff158895d
3
+ size 2371527
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/learning_dynamics/train_weights.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c029ef92a6494ae121c847e432e52e6a8ff3bf7d9fef3e61bef871c1e9a9aa02
3
+ size 2371443
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1852515eb5c8556533445f22edf523884b9f8cc44812379a6a951668a4ffa3a3
3
+ size 45143592
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/pico_decoder.py ADDED
@@ -0,0 +1,608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import PretrainedConfig, PreTrainedModel
35
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
36
+
37
+ try:
38
+ if TYPE_CHECKING:
39
+ # We need to do this to avoid importing these when creating the HF-compatible models
40
+ from src.config import ModelConfig
41
+ except ImportError:
42
+ pass
43
+
44
+ ########################################################
45
+ #
46
+ # Layer Normalization
47
+ #
48
+ ########################################################
49
+
50
+
51
+ class RMSNorm(torch.nn.Module):
52
+ """Root Mean Square Layer Normalization.
53
+
54
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
55
+ resulting in improved stability and performance.
56
+
57
+ Args:
58
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
59
+ - config.norm_eps: Small constant for numerical stability
60
+ - config.d_model: Model dimension for the weight parameter
61
+
62
+ References:
63
+ https://arxiv.org/abs/1910.07467
64
+ """
65
+
66
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
67
+ super().__init__()
68
+ self.eps = config.norm_eps
69
+ self.weight = nn.Parameter(torch.ones(config.d_model))
70
+
71
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
72
+ """
73
+ Normalizes the input tensor by its RMS value.
74
+ """
75
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
76
+
77
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
78
+ """
79
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
80
+ """
81
+ output = self._norm(x.float()).type_as(x)
82
+ return output * self.weight
83
+
84
+
85
+ ########################################################
86
+ #
87
+ # Positional Embedding
88
+ #
89
+ ########################################################
90
+
91
+
92
+ class RoPE(nn.Module):
93
+ """Rotary Positional Embeddings (RoPE).
94
+
95
+ Implements position-dependent rotation of keys and queries in attention mechanism,
96
+ allowing better modeling of relative positions in sequences. Uses complex number
97
+ operations for efficient rotation.
98
+
99
+ Args:
100
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
101
+ - config.position_emb_theta: Base for frequency computation
102
+ - config.d_model: Model dimension
103
+ - config.attention_n_heads: Number of attention heads
104
+ - config.max_seq_len: Maximum sequence length
105
+
106
+ References:
107
+ https://arxiv.org/abs/2104.09864
108
+ """
109
+
110
+ _freqs_cis_tensor: torch.Tensor | None = None
111
+
112
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
113
+ super().__init__()
114
+
115
+ self.theta = config.position_emb_theta
116
+ self.dim = config.d_model // config.attention_n_heads
117
+
118
+ max_seq_len = config.max_seq_len
119
+
120
+ # only gets set once, and then reused for all RoPE instances
121
+ if RoPE._freqs_cis_tensor is None:
122
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
123
+ max_seq_len, self.theta, self.dim
124
+ )
125
+
126
+ # register _freqs_cis buffer
127
+ # can be easily recomputed so persistent=False
128
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
129
+
130
+ @classmethod
131
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
132
+ """Setup Frequency Tensor for RoPE Embeddings
133
+
134
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
135
+
136
+ Note other implementations will use cos and sin directly, but using the complex
137
+ number representation is (probably?) more efficient:
138
+
139
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
140
+ """
141
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
142
+ positions = torch.arange(seq_len)
143
+ freqs = torch.outer(positions, _freqs)
144
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
145
+
146
+ def get_freqs_cis(
147
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
148
+ ) -> torch.Tensor:
149
+ """Reshape Frequency Tensor for RoPE Embeddings
150
+
151
+ Makes the frequency tensor broadcastable with the input tensor.
152
+ """
153
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
154
+ ndim = len(input_shape)
155
+ assert 0 <= 1 < ndim
156
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
157
+
158
+ # TODO: Check whether this is correct (might be able to remove this)
159
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
160
+ return _freqs_cis.view(*shape)
161
+
162
+ def forward(
163
+ self,
164
+ queries: torch.Tensor,
165
+ keys: torch.Tensor,
166
+ start_pos: int = 0,
167
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
168
+ """Apply RoPE Embeddings to Queries and Keys
169
+
170
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
171
+
172
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
173
+ """
174
+ queries_ = torch.view_as_complex(
175
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
176
+ )
177
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
178
+
179
+ input_shape = (
180
+ queries_.shape
181
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
182
+ freqs_start_pos = start_pos
183
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
184
+
185
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
186
+
187
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
188
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
189
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
190
+
191
+
192
+ ########################################################
193
+ #
194
+ # Attention
195
+ #
196
+ ########################################################
197
+
198
+
199
+ class Attention(nn.Module):
200
+ """Multi-head Attention with Group Query Attention support.
201
+
202
+ Implements scaled dot-product attention and supports:
203
+ - Grouped Query Attention (GQA)
204
+ - Key-Value caching for efficient inference
205
+ - RoPE integration
206
+
207
+ Args:
208
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
209
+ - config.attention_n_heads: Number of attention heads
210
+ - config.attention_n_kv_heads: Number of key/value heads
211
+ - config.d_model: Model dimension
212
+ - config.batch_size: Maximum batch size
213
+ - config.max_seq_len: Maximum sequence length
214
+
215
+ Shape:
216
+ - Input: (batch_size, seq_len, d_model)
217
+ - Output: (batch_size, seq_len, d_model)
218
+ """
219
+
220
+ def __init__(
221
+ self,
222
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
223
+ ):
224
+ super().__init__()
225
+
226
+ self.n_heads = config.attention_n_heads
227
+ self.n_kv_heads = config.attention_n_kv_heads
228
+
229
+ self.batch_size = config.batch_size
230
+ self.max_seq_len = config.max_seq_len
231
+
232
+ d_model = config.d_model
233
+ self.head_dim = d_model // self.n_heads
234
+
235
+ self.n_rep = self.n_heads // self.n_kv_heads
236
+
237
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
238
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
239
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
241
+
242
+ self.rope = RoPE(config)
243
+
244
+ def forward(
245
+ self,
246
+ input: torch.Tensor,
247
+ mask: Optional[torch.Tensor] = None,
248
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
249
+ use_cache: bool = False,
250
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
251
+ """Forward pass for the attention mechanism.
252
+
253
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
254
+ embeddings to the queries and keys, and then computes attention scores and outputs.
255
+
256
+ For an introduction to the attention mechanism, see:
257
+ https://arxiv.org/abs/1706.03762
258
+
259
+ A few things to note:
260
+ - The past_key_values is used to implement the KV cache, which is used to speed up
261
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
262
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
263
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
264
+ its own KV cache - this KV cache is implemented as a tuple.
265
+ """
266
+ bsz, seq_len, _ = input.shape
267
+ _queries, _keys, _values = (
268
+ self.q_proj(input),
269
+ self.k_proj(input),
270
+ self.v_proj(input),
271
+ )
272
+
273
+ # Reshaping for multi-head attention
274
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
275
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
276
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+
278
+ # The start position is used to apply the RoPE embeddings to only the new tokens
279
+ # when using the kv_cache in the attention mechanism.
280
+ # We want to start from the last position in the cache.
281
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
282
+
283
+ # apply rotary positional embeddings
284
+ queries, keys = self.rope(queries, keys, start_pos)
285
+
286
+ if past_key_values is not None:
287
+ keys = torch.cat([past_key_values[0], keys], dim=1)
288
+ values = torch.cat([past_key_values[1], values], dim=1)
289
+
290
+ if use_cache:
291
+ cached_keys = keys
292
+ cached_values = values
293
+ else:
294
+ cached_keys = None
295
+ cached_values = None
296
+
297
+ queries = queries.transpose(1, 2)
298
+ keys = keys.transpose(1, 2)
299
+ values = values.transpose(1, 2)
300
+
301
+ apply_gqa = self.n_rep > 1
302
+ if apply_gqa and queries.device.type == "mps":
303
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
304
+ # outside of the kernel to get the same effect.
305
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
306
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
307
+ values = values.repeat_interleave(self.n_rep, dim=-3)
308
+ apply_gqa = False
309
+
310
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
311
+
312
+ with sdpa_kernel(backends=backends):
313
+ attn_output = F.scaled_dot_product_attention(
314
+ queries.contiguous(),
315
+ keys.contiguous(),
316
+ values.contiguous(),
317
+ attn_mask=mask.to(queries.dtype),
318
+ enable_gqa=apply_gqa,
319
+ )
320
+
321
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
322
+ output = self.o_proj(attn_output)
323
+
324
+ return output, (cached_keys, cached_values)
325
+
326
+
327
+ ########################################################
328
+ #
329
+ # SwiGLU (Combines MLP and Activation)
330
+ #
331
+ ########################################################
332
+
333
+
334
+ class SwiGLU(nn.Module):
335
+ """SwiGLU Activation Function with Linear Projections.
336
+
337
+ Implements the SwiGLU activation function combined with linear transformations,
338
+ serving as the feed-forward network in transformer blocks.
339
+
340
+ Args:
341
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
342
+ - config.d_model: Model dimension
343
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
344
+
345
+ References:
346
+ https://arxiv.org/abs/2002.05202
347
+ """
348
+
349
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
350
+ super().__init__()
351
+
352
+ model_dim = config.d_model
353
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
354
+
355
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
356
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
358
+
359
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
360
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
361
+
362
+
363
+ ########################################################
364
+ #
365
+ # PicoDecoderBlock
366
+ #
367
+ ########################################################
368
+
369
+
370
+ class PicoDecoderBlock(nn.Module):
371
+ """Single Transformer Block with Attention and Feed-forward layers.
372
+
373
+ Implements a standard transformer block with:
374
+ - Multi-head attention with normalization and residual connection
375
+ - SwiGLU feed-forward network with normalization and residual connection
376
+
377
+ Args:
378
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
379
+ a HuggingFace PicoDecoderHFConfig
380
+ """
381
+
382
+ def __init__(
383
+ self,
384
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
385
+ ):
386
+ super().__init__()
387
+
388
+ self.attention = Attention(config)
389
+ self.swiglu = SwiGLU(config)
390
+ self.attention_norm = RMSNorm(config)
391
+ self.swiglu_norm = RMSNorm(config)
392
+
393
+ def forward(
394
+ self,
395
+ input: torch.Tensor,
396
+ mask: Optional[torch.Tensor] = None,
397
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
398
+ use_cache: bool = False,
399
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
400
+ attention_output, cached_key_values = self.attention(
401
+ self.attention_norm(input),
402
+ mask=mask,
403
+ past_key_values=past_key_values,
404
+ use_cache=use_cache,
405
+ )
406
+ # NOTE: cached_key_values is None if use_cache is False
407
+
408
+ h = input + attention_output
409
+ out = h + self.swiglu(self.swiglu_norm(h))
410
+ return out, cached_key_values
411
+
412
+
413
+ ########################################################
414
+ #
415
+ # Pico Decoder (Causal Transformer Model)
416
+ #
417
+ ########################################################
418
+
419
+
420
+ class PicoDecoder(nn.Module):
421
+ """
422
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
423
+ single autoregressive model.
424
+
425
+ For more information on the model, see the classes for the modules that make up the model.
426
+ """
427
+
428
+ def __init__(
429
+ self,
430
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
431
+ ):
432
+ super().__init__()
433
+ self.config = model_config
434
+
435
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
436
+ self.layers = nn.ModuleList(
437
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
438
+ )
439
+ self.output_norm = RMSNorm(self.config)
440
+ self.de_embedding_proj = nn.Linear(
441
+ self.config.d_model, self.config.vocab_size, bias=False
442
+ )
443
+
444
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
445
+ """Convert the Lightning model to a HuggingFace model."""
446
+ # Create HF config without fabric-specific settings
447
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
448
+
449
+ # Create new HF model
450
+ hf_model = PicoDecoderHF(hf_config)
451
+
452
+ # Copy state dict, excluding fabric-specific keys
453
+ hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
454
+
455
+ return hf_model
456
+
457
+ def forward(
458
+ self,
459
+ input_ids: torch.Tensor,
460
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
461
+ use_cache: bool = False,
462
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
463
+ """
464
+ This is the forward pass for the entire Pico model. It boils down to:
465
+ - Embedding the input ids
466
+ - Creating a causal mask
467
+ - Processing through the pico layers
468
+ - Projecting the output to logits
469
+
470
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
471
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
472
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
473
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
474
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
475
+ KV caches (so a tuple of tuples).
476
+ """
477
+
478
+ seq_len = input_ids.shape[-1]
479
+ h = self.embedding_proj(input_ids)
480
+
481
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
482
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
483
+ # correct layer and then for either the keys or values.
484
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
485
+
486
+ # Create causal mask for current sequence
487
+ mask = None
488
+ if seq_len > 1:
489
+ mask = torch.full((seq_len, seq_len), float("-inf"))
490
+ mask = torch.triu(mask, diagonal=1)
491
+
492
+ # If using KV cache, extend mask to cover cached sequence length
493
+ if past_key_values is not None:
494
+ # Add zeros for cached tokens (we can attend to all of them)
495
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
496
+
497
+ mask = mask.to(h.device)
498
+
499
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
500
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
501
+ cached_key_values = () if use_cache else None
502
+
503
+ # Process through transformer blocks
504
+ for idx, layer in enumerate(self.layers):
505
+ layer_past_key_values = (
506
+ past_key_values[idx] if past_key_values is not None else None
507
+ )
508
+
509
+ h, layer_cached_key_values = layer(
510
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
511
+ )
512
+
513
+ if use_cache:
514
+ cached_key_values += (layer_cached_key_values,)
515
+
516
+ # Final norm and projection
517
+ h = self.output_norm(h)
518
+ logits = self.de_embedding_proj(h).float()
519
+
520
+ return logits, cached_key_values
521
+
522
+
523
+ ########################################################
524
+ #
525
+ # HuggingFace Wrapper for the Pico Decoder model.
526
+ #
527
+ ########################################################
528
+
529
+
530
+ class PicoDecoderHFConfig(PretrainedConfig):
531
+ """Config class for the Pico Decoder HuggingFace wrapper."""
532
+
533
+ model_type = "pico_decoder"
534
+
535
+ @classmethod
536
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
537
+ """
538
+ Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
539
+ this is because with some kwargs special handling is required and can make this class
540
+ brittle.
541
+ """
542
+ pico_config = cls(**config_dict)
543
+
544
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
545
+ unused_kwargs = {
546
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
547
+ }
548
+
549
+ if return_unused_kwargs:
550
+ return pico_config, unused_kwargs
551
+ return pico_config
552
+
553
+ @classmethod
554
+ def from_dataclass(cls, model_config: "ModelConfig"):
555
+ """Initialise from our custom config dataclass."""
556
+ return cls.from_dict(asdict(model_config))
557
+
558
+
559
+ class PicoDecoderHF(PreTrainedModel):
560
+ """
561
+ HuggingFace wrapper for the Pico model.
562
+
563
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
564
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
565
+ Pico model as well as the model wrapped in this HuggingFace class.
566
+
567
+ This also lets you do cool things like:
568
+
569
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
570
+ """
571
+
572
+ config_class = PicoDecoderHFConfig
573
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
574
+
575
+ def __init__(self, config: PicoDecoderHFConfig):
576
+ super().__init__(config)
577
+ self.pico_decoder = PicoDecoder(config)
578
+
579
+ def forward(
580
+ self,
581
+ input_ids: torch.Tensor,
582
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
583
+ use_cache: bool = False,
584
+ **kwargs,
585
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
586
+ """HuggingFace forward pass wrapper.
587
+
588
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
589
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
590
+ """
591
+ logits, past_key_values = self.pico_decoder(
592
+ input_ids, past_key_values, use_cache
593
+ )
594
+ if use_cache:
595
+ return CausalLMOutputWithPast(
596
+ logits=logits,
597
+ past_key_values=past_key_values,
598
+ )
599
+ else:
600
+ return CausalLMOutput(
601
+ logits=logits,
602
+ )
603
+
604
+
605
+ # Register for auto classes
606
+ PicoDecoderHFConfig.register_for_auto_class()
607
+ PicoDecoderHF.register_for_auto_class("AutoModel")
608
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<|padding|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_0/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "|||IP_ADDRESS|||",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "|||EMAIL_ADDRESS|||",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "50278": {
215
+ "content": "|||PHONE_NUMBER|||",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "50279": {
223
+ "content": "<|endoftext|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ }
230
+ },
231
+ "bos_token": null,
232
+ "clean_up_tokenization_spaces": true,
233
+ "eos_token": "<|endoftext|>",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 1000000000000000019884624838656,
236
+ "pad_token": "<|padding|>",
237
+ "tokenizer_class": "GPTNeoXTokenizer",
238
+ "unk_token": null
239
+ }
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 384,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 96,
14
+ "max_seq_len": 2048,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50304
22
+ }
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/fabric_state/checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e42d749796c6550ffb318da21c493f94df7f0c48120ac9ecbbd0eb6402fc67ff
3
+ size 135543171
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d7be9a1e9b585a92821668324e20d977c23d51c04b2ade7610f764f62efe829
3
+ size 45143592
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/pico_decoder.py ADDED
@@ -0,0 +1,608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import PretrainedConfig, PreTrainedModel
35
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
36
+
37
+ try:
38
+ if TYPE_CHECKING:
39
+ # We need to do this to avoid importing these when creating the HF-compatible models
40
+ from src.config import ModelConfig
41
+ except ImportError:
42
+ pass
43
+
44
+ ########################################################
45
+ #
46
+ # Layer Normalization
47
+ #
48
+ ########################################################
49
+
50
+
51
+ class RMSNorm(torch.nn.Module):
52
+ """Root Mean Square Layer Normalization.
53
+
54
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
55
+ resulting in improved stability and performance.
56
+
57
+ Args:
58
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
59
+ - config.norm_eps: Small constant for numerical stability
60
+ - config.d_model: Model dimension for the weight parameter
61
+
62
+ References:
63
+ https://arxiv.org/abs/1910.07467
64
+ """
65
+
66
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
67
+ super().__init__()
68
+ self.eps = config.norm_eps
69
+ self.weight = nn.Parameter(torch.ones(config.d_model))
70
+
71
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
72
+ """
73
+ Normalizes the input tensor by its RMS value.
74
+ """
75
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
76
+
77
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
78
+ """
79
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
80
+ """
81
+ output = self._norm(x.float()).type_as(x)
82
+ return output * self.weight
83
+
84
+
85
+ ########################################################
86
+ #
87
+ # Positional Embedding
88
+ #
89
+ ########################################################
90
+
91
+
92
+ class RoPE(nn.Module):
93
+ """Rotary Positional Embeddings (RoPE).
94
+
95
+ Implements position-dependent rotation of keys and queries in attention mechanism,
96
+ allowing better modeling of relative positions in sequences. Uses complex number
97
+ operations for efficient rotation.
98
+
99
+ Args:
100
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
101
+ - config.position_emb_theta: Base for frequency computation
102
+ - config.d_model: Model dimension
103
+ - config.attention_n_heads: Number of attention heads
104
+ - config.max_seq_len: Maximum sequence length
105
+
106
+ References:
107
+ https://arxiv.org/abs/2104.09864
108
+ """
109
+
110
+ _freqs_cis_tensor: torch.Tensor | None = None
111
+
112
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
113
+ super().__init__()
114
+
115
+ self.theta = config.position_emb_theta
116
+ self.dim = config.d_model // config.attention_n_heads
117
+
118
+ max_seq_len = config.max_seq_len
119
+
120
+ # only gets set once, and then reused for all RoPE instances
121
+ if RoPE._freqs_cis_tensor is None:
122
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
123
+ max_seq_len, self.theta, self.dim
124
+ )
125
+
126
+ # register _freqs_cis buffer
127
+ # can be easily recomputed so persistent=False
128
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
129
+
130
+ @classmethod
131
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
132
+ """Setup Frequency Tensor for RoPE Embeddings
133
+
134
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
135
+
136
+ Note other implementations will use cos and sin directly, but using the complex
137
+ number representation is (probably?) more efficient:
138
+
139
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
140
+ """
141
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
142
+ positions = torch.arange(seq_len)
143
+ freqs = torch.outer(positions, _freqs)
144
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
145
+
146
+ def get_freqs_cis(
147
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
148
+ ) -> torch.Tensor:
149
+ """Reshape Frequency Tensor for RoPE Embeddings
150
+
151
+ Makes the frequency tensor broadcastable with the input tensor.
152
+ """
153
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
154
+ ndim = len(input_shape)
155
+ assert 0 <= 1 < ndim
156
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
157
+
158
+ # TODO: Check whether this is correct (might be able to remove this)
159
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
160
+ return _freqs_cis.view(*shape)
161
+
162
+ def forward(
163
+ self,
164
+ queries: torch.Tensor,
165
+ keys: torch.Tensor,
166
+ start_pos: int = 0,
167
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
168
+ """Apply RoPE Embeddings to Queries and Keys
169
+
170
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
171
+
172
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
173
+ """
174
+ queries_ = torch.view_as_complex(
175
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
176
+ )
177
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
178
+
179
+ input_shape = (
180
+ queries_.shape
181
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
182
+ freqs_start_pos = start_pos
183
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
184
+
185
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
186
+
187
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
188
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
189
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
190
+
191
+
192
+ ########################################################
193
+ #
194
+ # Attention
195
+ #
196
+ ########################################################
197
+
198
+
199
+ class Attention(nn.Module):
200
+ """Multi-head Attention with Group Query Attention support.
201
+
202
+ Implements scaled dot-product attention and supports:
203
+ - Grouped Query Attention (GQA)
204
+ - Key-Value caching for efficient inference
205
+ - RoPE integration
206
+
207
+ Args:
208
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
209
+ - config.attention_n_heads: Number of attention heads
210
+ - config.attention_n_kv_heads: Number of key/value heads
211
+ - config.d_model: Model dimension
212
+ - config.batch_size: Maximum batch size
213
+ - config.max_seq_len: Maximum sequence length
214
+
215
+ Shape:
216
+ - Input: (batch_size, seq_len, d_model)
217
+ - Output: (batch_size, seq_len, d_model)
218
+ """
219
+
220
+ def __init__(
221
+ self,
222
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
223
+ ):
224
+ super().__init__()
225
+
226
+ self.n_heads = config.attention_n_heads
227
+ self.n_kv_heads = config.attention_n_kv_heads
228
+
229
+ self.batch_size = config.batch_size
230
+ self.max_seq_len = config.max_seq_len
231
+
232
+ d_model = config.d_model
233
+ self.head_dim = d_model // self.n_heads
234
+
235
+ self.n_rep = self.n_heads // self.n_kv_heads
236
+
237
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
238
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
239
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
241
+
242
+ self.rope = RoPE(config)
243
+
244
+ def forward(
245
+ self,
246
+ input: torch.Tensor,
247
+ mask: Optional[torch.Tensor] = None,
248
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
249
+ use_cache: bool = False,
250
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
251
+ """Forward pass for the attention mechanism.
252
+
253
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
254
+ embeddings to the queries and keys, and then computes attention scores and outputs.
255
+
256
+ For an introduction to the attention mechanism, see:
257
+ https://arxiv.org/abs/1706.03762
258
+
259
+ A few things to note:
260
+ - The past_key_values is used to implement the KV cache, which is used to speed up
261
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
262
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
263
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
264
+ its own KV cache - this KV cache is implemented as a tuple.
265
+ """
266
+ bsz, seq_len, _ = input.shape
267
+ _queries, _keys, _values = (
268
+ self.q_proj(input),
269
+ self.k_proj(input),
270
+ self.v_proj(input),
271
+ )
272
+
273
+ # Reshaping for multi-head attention
274
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
275
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
276
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+
278
+ # The start position is used to apply the RoPE embeddings to only the new tokens
279
+ # when using the kv_cache in the attention mechanism.
280
+ # We want to start from the last position in the cache.
281
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
282
+
283
+ # apply rotary positional embeddings
284
+ queries, keys = self.rope(queries, keys, start_pos)
285
+
286
+ if past_key_values is not None:
287
+ keys = torch.cat([past_key_values[0], keys], dim=1)
288
+ values = torch.cat([past_key_values[1], values], dim=1)
289
+
290
+ if use_cache:
291
+ cached_keys = keys
292
+ cached_values = values
293
+ else:
294
+ cached_keys = None
295
+ cached_values = None
296
+
297
+ queries = queries.transpose(1, 2)
298
+ keys = keys.transpose(1, 2)
299
+ values = values.transpose(1, 2)
300
+
301
+ apply_gqa = self.n_rep > 1
302
+ if apply_gqa and queries.device.type == "mps":
303
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
304
+ # outside of the kernel to get the same effect.
305
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
306
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
307
+ values = values.repeat_interleave(self.n_rep, dim=-3)
308
+ apply_gqa = False
309
+
310
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
311
+
312
+ with sdpa_kernel(backends=backends):
313
+ attn_output = F.scaled_dot_product_attention(
314
+ queries.contiguous(),
315
+ keys.contiguous(),
316
+ values.contiguous(),
317
+ attn_mask=mask.to(queries.dtype),
318
+ enable_gqa=apply_gqa,
319
+ )
320
+
321
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
322
+ output = self.o_proj(attn_output)
323
+
324
+ return output, (cached_keys, cached_values)
325
+
326
+
327
+ ########################################################
328
+ #
329
+ # SwiGLU (Combines MLP and Activation)
330
+ #
331
+ ########################################################
332
+
333
+
334
+ class SwiGLU(nn.Module):
335
+ """SwiGLU Activation Function with Linear Projections.
336
+
337
+ Implements the SwiGLU activation function combined with linear transformations,
338
+ serving as the feed-forward network in transformer blocks.
339
+
340
+ Args:
341
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
342
+ - config.d_model: Model dimension
343
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
344
+
345
+ References:
346
+ https://arxiv.org/abs/2002.05202
347
+ """
348
+
349
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
350
+ super().__init__()
351
+
352
+ model_dim = config.d_model
353
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
354
+
355
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
356
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
358
+
359
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
360
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
361
+
362
+
363
+ ########################################################
364
+ #
365
+ # PicoDecoderBlock
366
+ #
367
+ ########################################################
368
+
369
+
370
+ class PicoDecoderBlock(nn.Module):
371
+ """Single Transformer Block with Attention and Feed-forward layers.
372
+
373
+ Implements a standard transformer block with:
374
+ - Multi-head attention with normalization and residual connection
375
+ - SwiGLU feed-forward network with normalization and residual connection
376
+
377
+ Args:
378
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
379
+ a HuggingFace PicoDecoderHFConfig
380
+ """
381
+
382
+ def __init__(
383
+ self,
384
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
385
+ ):
386
+ super().__init__()
387
+
388
+ self.attention = Attention(config)
389
+ self.swiglu = SwiGLU(config)
390
+ self.attention_norm = RMSNorm(config)
391
+ self.swiglu_norm = RMSNorm(config)
392
+
393
+ def forward(
394
+ self,
395
+ input: torch.Tensor,
396
+ mask: Optional[torch.Tensor] = None,
397
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
398
+ use_cache: bool = False,
399
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
400
+ attention_output, cached_key_values = self.attention(
401
+ self.attention_norm(input),
402
+ mask=mask,
403
+ past_key_values=past_key_values,
404
+ use_cache=use_cache,
405
+ )
406
+ # NOTE: cached_key_values is None if use_cache is False
407
+
408
+ h = input + attention_output
409
+ out = h + self.swiglu(self.swiglu_norm(h))
410
+ return out, cached_key_values
411
+
412
+
413
+ ########################################################
414
+ #
415
+ # Pico Decoder (Causal Transformer Model)
416
+ #
417
+ ########################################################
418
+
419
+
420
+ class PicoDecoder(nn.Module):
421
+ """
422
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
423
+ single autoregressive model.
424
+
425
+ For more information on the model, see the classes for the modules that make up the model.
426
+ """
427
+
428
+ def __init__(
429
+ self,
430
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
431
+ ):
432
+ super().__init__()
433
+ self.config = model_config
434
+
435
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
436
+ self.layers = nn.ModuleList(
437
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
438
+ )
439
+ self.output_norm = RMSNorm(self.config)
440
+ self.de_embedding_proj = nn.Linear(
441
+ self.config.d_model, self.config.vocab_size, bias=False
442
+ )
443
+
444
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
445
+ """Convert the Lightning model to a HuggingFace model."""
446
+ # Create HF config without fabric-specific settings
447
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
448
+
449
+ # Create new HF model
450
+ hf_model = PicoDecoderHF(hf_config)
451
+
452
+ # Copy state dict, excluding fabric-specific keys
453
+ hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
454
+
455
+ return hf_model
456
+
457
+ def forward(
458
+ self,
459
+ input_ids: torch.Tensor,
460
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
461
+ use_cache: bool = False,
462
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
463
+ """
464
+ This is the forward pass for the entire Pico model. It boils down to:
465
+ - Embedding the input ids
466
+ - Creating a causal mask
467
+ - Processing through the pico layers
468
+ - Projecting the output to logits
469
+
470
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
471
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
472
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
473
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
474
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
475
+ KV caches (so a tuple of tuples).
476
+ """
477
+
478
+ seq_len = input_ids.shape[-1]
479
+ h = self.embedding_proj(input_ids)
480
+
481
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
482
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
483
+ # correct layer and then for either the keys or values.
484
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
485
+
486
+ # Create causal mask for current sequence
487
+ mask = None
488
+ if seq_len > 1:
489
+ mask = torch.full((seq_len, seq_len), float("-inf"))
490
+ mask = torch.triu(mask, diagonal=1)
491
+
492
+ # If using KV cache, extend mask to cover cached sequence length
493
+ if past_key_values is not None:
494
+ # Add zeros for cached tokens (we can attend to all of them)
495
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
496
+
497
+ mask = mask.to(h.device)
498
+
499
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
500
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
501
+ cached_key_values = () if use_cache else None
502
+
503
+ # Process through transformer blocks
504
+ for idx, layer in enumerate(self.layers):
505
+ layer_past_key_values = (
506
+ past_key_values[idx] if past_key_values is not None else None
507
+ )
508
+
509
+ h, layer_cached_key_values = layer(
510
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
511
+ )
512
+
513
+ if use_cache:
514
+ cached_key_values += (layer_cached_key_values,)
515
+
516
+ # Final norm and projection
517
+ h = self.output_norm(h)
518
+ logits = self.de_embedding_proj(h).float()
519
+
520
+ return logits, cached_key_values
521
+
522
+
523
+ ########################################################
524
+ #
525
+ # HuggingFace Wrapper for the Pico Decoder model.
526
+ #
527
+ ########################################################
528
+
529
+
530
+ class PicoDecoderHFConfig(PretrainedConfig):
531
+ """Config class for the Pico Decoder HuggingFace wrapper."""
532
+
533
+ model_type = "pico_decoder"
534
+
535
+ @classmethod
536
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
537
+ """
538
+ Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
539
+ this is because with some kwargs special handling is required and can make this class
540
+ brittle.
541
+ """
542
+ pico_config = cls(**config_dict)
543
+
544
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
545
+ unused_kwargs = {
546
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
547
+ }
548
+
549
+ if return_unused_kwargs:
550
+ return pico_config, unused_kwargs
551
+ return pico_config
552
+
553
+ @classmethod
554
+ def from_dataclass(cls, model_config: "ModelConfig"):
555
+ """Initialise from our custom config dataclass."""
556
+ return cls.from_dict(asdict(model_config))
557
+
558
+
559
+ class PicoDecoderHF(PreTrainedModel):
560
+ """
561
+ HuggingFace wrapper for the Pico model.
562
+
563
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
564
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
565
+ Pico model as well as the model wrapped in this HuggingFace class.
566
+
567
+ This also lets you do cool things like:
568
+
569
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
570
+ """
571
+
572
+ config_class = PicoDecoderHFConfig
573
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
574
+
575
+ def __init__(self, config: PicoDecoderHFConfig):
576
+ super().__init__(config)
577
+ self.pico_decoder = PicoDecoder(config)
578
+
579
+ def forward(
580
+ self,
581
+ input_ids: torch.Tensor,
582
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
583
+ use_cache: bool = False,
584
+ **kwargs,
585
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
586
+ """HuggingFace forward pass wrapper.
587
+
588
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
589
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
590
+ """
591
+ logits, past_key_values = self.pico_decoder(
592
+ input_ids, past_key_values, use_cache
593
+ )
594
+ if use_cache:
595
+ return CausalLMOutputWithPast(
596
+ logits=logits,
597
+ past_key_values=past_key_values,
598
+ )
599
+ else:
600
+ return CausalLMOutput(
601
+ logits=logits,
602
+ )
603
+
604
+
605
+ # Register for auto classes
606
+ PicoDecoderHFConfig.register_for_auto_class()
607
+ PicoDecoderHF.register_for_auto_class("AutoModel")
608
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<|padding|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
pico-decoder-tiny-dolma-teensy-v0/checkpoints/step_27/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "|||IP_ADDRESS|||",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "|||EMAIL_ADDRESS|||",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "50278": {
215
+ "content": "|||PHONE_NUMBER|||",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "50279": {
223
+ "content": "<|endoftext|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ }
230
+ },
231
+ "bos_token": null,
232
+ "clean_up_tokenization_spaces": true,
233
+ "eos_token": "<|endoftext|>",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 1000000000000000019884624838656,
236
+ "pad_token": "<|padding|>",
237
+ "tokenizer_class": "GPTNeoXTokenizer",
238
+ "unk_token": null
239
+ }
pico-decoder-tiny-dolma-teensy-v0/eval_results/step_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"paloma": 59434.76600609756}
pico-decoder-tiny-dolma-teensy-v0/eval_results/step_27.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"paloma": 59120.39268292683}
pico-decoder-tiny-dolma-teensy-v0/logs/log_20250828_210922.log ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-08-28 21:11:16 - pico-train - INFO - Step 0 -- 📊 Evaluation Results
2
+ 2025-08-28 21:11:16 - pico-train - INFO - └── paloma: 59434.76600609756
3
+ 2025-08-28 21:11:16 - pico-train - INFO - ==================================================
4
+ 2025-08-28 21:11:16 - pico-train - INFO - ✨ Training Configuration
5
+ 2025-08-28 21:11:16 - pico-train - INFO - ==================================================
6
+ 2025-08-28 21:11:16 - pico-train - INFO - ╭─────────────────────────────────────────────────────╮
7
+ 2025-08-28 21:11:16 - pico-train - INFO - │ checkpointing: │
8
+ 2025-08-28 21:11:16 - pico-train - INFO - │ checkpoints_dir: checkpoints │
9
+ 2025-08-28 21:11:16 - pico-train - INFO - │ evaluation: │
10
+ 2025-08-28 21:11:16 - pico-train - INFO - │ eval_results_dir: eval_results │
11
+ 2025-08-28 21:11:16 - pico-train - INFO - │ fabric_checkpoint_dir: fabric_state │
12
+ 2025-08-28 21:11:16 - pico-train - INFO - │ fabric_checkpoint_filename: checkpoint.pt │
13
+ 2025-08-28 21:11:16 - pico-train - INFO - │ hf_checkpoint: │
14
+ 2025-08-28 21:11:16 - pico-train - INFO - │ collection_slug: null │
15
+ 2025-08-28 21:11:16 - pico-train - INFO - │ repo_id: ThomasTheMaker/pico-decoder-tiny │
16
+ 2025-08-28 21:11:16 - pico-train - INFO - │ learning_dynamics: │
17
+ 2025-08-28 21:11:16 - pico-train - INFO - │ batch_size: 8 │
18
+ 2025-08-28 21:11:16 - pico-train - INFO - │ eval_data: null │
19
+ 2025-08-28 21:11:16 - pico-train - INFO - │ layer_suffixes: │
20
+ 2025-08-28 21:11:16 - pico-train - INFO - │ - attention.v_proj │
21
+ 2025-08-28 21:11:16 - pico-train - INFO - │ - attention.o_proj │
22
+ 2025-08-28 21:11:16 - pico-train - INFO - │ - swiglu.w_2 │
23
+ 2025-08-28 21:11:16 - pico-train - INFO - │ sequence_idx: -1 │
24
+ 2025-08-28 21:11:16 - pico-train - INFO - │ learning_dynamics_dir: learning_dynamics │
25
+ 2025-08-28 21:11:16 - pico-train - INFO - │ logs_dir: logs │
26
+ 2025-08-28 21:11:16 - pico-train - INFO - │ run_name: pico-decoder-tiny-max-vram │
27
+ 2025-08-28 21:11:16 - pico-train - INFO - │ runs_dir: runs │
28
+ 2025-08-28 21:11:16 - pico-train - INFO - │ save_every_n_steps: 1000 │
29
+ 2025-08-28 21:11:16 - pico-train - INFO - │ save_to_hf: true │
30
+ 2025-08-28 21:11:16 - pico-train - INFO - │ training: │
31
+ 2025-08-28 21:11:16 - pico-train - INFO - │ auto_resume: true │
32
+ 2025-08-28 21:11:16 - pico-train - INFO - │ data: │
33
+ 2025-08-28 21:11:16 - pico-train - INFO - │ dataloader: │
34
+ 2025-08-28 21:11:16 - pico-train - INFO - │ batch_size: 64 │
35
+ 2025-08-28 21:11:16 - pico-train - INFO - │ dataset: │
36
+ 2025-08-28 21:11:16 - pico-train - INFO - │ name: pico-lm/pretokenized-dolma-tinsy │
37
+ 2025-08-28 21:11:16 - pico-train - INFO - │ tokenizer: │
38
+ 2025-08-28 21:11:16 - pico-train - INFO - │ name: allenai/OLMo-7B-0724-hf │
39
+ 2025-08-28 21:11:16 - pico-train - INFO - │ vocab_size: 50304 │
40
+ 2025-08-28 21:11:16 - pico-train - INFO - │ evaluation: │
41
+ 2025-08-28 21:11:16 - pico-train - INFO - │ metrics: │
42
+ 2025-08-28 21:11:16 - pico-train - INFO - │ - paloma │
43
+ 2025-08-28 21:11:16 - pico-train - INFO - │ paloma: │
44
+ 2025-08-28 21:11:16 - pico-train - INFO - │ batch_size: 2 │
45
+ 2025-08-28 21:11:16 - pico-train - INFO - │ dataset_name: pico-lm/pretokenized-paloma-tinsy │
46
+ 2025-08-28 21:11:16 - pico-train - INFO - │ dataset_split: val │
47
+ 2025-08-28 21:11:16 - pico-train - INFO - │ max_length: 2048 │
48
+ 2025-08-28 21:11:16 - pico-train - INFO - │ model: │
49
+ 2025-08-28 21:11:16 - pico-train - INFO - │ activation_hidden_dim: 384 │
50
+ 2025-08-28 21:11:16 - pico-train - INFO - │ attention_n_heads: 12 │
51
+ 2025-08-28 21:11:16 - pico-train - INFO - │ attention_n_kv_heads: 4 │
52
+ 2025-08-28 21:11:16 - pico-train - INFO - │ batch_size: 1024 │
53
+ 2025-08-28 21:11:16 - pico-train - INFO - │ d_model: 96 │
54
+ 2025-08-28 21:11:16 - pico-train - INFO - │ max_seq_len: 2048 │
55
+ 2025-08-28 21:11:16 - pico-train - INFO - │ model_type: pico_decoder │
56
+ 2025-08-28 21:11:16 - pico-train - INFO - │ n_layers: 12 │
57
+ 2025-08-28 21:11:16 - pico-train - INFO - │ norm_eps: 1.0e-06 │
58
+ 2025-08-28 21:11:16 - pico-train - INFO - │ position_emb_theta: 10000.0 │
59
+ 2025-08-28 21:11:16 - pico-train - INFO - │ vocab_size: 50304 │
60
+ 2025-08-28 21:11:16 - pico-train - INFO - │ monitoring: │
61
+ 2025-08-28 21:11:16 - pico-train - INFO - │ logging: │
62
+ 2025-08-28 21:11:16 - pico-train - INFO - │ log_every_n_steps: 100 │
63
+ 2025-08-28 21:11:16 - pico-train - INFO - │ log_level: INFO │
64
+ 2025-08-28 21:11:16 - pico-train - INFO - │ save_to_wandb: false │
65
+ 2025-08-28 21:11:16 - pico-train - INFO - │ wandb: │
66
+ 2025-08-28 21:11:16 - pico-train - INFO - │ entity: boymyc │
67
+ 2025-08-28 21:11:16 - pico-train - INFO - │ project: pico-decoder-tiny │
68
+ 2025-08-28 21:11:16 - pico-train - INFO - │ training: │
69
+ 2025-08-28 21:11:16 - pico-train - INFO - │ fabric: │
70
+ 2025-08-28 21:11:16 - pico-train - INFO - │ accelerator: cuda │
71
+ 2025-08-28 21:11:16 - pico-train - INFO - │ num_devices: 1 │
72
+ 2025-08-28 21:11:16 - pico-train - INFO - │ num_nodes: 1 │
73
+ 2025-08-28 21:11:16 - pico-train - INFO - │ precision: 16-mixed │
74
+ 2025-08-28 21:11:16 - pico-train - INFO - │ max_steps: 200000 │
75
+ 2025-08-28 21:11:16 - pico-train - INFO - │ optimization: │
76
+ 2025-08-28 21:11:16 - pico-train - INFO - │ gradient_accumulation_steps: 64 │
77
+ 2025-08-28 21:11:16 - pico-train - INFO - │ lr: 0.0003 │
78
+ 2025-08-28 21:11:16 - pico-train - INFO - │ lr_scheduler: linear_with_warmup │
79
+ 2025-08-28 21:11:16 - pico-train - INFO - │ lr_warmup_steps: 2500 │
80
+ 2025-08-28 21:11:16 - pico-train - INFO - │ optimizer: adamw │
81
+ 2025-08-28 21:11:16 - pico-train - INFO - │ │
82
+ 2025-08-28 21:11:16 - pico-train - INFO - ╰─────────────────────────────────────────────────────╯
83
+ 2025-08-28 21:11:16 - pico-train - INFO - ==================================================
84
+ 2025-08-28 21:11:16 - pico-train - INFO - ⛭ Runtime Summary:
85
+ 2025-08-28 21:11:16 - pico-train - INFO - ==================================================
86
+ 2025-08-28 21:11:16 - pico-train - INFO - Starting from step: 0
87
+ 2025-08-28 21:11:16 - pico-train - INFO - Model Setup:
88
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Total Parameters: 11,282,784
89
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Trainable Parameters: 11,282,784
90
+ 2025-08-28 21:11:16 - pico-train - INFO - Distributed Setup:
91
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Number of Devices: 1
92
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Device Type: NVIDIA GeForce RTX 5090
93
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Available Memory: 33.68 GB
94
+ 2025-08-28 21:11:16 - pico-train - INFO - Software Setup:
95
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Python Version: 3.10.12
96
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ PyTorch Version: 2.8.0+cu128
97
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ CUDA Version: 12.8
98
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Operating System: Linux 6.8.0-63-generic
99
+ 2025-08-28 21:11:16 - pico-train - INFO - Batch Size Configuration:
100
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Global Batch Size: 256
101
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Per Device Batch Size: 1
102
+ 2025-08-28 21:11:16 - pico-train - INFO - └─ Gradient Accumulation Steps: 256
103
+ 2025-08-28 21:11:16 - pico-train - INFO - ==================================================
104
+ 2025-08-28 21:11:49 - pico-train - INFO - Step 0 -- 🔄 Training Metrics
105
+ 2025-08-28 21:11:49 - pico-train - INFO - ├── Loss: 10.9914
106
+ 2025-08-28 21:11:49 - pico-train - INFO - ├── Learning Rate: 0.00e+00
107
+ 2025-08-28 21:11:49 - pico-train - INFO - └── Inf/NaN count: 0
108
+ 2025-08-28 21:11:49 - pico-train - INFO - Step 0 -- 📈 Saving Learning Dynamics
109
+ 2025-08-28 21:26:36 - pico-train - INFO - Step 27 -- 💾 Saving Final Checkpoint
110
+ 2025-08-28 21:28:36 - pico-train - INFO - Step 27 -- 📊 Evaluation Results
111
+ 2025-08-28 21:28:36 - pico-train - INFO - └── paloma: 59120.39268292683
112
+ 2025-08-28 21:28:37 - pico-train - INFO - 🎉 Training complete! Final step: 27
113
+ 2025-08-28 21:28:37 - pico-train - WARNING - Note: Training stopped before max steps (200000)
pico-decoder-tiny-dolma-teensy-v0/training_config.yaml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ checkpointing:
2
+ checkpoints_dir: checkpoints
3
+ evaluation:
4
+ eval_results_dir: eval_results
5
+ fabric_checkpoint_dir: fabric_state
6
+ fabric_checkpoint_filename: checkpoint.pt
7
+ hf_checkpoint:
8
+ collection_slug: null
9
+ repo_id: ThomasTheMaker/pico-decoder-tiny
10
+ learning_dynamics:
11
+ batch_size: 8
12
+ eval_data: null
13
+ layer_suffixes:
14
+ - attention.v_proj
15
+ - attention.o_proj
16
+ - swiglu.w_2
17
+ sequence_idx: -1
18
+ learning_dynamics_dir: learning_dynamics
19
+ logs_dir: logs
20
+ run_name: pico-decoder-tiny-max-vram
21
+ runs_dir: runs
22
+ save_every_n_steps: 1000
23
+ save_to_hf: true
24
+ training:
25
+ auto_resume: true
26
+ data:
27
+ dataloader:
28
+ batch_size: 64
29
+ dataset:
30
+ name: pico-lm/pretokenized-dolma-tinsy
31
+ tokenizer:
32
+ name: allenai/OLMo-7B-0724-hf
33
+ vocab_size: 50304
34
+ evaluation:
35
+ metrics:
36
+ - paloma
37
+ paloma:
38
+ batch_size: 2
39
+ dataset_name: pico-lm/pretokenized-paloma-tinsy
40
+ dataset_split: val
41
+ max_length: 2048
42
+ model:
43
+ activation_hidden_dim: 384
44
+ attention_n_heads: 12
45
+ attention_n_kv_heads: 4
46
+ batch_size: 1024
47
+ d_model: 96
48
+ max_seq_len: 2048
49
+ model_type: pico_decoder
50
+ n_layers: 12
51
+ norm_eps: 1.0e-06
52
+ position_emb_theta: 10000.0
53
+ vocab_size: 50304
54
+ monitoring:
55
+ logging:
56
+ log_every_n_steps: 100
57
+ log_level: INFO
58
+ save_to_wandb: false
59
+ wandb:
60
+ entity: boymyc
61
+ project: pico-decoder-tiny
62
+ training:
63
+ fabric:
64
+ accelerator: cuda
65
+ num_devices: 1
66
+ num_nodes: 1
67
+ precision: 16-mixed
68
+ max_steps: 200000
69
+ optimization:
70
+ gradient_accumulation_steps: 64
71
+ lr: 0.0003
72
+ lr_scheduler: linear_with_warmup
73
+ lr_warmup_steps: 2500
74
+ optimizer: adamw
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 384,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 96,
14
+ "max_seq_len": 2048,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50304
22
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/fabric_state/checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b50a50fd67e7a1dfa214a074549428c03047ccc26357734db80084015a538b90
3
+ size 45187997
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "transformers_version": "4.48.3",
3
+ "vocab_size": 50304
4
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_activations.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33fda803f83cb9653b125b70cf8386e39812fa3e30e4746b52db22f5a248be93
3
+ size 33819
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_data/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85fcf259ee523f219f5133a952ded67c5a339f05dc40df33188f33a1838bb3e0
3
+ size 65384
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_data/dataset_info.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "input_ids": {
6
+ "feature": {
7
+ "dtype": "int32",
8
+ "_type": "Value"
9
+ },
10
+ "_type": "Sequence"
11
+ },
12
+ "text": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ }
16
+ },
17
+ "homepage": "",
18
+ "license": ""
19
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_data/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "d0a54608fc979d10",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_gradients.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b48826ca39adc92f370b9c3aa0ed42dce5dbf1ffe4fcfe1c320df08c344016bb
3
+ size 2371527
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/learning_dynamics/train_weights.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c029ef92a6494ae121c847e432e52e6a8ff3bf7d9fef3e61bef871c1e9a9aa02
3
+ size 2371443
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1852515eb5c8556533445f22edf523884b9f8cc44812379a6a951668a4ffa3a3
3
+ size 45143592
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/pico_decoder.py ADDED
@@ -0,0 +1,856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import PretrainedConfig, PreTrainedModel, GenerationMixin
35
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
36
+ from transformers.generation import GenerationConfig
37
+
38
+ try:
39
+ if TYPE_CHECKING:
40
+ # We need to do this to avoid importing these when creating the HF-compatible models
41
+ from src.config import ModelConfig
42
+ except ImportError:
43
+ pass
44
+
45
+ ########################################################
46
+ #
47
+ # Layer Normalization
48
+ #
49
+ ########################################################
50
+
51
+
52
+ class RMSNorm(torch.nn.Module):
53
+ """Root Mean Square Layer Normalization.
54
+
55
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
56
+ resulting in improved stability and performance.
57
+
58
+ Args:
59
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
60
+ - config.norm_eps: Small constant for numerical stability
61
+ - config.d_model: Model dimension for the weight parameter
62
+
63
+ References:
64
+ https://arxiv.org/abs/1910.07467
65
+ """
66
+
67
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
68
+ super().__init__()
69
+ self.eps = config.norm_eps
70
+ self.weight = nn.Parameter(torch.ones(config.d_model))
71
+
72
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
73
+ """
74
+ Normalizes the input tensor by its RMS value.
75
+ """
76
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
77
+
78
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
79
+ """
80
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
81
+ """
82
+ output = self._norm(x.float()).type_as(x)
83
+ return output * self.weight
84
+
85
+
86
+ ########################################################
87
+ #
88
+ # Positional Embedding
89
+ #
90
+ ########################################################
91
+
92
+
93
+ class RoPE(nn.Module):
94
+ """Rotary Positional Embeddings (RoPE).
95
+
96
+ Implements position-dependent rotation of keys and queries in attention mechanism,
97
+ allowing better modeling of relative positions in sequences. Uses complex number
98
+ operations for efficient rotation.
99
+
100
+ Args:
101
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
102
+ - config.position_emb_theta: Base for frequency computation
103
+ - config.d_model: Model dimension
104
+ - config.attention_n_heads: Number of attention heads
105
+ - config.max_seq_len: Maximum sequence length
106
+
107
+ References:
108
+ https://arxiv.org/abs/2104.09864
109
+ """
110
+
111
+ _freqs_cis_tensor: torch.Tensor | None = None
112
+
113
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
114
+ super().__init__()
115
+
116
+ self.theta = config.position_emb_theta
117
+ self.dim = config.d_model // config.attention_n_heads
118
+
119
+ max_seq_len = config.max_seq_len
120
+
121
+ # only gets set once, and then reused for all RoPE instances
122
+ if RoPE._freqs_cis_tensor is None:
123
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
124
+ max_seq_len, self.theta, self.dim
125
+ )
126
+
127
+ # register _freqs_cis buffer
128
+ # can be easily recomputed so persistent=False
129
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
130
+
131
+ @classmethod
132
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
133
+ """Setup Frequency Tensor for RoPE Embeddings
134
+
135
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
136
+
137
+ Note other implementations will use cos and sin directly, but using the complex
138
+ number representation is (probably) more efficient:
139
+
140
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
141
+ """
142
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
143
+ positions = torch.arange(seq_len)
144
+ freqs = torch.outer(positions, _freqs)
145
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
146
+
147
+ def get_freqs_cis(
148
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
149
+ ) -> torch.Tensor:
150
+ """Reshape Frequency Tensor for RoPE Embeddings
151
+
152
+ Makes the frequency tensor broadcastable with the input tensor.
153
+ """
154
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
155
+ ndim = len(input_shape)
156
+ assert 0 <= 1 < ndim
157
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
158
+
159
+ # TODO: Check whether this is correct (might be able to remove this)
160
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
161
+ return _freqs_cis.view(*shape)
162
+
163
+ def forward(
164
+ self,
165
+ queries: torch.Tensor,
166
+ keys: torch.Tensor,
167
+ start_pos: int = 0,
168
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
169
+ """Apply RoPE Embeddings to Queries and Keys
170
+
171
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
172
+
173
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
174
+ """
175
+ queries_ = torch.view_as_complex(
176
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
177
+ )
178
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
179
+
180
+ input_shape = (
181
+ queries_.shape
182
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
183
+ freqs_start_pos = start_pos
184
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
185
+
186
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
187
+
188
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
189
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
190
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
191
+
192
+
193
+ ########################################################
194
+ #
195
+ # Attention
196
+ #
197
+ ########################################################
198
+
199
+
200
+ class Attention(nn.Module):
201
+ """Multi-head Attention with Group Query Attention support.
202
+
203
+ Implements scaled dot-product attention and supports:
204
+ - Grouped Query Attention (GQA)
205
+ - Key-Value caching for efficient inference
206
+ - RoPE integration
207
+
208
+ Args:
209
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
210
+ - config.attention_n_heads: Number of attention heads
211
+ - config.attention_n_kv_heads: Number of key/value heads
212
+ - config.d_model: Model dimension
213
+ - config.batch_size: Maximum batch size
214
+ - config.max_seq_len: Maximum sequence length
215
+
216
+ Shape:
217
+ - Input: (batch_size, seq_len, d_model)
218
+ - Output: (batch_size, seq_len, d_model)
219
+ """
220
+
221
+ def __init__(
222
+ self,
223
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
224
+ ):
225
+ super().__init__()
226
+
227
+ self.n_heads = config.attention_n_heads
228
+ self.n_kv_heads = config.attention_n_kv_heads
229
+
230
+ self.batch_size = config.batch_size
231
+ self.max_seq_len = config.max_seq_len
232
+
233
+ d_model = config.d_model
234
+ self.head_dim = d_model // self.n_heads
235
+
236
+ self.n_rep = self.n_heads // self.n_kv_heads
237
+
238
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
239
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
241
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
242
+
243
+ self.rope = RoPE(config)
244
+
245
+ def forward(
246
+ self,
247
+ input: torch.Tensor,
248
+ mask: Optional[torch.Tensor] = None,
249
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
250
+ use_cache: bool = False,
251
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
252
+ """Forward pass for the attention mechanism.
253
+
254
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
255
+ embeddings to the queries and keys, and then computes attention scores and outputs.
256
+
257
+ For an introduction to the attention mechanism, see:
258
+ https://arxiv.org/abs/1706.03762
259
+
260
+ A few things to note:
261
+ - The past_key_values is used to implement the KV cache, which is used to speed up
262
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
263
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
264
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
265
+ its own KV cache - this KV cache is implemented as a tuple.
266
+ """
267
+ bsz, seq_len, _ = input.shape
268
+ _queries, _keys, _values = (
269
+ self.q_proj(input),
270
+ self.k_proj(input),
271
+ self.v_proj(input),
272
+ )
273
+
274
+ # Reshaping for multi-head attention
275
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
276
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
278
+
279
+ # The start position is used to apply the RoPE embeddings to only the new tokens
280
+ # when using the kv_cache in the attention mechanism.
281
+ # We want to start from the last position in the cache.
282
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
283
+
284
+ # apply rotary positional embeddings
285
+ queries, keys = self.rope(queries, keys, start_pos)
286
+
287
+ if past_key_values is not None:
288
+ keys = torch.cat([past_key_values[0], keys], dim=1)
289
+ values = torch.cat([past_key_values[1], values], dim=1)
290
+
291
+ if use_cache:
292
+ cached_keys = keys
293
+ cached_values = values
294
+ else:
295
+ cached_keys = None
296
+ cached_values = None
297
+
298
+ queries = queries.transpose(1, 2)
299
+ keys = keys.transpose(1, 2)
300
+ values = values.transpose(1, 2)
301
+
302
+ apply_gqa = self.n_rep > 1
303
+ if apply_gqa and queries.device.type == "mps":
304
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
305
+ # outside of the kernel to get the same effect.
306
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
307
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
308
+ values = values.repeat_interleave(self.n_rep, dim=-3)
309
+ apply_gqa = False
310
+
311
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
312
+
313
+ with sdpa_kernel(backends=backends):
314
+ attn_output = F.scaled_dot_product_attention(
315
+ queries.contiguous(),
316
+ keys.contiguous(),
317
+ values.contiguous(),
318
+ attn_mask=mask.to(queries.dtype) if mask is not None else None,
319
+ enable_gqa=apply_gqa,
320
+ )
321
+
322
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
323
+ output = self.o_proj(attn_output)
324
+
325
+ return output, (cached_keys, cached_values)
326
+
327
+
328
+ ########################################################
329
+ #
330
+ # SwiGLU (Combines MLP and Activation)
331
+ #
332
+ ########################################################
333
+
334
+
335
+ class SwiGLU(nn.Module):
336
+ """SwiGLU Activation Function with Linear Projections.
337
+
338
+ Implements the SwiGLU activation function combined with linear transformations,
339
+ serving as the feed-forward network in transformer blocks.
340
+
341
+ Args:
342
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
343
+ - config.d_model: Model dimension
344
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
345
+
346
+ References:
347
+ https://arxiv.org/abs/2002.05202
348
+ """
349
+
350
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
351
+ super().__init__()
352
+
353
+ model_dim = config.d_model
354
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
355
+
356
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
358
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
359
+
360
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
361
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
362
+
363
+
364
+ ########################################################
365
+ #
366
+ # PicoDecoderBlock
367
+ #
368
+ ########################################################
369
+
370
+
371
+ class PicoDecoderBlock(nn.Module):
372
+ """Single Transformer Block with Attention and Feed-forward layers.
373
+
374
+ Implements a standard transformer block with:
375
+ - Multi-head attention with normalization and residual connection
376
+ - SwiGLU feed-forward network with normalization and residual connection
377
+
378
+ Args:
379
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
380
+ a HuggingFace PicoDecoderHFConfig
381
+ """
382
+
383
+ def __init__(
384
+ self,
385
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
386
+ ):
387
+ super().__init__()
388
+
389
+ self.attention = Attention(config)
390
+ self.swiglu = SwiGLU(config)
391
+ self.attention_norm = RMSNorm(config)
392
+ self.swiglu_norm = RMSNorm(config)
393
+
394
+ def forward(
395
+ self,
396
+ input: torch.Tensor,
397
+ mask: Optional[torch.Tensor] = None,
398
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
399
+ use_cache: bool = False,
400
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
401
+ attention_output, cached_key_values = self.attention(
402
+ self.attention_norm(input),
403
+ mask=mask,
404
+ past_key_values=past_key_values,
405
+ use_cache=use_cache,
406
+ )
407
+ # NOTE: cached_key_values is None if use_cache is False
408
+
409
+ h = input + attention_output
410
+ out = h + self.swiglu(self.swiglu_norm(h))
411
+ return out, cached_key_values
412
+
413
+
414
+ ########################################################
415
+ #
416
+ # Pico Decoder (Causal Transformer Model)
417
+ #
418
+ ########################################################
419
+
420
+
421
+ class PicoDecoder(nn.Module):
422
+ """
423
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
424
+ single autoregressive model.
425
+
426
+ For more information on the model, see the classes for the modules that make up the model.
427
+ """
428
+
429
+ def __init__(
430
+ self,
431
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
432
+ ):
433
+ super().__init__()
434
+ self.config = model_config
435
+
436
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
437
+ self.layers = nn.ModuleList(
438
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
439
+ )
440
+ self.output_norm = RMSNorm(self.config)
441
+ self.de_embedding_proj = nn.Linear(
442
+ self.config.d_model, self.config.vocab_size, bias=False
443
+ )
444
+
445
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
446
+ """Convert the Lightning model to a HuggingFace model."""
447
+ # Create HF config without fabric-specific settings
448
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
449
+
450
+ # Create new HF model
451
+ hf_model = PicoDecoderHF(hf_config)
452
+
453
+ # Copy state dict, excluding fabric-specific keys
454
+ hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
455
+
456
+ return hf_model
457
+
458
+ def forward(
459
+ self,
460
+ input_ids: torch.Tensor,
461
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
462
+ use_cache: bool = False,
463
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
464
+ """
465
+ This is the forward pass for the entire Pico model. It boils down to:
466
+ - Embedding the input ids
467
+ - Creating a causal mask
468
+ - Processing through the pico layers
469
+ - Projecting the output to logits
470
+
471
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
472
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
473
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
474
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
475
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
476
+ KV caches (so a tuple of tuples).
477
+ """
478
+
479
+ seq_len = input_ids.shape[-1]
480
+ h = self.embedding_proj(input_ids)
481
+
482
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
483
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
484
+ # correct layer and then for either the keys or values.
485
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
486
+
487
+ # Create causal mask for current sequence
488
+ mask = None
489
+ if seq_len > 1:
490
+ mask = torch.full((seq_len, seq_len), float("-inf"))
491
+ mask = torch.triu(mask, diagonal=1)
492
+
493
+ # If using KV cache, extend mask to cover cached sequence length
494
+ if past_key_values is not None:
495
+ # Add zeros for cached tokens (we can attend to all of them)
496
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
497
+
498
+ mask = mask.to(h.device)
499
+
500
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
501
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
502
+ cached_key_values = () if use_cache else None
503
+
504
+ # Process through transformer blocks
505
+ for idx, layer in enumerate(self.layers):
506
+ layer_past_key_values = (
507
+ past_key_values[idx] if past_key_values is not None else None
508
+ )
509
+
510
+ h, layer_cached_key_values = layer(
511
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
512
+ )
513
+
514
+ if use_cache:
515
+ cached_key_values += (layer_cached_key_values,)
516
+
517
+ # Final norm and projection
518
+ h = self.output_norm(h)
519
+ logits = self.de_embedding_proj(h).float()
520
+
521
+ return logits, cached_key_values
522
+
523
+
524
+ ########################################################
525
+ #
526
+ # HuggingFace Wrapper for the Pico Decoder model.
527
+ #
528
+ ########################################################
529
+
530
+
531
+ class PicoDecoderHFConfig(PretrainedConfig):
532
+ """Config class for the Pico Decoder HuggingFace wrapper."""
533
+
534
+ model_type = "pico_decoder"
535
+
536
+ @classmethod
537
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
538
+ """
539
+ Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
540
+ this is because with some kwargs special handling is required and can make this class
541
+ brittle.
542
+ """
543
+ pico_config = cls(**config_dict)
544
+
545
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
546
+ unused_kwargs = {
547
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
548
+ }
549
+
550
+ if return_unused_kwargs:
551
+ return pico_config, unused_kwargs
552
+ return pico_config
553
+
554
+ @classmethod
555
+ def from_dataclass(cls, model_config: "ModelConfig"):
556
+ """Initialise from our custom config dataclass."""
557
+ return cls.from_dict(asdict(model_config))
558
+
559
+
560
+ class PicoDecoderHF(PreTrainedModel, GenerationMixin):
561
+ """
562
+ HuggingFace wrapper for the Pico model with generation support.
563
+
564
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
565
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
566
+ Pico model as well as the model wrapped in this HuggingFace class.
567
+
568
+ This also lets you do cool things like:
569
+
570
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
571
+ """
572
+
573
+ config_class = PicoDecoderHFConfig
574
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
575
+ main_input_name = "input_ids"
576
+
577
+ def __init__(self, config: PicoDecoderHFConfig):
578
+ super().__init__(config)
579
+ self.pico_decoder = PicoDecoder(config)
580
+ # Initialize generation config with defaults
581
+ self.generation_config = GenerationConfig()
582
+ # Set some reasonable defaults for the model
583
+ if hasattr(config, 'max_position_embeddings'):
584
+ self.generation_config.max_length = config.max_position_embeddings
585
+ if hasattr(config, 'vocab_size'):
586
+ self.generation_config.vocab_size = config.vocab_size
587
+
588
+ def forward(
589
+ self,
590
+ input_ids: torch.Tensor,
591
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
592
+ use_cache: bool = False,
593
+ **kwargs,
594
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
595
+ """HuggingFace forward pass wrapper.
596
+
597
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
598
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
599
+ """
600
+ logits, past_key_values = self.pico_decoder(
601
+ input_ids, past_key_values, use_cache
602
+ )
603
+ if use_cache:
604
+ return CausalLMOutputWithPast(
605
+ logits=logits,
606
+ past_key_values=past_key_values,
607
+ )
608
+ else:
609
+ return CausalLMOutput(
610
+ logits=logits,
611
+ )
612
+
613
+ def prepare_inputs_for_generation(
614
+ self,
615
+ input_ids: torch.LongTensor,
616
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
617
+ attention_mask: Optional[torch.LongTensor] = None,
618
+ **kwargs
619
+ ) -> Dict[str, Any]:
620
+ """
621
+ Prepare inputs for generation.
622
+
623
+ Args:
624
+ input_ids: Input token IDs
625
+ past_key_values: Cached key-value pairs from previous forward passes
626
+ attention_mask: Attention mask for the input
627
+ **kwargs: Additional arguments
628
+
629
+ Returns:
630
+ Dictionary containing prepared inputs
631
+ """
632
+ # If we have past_key_values, we only need the last token
633
+ if past_key_values is not None:
634
+ input_ids = input_ids[:, -1:]
635
+
636
+ return {
637
+ "input_ids": input_ids,
638
+ "past_key_values": past_key_values,
639
+ "use_cache": True,
640
+ }
641
+
642
+ def get_input_embeddings(self):
643
+ """Get the input embeddings layer."""
644
+ return self.pico_decoder.embedding_proj
645
+
646
+ def set_input_embeddings(self, value):
647
+ """Set the input embeddings layer."""
648
+ self.pico_decoder.embedding_proj = value
649
+
650
+ def get_output_embeddings(self):
651
+ """Get the output embeddings layer."""
652
+ return self.pico_decoder.de_embedding_proj
653
+
654
+ def set_output_embeddings(self, value):
655
+ """Set the output embeddings layer."""
656
+ self.pico_decoder.de_embedding_proj = value
657
+
658
+ def get_lm_head(self):
659
+ """Get the language model head."""
660
+ return self.pico_decoder.de_embedding_proj
661
+
662
+ def can_generate(self) -> bool:
663
+ """Check if the model can generate text."""
664
+ return True
665
+
666
+ @property
667
+ def is_encoder_decoder(self) -> bool:
668
+ """Check if the model is an encoder-decoder model."""
669
+ return False
670
+
671
+ @property
672
+ def can_use_cache(self) -> bool:
673
+ """Check if the model can use KV cache."""
674
+ return True
675
+
676
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> torch.nn.Embedding:
677
+ """Resize token embeddings."""
678
+ old_embeddings = self.get_input_embeddings()
679
+ if new_num_tokens is None:
680
+ new_num_tokens = old_embeddings.num_embeddings
681
+
682
+ new_embeddings = torch.nn.Embedding(new_num_tokens, old_embeddings.embedding_dim)
683
+ new_embeddings.weight.data[:old_embeddings.num_embeddings] = old_embeddings.weight.data
684
+
685
+ self.pico_decoder.embedding_proj = new_embeddings
686
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
687
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
688
+ )
689
+
690
+ return new_embeddings
691
+
692
+
693
+ # Register for auto classes
694
+ PicoDecoderHFConfig.register_for_auto_class()
695
+ PicoDecoderHF.register_for_auto_class("AutoModel")
696
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
697
+
698
+
699
+ ########################################################
700
+ #
701
+ # New PicoDecoderForCausalLM class for generation support
702
+ #
703
+ ########################################################
704
+
705
+
706
+ class PicoDecoderForCausalLM(PreTrainedModel, GenerationMixin):
707
+ """
708
+ PicoDecoderForCausalLM: A HuggingFace-compatible model that properly supports generation.
709
+
710
+ This class is designed to work with existing checkpoints and provides full generation support.
711
+ It inherits from the right base classes that HuggingFace expects for text generation.
712
+ """
713
+
714
+ config_class = PicoDecoderHFConfig
715
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
716
+ main_input_name = "input_ids"
717
+
718
+ def __init__(self, config: PicoDecoderHFConfig):
719
+ super().__init__(config)
720
+ self.pico_decoder = PicoDecoder(config)
721
+ # Initialize generation config with defaults
722
+ self.generation_config = GenerationConfig()
723
+ # Set some reasonable defaults for the model
724
+ if hasattr(config, 'max_position_embeddings'):
725
+ self.generation_config.max_length = config.max_position_embeddings
726
+ if hasattr(config, 'vocab_size'):
727
+ self.generation_config.vocab_size = config.vocab_size
728
+
729
+ def forward(
730
+ self,
731
+ input_ids: torch.Tensor,
732
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
733
+ use_cache: bool = False,
734
+ **kwargs,
735
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
736
+ """Forward pass for text generation."""
737
+ logits, past_key_values = self.pico_decoder(
738
+ input_ids, past_key_values, use_cache
739
+ )
740
+ if use_cache:
741
+ return CausalLMOutputWithPast(
742
+ logits=logits,
743
+ past_key_values=past_key_values,
744
+ )
745
+ else:
746
+ return CausalLMOutput(
747
+ logits=logits,
748
+ )
749
+
750
+ def prepare_inputs_for_generation(
751
+ self,
752
+ input_ids: torch.LongTensor,
753
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
754
+ attention_mask: Optional[torch.LongTensor] = None,
755
+ **kwargs
756
+ ) -> Dict[str, Any]:
757
+ """Prepare inputs for generation."""
758
+ # If we have past_key_values, we only need the last token
759
+ if past_key_values is not None:
760
+ input_ids = input_ids[:, -1:]
761
+
762
+ return {
763
+ "input_ids": input_ids,
764
+ "past_key_values": past_key_values,
765
+ "use_cache": True,
766
+ }
767
+
768
+ def get_input_embeddings(self):
769
+ """Get the input embeddings layer."""
770
+ return self.pico_decoder.embedding_proj
771
+
772
+ def set_input_embeddings(self, value):
773
+ """Set the input embeddings layer."""
774
+ self.pico_decoder.embedding_proj = value
775
+
776
+ def get_output_embeddings(self):
777
+ """Get the output embeddings layer."""
778
+ return self.pico_decoder.de_embedding_proj
779
+
780
+ def set_output_embeddings(self, value):
781
+ """Set the output embeddings layer."""
782
+ self.pico_decoder.de_embedding_proj = value
783
+
784
+ def get_lm_head(self):
785
+ """Get the language model head."""
786
+ return self.pico_decoder.de_embedding_proj
787
+
788
+ def can_generate(self) -> bool:
789
+ """Check if the model can generate text."""
790
+ return True
791
+
792
+ @property
793
+ def is_encoder_decoder(self) -> bool:
794
+ """Check if the model is an encoder-decoder model."""
795
+ return False
796
+
797
+ @property
798
+ def can_use_cache(self) -> bool:
799
+ """Check if the model can use KV cache."""
800
+ return True
801
+
802
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> torch.nn.Embedding:
803
+ """Resize token embeddings."""
804
+ old_embeddings = self.get_input_embeddings()
805
+ if new_num_tokens is None:
806
+ new_num_tokens = old_embeddings.num_embeddings
807
+
808
+ new_embeddings = torch.nn.Embedding(new_num_tokens, old_embeddings.embedding_dim)
809
+ new_embeddings.weight.data[:old_embeddings.num_embeddings] = old_embeddings.weight.data
810
+
811
+ self.pico_decoder.embedding_proj = new_embeddings
812
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
813
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
814
+ )
815
+
816
+ return new_embeddings
817
+
818
+ @classmethod
819
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
820
+ """
821
+ Load a pretrained model from a checkpoint.
822
+
823
+ This method handles loading from both the old PicoDecoderHF format and the new format.
824
+ """
825
+ # First try to load with the new class
826
+ try:
827
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
828
+ except Exception as e:
829
+ print(f"Failed to load with new class: {e}")
830
+ print("Attempting to load with legacy class and convert...")
831
+
832
+ # Try to load with the old class and convert
833
+ try:
834
+ from transformers import AutoModel
835
+ old_model = AutoModel.from_pretrained(
836
+ pretrained_model_name_or_path,
837
+ trust_remote_code=True,
838
+ *model_args,
839
+ **kwargs
840
+ )
841
+
842
+ # Create new model instance
843
+ new_model = cls(old_model.config)
844
+
845
+ # Copy state dict
846
+ new_model.load_state_dict(old_model.state_dict(), strict=False)
847
+
848
+ return new_model
849
+
850
+ except Exception as e2:
851
+ print(f"Failed to convert from legacy format: {e2}")
852
+ raise e
853
+
854
+
855
+ # Register the new class
856
+ PicoDecoderForCausalLM.register_for_auto_class("AutoModelForCausalLM")
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<|padding|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_0/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "|||IP_ADDRESS|||",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "|||EMAIL_ADDRESS|||",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "50278": {
215
+ "content": "|||PHONE_NUMBER|||",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "50279": {
223
+ "content": "<|endoftext|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ }
230
+ },
231
+ "bos_token": null,
232
+ "clean_up_tokenization_spaces": true,
233
+ "eos_token": "<|endoftext|>",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 1000000000000000019884624838656,
236
+ "pad_token": "<|padding|>",
237
+ "tokenizer_class": "GPTNeoXTokenizer",
238
+ "unk_token": null
239
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 384,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 96,
14
+ "max_seq_len": 2048,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50304
22
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/fabric_state/checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3e80057e3aeee9020555bb47c5510dffa49aa7bb95aa28626c755fd1bcd84c6
3
+ size 135543171
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "transformers_version": "4.48.3",
3
+ "vocab_size": 50304
4
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_activations.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e89d5ed24dce96b1c7926d0525d09f6fc80cd7ce982fdf4cb66817dcfbaeba9
3
+ size 33819
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_data/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b91f61ac8aae1d61544370a4c754bda11f9501a2a8b2bdae615ead87385d6d0
3
+ size 64520
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_data/dataset_info.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "input_ids": {
6
+ "feature": {
7
+ "dtype": "int32",
8
+ "_type": "Value"
9
+ },
10
+ "_type": "Sequence"
11
+ },
12
+ "text": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ }
16
+ },
17
+ "homepage": "",
18
+ "license": ""
19
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_data/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "6c5c8added4701f3",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_gradients.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cfeda57ef54a270df54117da31b7fa317f97f60870cd825f2f063392e85c1ad
3
+ size 2371527
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/learning_dynamics/train_weights.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3b41e2ffb9726f463b88554fa3adf500de7cd5e7700cd3c15a0052d19e80ed3
3
+ size 2371443
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1584cdf11592f978f9dd63c44fd15eec69dbc665b9b4c7a45d89a8f736931968
3
+ size 45143592
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/pico_decoder.py ADDED
@@ -0,0 +1,871 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import GenerationMixin, PretrainedConfig, PreTrainedModel
35
+ from transformers.generation import GenerationConfig
36
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
37
+
38
+ try:
39
+ if TYPE_CHECKING:
40
+ # We need to do this to avoid importing these when creating the HF-compatible models
41
+ from src.config import ModelConfig
42
+ except ImportError:
43
+ pass
44
+
45
+ ########################################################
46
+ #
47
+ # Layer Normalization
48
+ #
49
+ ########################################################
50
+
51
+
52
+ class RMSNorm(torch.nn.Module):
53
+ """Root Mean Square Layer Normalization.
54
+
55
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
56
+ resulting in improved stability and performance.
57
+
58
+ Args:
59
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
60
+ - config.norm_eps: Small constant for numerical stability
61
+ - config.d_model: Model dimension for the weight parameter
62
+
63
+ References:
64
+ https://arxiv.org/abs/1910.07467
65
+ """
66
+
67
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
68
+ super().__init__()
69
+ self.eps = config.norm_eps
70
+ self.weight = nn.Parameter(torch.ones(config.d_model))
71
+
72
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
73
+ """
74
+ Normalizes the input tensor by its RMS value.
75
+ """
76
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
77
+
78
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
79
+ """
80
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
81
+ """
82
+ output = self._norm(x.float()).type_as(x)
83
+ return output * self.weight
84
+
85
+
86
+ ########################################################
87
+ #
88
+ # Positional Embedding
89
+ #
90
+ ########################################################
91
+
92
+
93
+ class RoPE(nn.Module):
94
+ """Rotary Positional Embeddings (RoPE).
95
+
96
+ Implements position-dependent rotation of keys and queries in attention mechanism,
97
+ allowing better modeling of relative positions in sequences. Uses complex number
98
+ operations for efficient rotation.
99
+
100
+ Args:
101
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
102
+ - config.position_emb_theta: Base for frequency computation
103
+ - config.d_model: Model dimension
104
+ - config.attention_n_heads: Number of attention heads
105
+ - config.max_seq_len: Maximum sequence length
106
+
107
+ References:
108
+ https://arxiv.org/abs/2104.09864
109
+ """
110
+
111
+ _freqs_cis_tensor: torch.Tensor | None = None
112
+
113
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
114
+ super().__init__()
115
+
116
+ self.theta = config.position_emb_theta
117
+ self.dim = config.d_model // config.attention_n_heads
118
+
119
+ max_seq_len = config.max_seq_len
120
+
121
+ # only gets set once, and then reused for all RoPE instances
122
+ if RoPE._freqs_cis_tensor is None:
123
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
124
+ max_seq_len, self.theta, self.dim
125
+ )
126
+
127
+ # register _freqs_cis buffer
128
+ # can be easily recomputed so persistent=False
129
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
130
+
131
+ @classmethod
132
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
133
+ """Setup Frequency Tensor for RoPE Embeddings
134
+
135
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
136
+
137
+ Note other implementations will use cos and sin directly, but using the complex
138
+ number representation is (probably) more efficient:
139
+
140
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
141
+ """
142
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
143
+ positions = torch.arange(seq_len)
144
+ freqs = torch.outer(positions, _freqs)
145
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
146
+
147
+ def get_freqs_cis(
148
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
149
+ ) -> torch.Tensor:
150
+ """Reshape Frequency Tensor for RoPE Embeddings
151
+
152
+ Makes the frequency tensor broadcastable with the input tensor.
153
+ """
154
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
155
+ ndim = len(input_shape)
156
+ assert 0 <= 1 < ndim
157
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
158
+
159
+ # TODO: Check whether this is correct (might be able to remove this)
160
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
161
+ return _freqs_cis.view(*shape)
162
+
163
+ def forward(
164
+ self,
165
+ queries: torch.Tensor,
166
+ keys: torch.Tensor,
167
+ start_pos: int = 0,
168
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
169
+ """Apply RoPE Embeddings to Queries and Keys
170
+
171
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
172
+
173
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
174
+ """
175
+ queries_ = torch.view_as_complex(
176
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
177
+ )
178
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
179
+
180
+ input_shape = (
181
+ queries_.shape
182
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
183
+ freqs_start_pos = start_pos
184
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
185
+
186
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
187
+
188
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
189
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
190
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
191
+
192
+
193
+ ########################################################
194
+ #
195
+ # Attention
196
+ #
197
+ ########################################################
198
+
199
+
200
+ class Attention(nn.Module):
201
+ """Multi-head Attention with Group Query Attention support.
202
+
203
+ Implements scaled dot-product attention and supports:
204
+ - Grouped Query Attention (GQA)
205
+ - Key-Value caching for efficient inference
206
+ - RoPE integration
207
+
208
+ Args:
209
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
210
+ - config.attention_n_heads: Number of attention heads
211
+ - config.attention_n_kv_heads: Number of key/value heads
212
+ - config.d_model: Model dimension
213
+ - config.batch_size: Maximum batch size
214
+ - config.max_seq_len: Maximum sequence length
215
+
216
+ Shape:
217
+ - Input: (batch_size, seq_len, d_model)
218
+ - Output: (batch_size, seq_len, d_model)
219
+ """
220
+
221
+ def __init__(
222
+ self,
223
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
224
+ ):
225
+ super().__init__()
226
+
227
+ self.n_heads = config.attention_n_heads
228
+ self.n_kv_heads = config.attention_n_kv_heads
229
+
230
+ self.batch_size = config.batch_size
231
+ self.max_seq_len = config.max_seq_len
232
+
233
+ d_model = config.d_model
234
+ self.head_dim = d_model // self.n_heads
235
+
236
+ self.n_rep = self.n_heads // self.n_kv_heads
237
+
238
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
239
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
241
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
242
+
243
+ self.rope = RoPE(config)
244
+
245
+ def forward(
246
+ self,
247
+ input: torch.Tensor,
248
+ mask: Optional[torch.Tensor] = None,
249
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
250
+ use_cache: bool = False,
251
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
252
+ """Forward pass for the attention mechanism.
253
+
254
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
255
+ embeddings to the queries and keys, and then computes attention scores and outputs.
256
+
257
+ For an introduction to the attention mechanism, see:
258
+ https://arxiv.org/abs/1706.03762
259
+
260
+ A few things to note:
261
+ - The past_key_values is used to implement the KV cache, which is used to speed up
262
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
263
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
264
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
265
+ its own KV cache - this KV cache is implemented as a tuple.
266
+ """
267
+ bsz, seq_len, _ = input.shape
268
+ _queries, _keys, _values = (
269
+ self.q_proj(input),
270
+ self.k_proj(input),
271
+ self.v_proj(input),
272
+ )
273
+
274
+ # Reshaping for multi-head attention
275
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
276
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
278
+
279
+ # The start position is used to apply the RoPE embeddings to only the new tokens
280
+ # when using the kv_cache in the attention mechanism.
281
+ # We want to start from the last position in the cache.
282
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
283
+
284
+ # apply rotary positional embeddings
285
+ queries, keys = self.rope(queries, keys, start_pos)
286
+
287
+ if past_key_values is not None:
288
+ keys = torch.cat([past_key_values[0], keys], dim=1)
289
+ values = torch.cat([past_key_values[1], values], dim=1)
290
+
291
+ if use_cache:
292
+ cached_keys = keys
293
+ cached_values = values
294
+ else:
295
+ cached_keys = None
296
+ cached_values = None
297
+
298
+ queries = queries.transpose(1, 2)
299
+ keys = keys.transpose(1, 2)
300
+ values = values.transpose(1, 2)
301
+
302
+ apply_gqa = self.n_rep > 1
303
+ if apply_gqa and queries.device.type == "mps":
304
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
305
+ # outside of the kernel to get the same effect.
306
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
307
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
308
+ values = values.repeat_interleave(self.n_rep, dim=-3)
309
+ apply_gqa = False
310
+
311
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
312
+
313
+ with sdpa_kernel(backends=backends):
314
+ attn_output = F.scaled_dot_product_attention(
315
+ queries.contiguous(),
316
+ keys.contiguous(),
317
+ values.contiguous(),
318
+ attn_mask=mask.to(queries.dtype) if mask is not None else None,
319
+ enable_gqa=apply_gqa,
320
+ )
321
+
322
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
323
+ output = self.o_proj(attn_output)
324
+
325
+ return output, (cached_keys, cached_values)
326
+
327
+
328
+ ########################################################
329
+ #
330
+ # SwiGLU (Combines MLP and Activation)
331
+ #
332
+ ########################################################
333
+
334
+
335
+ class SwiGLU(nn.Module):
336
+ """SwiGLU Activation Function with Linear Projections.
337
+
338
+ Implements the SwiGLU activation function combined with linear transformations,
339
+ serving as the feed-forward network in transformer blocks.
340
+
341
+ Args:
342
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
343
+ - config.d_model: Model dimension
344
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
345
+
346
+ References:
347
+ https://arxiv.org/abs/2002.05202
348
+ """
349
+
350
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
351
+ super().__init__()
352
+
353
+ model_dim = config.d_model
354
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
355
+
356
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
358
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
359
+
360
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
361
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
362
+
363
+
364
+ ########################################################
365
+ #
366
+ # PicoDecoderBlock
367
+ #
368
+ ########################################################
369
+
370
+
371
+ class PicoDecoderBlock(nn.Module):
372
+ """Single Transformer Block with Attention and Feed-forward layers.
373
+
374
+ Implements a standard transformer block with:
375
+ - Multi-head attention with normalization and residual connection
376
+ - SwiGLU feed-forward network with normalization and residual connection
377
+
378
+ Args:
379
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
380
+ a HuggingFace PicoDecoderHFConfig
381
+ """
382
+
383
+ def __init__(
384
+ self,
385
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
386
+ ):
387
+ super().__init__()
388
+
389
+ self.attention = Attention(config)
390
+ self.swiglu = SwiGLU(config)
391
+ self.attention_norm = RMSNorm(config)
392
+ self.swiglu_norm = RMSNorm(config)
393
+
394
+ def forward(
395
+ self,
396
+ input: torch.Tensor,
397
+ mask: Optional[torch.Tensor] = None,
398
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
399
+ use_cache: bool = False,
400
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
401
+ attention_output, cached_key_values = self.attention(
402
+ self.attention_norm(input),
403
+ mask=mask,
404
+ past_key_values=past_key_values,
405
+ use_cache=use_cache,
406
+ )
407
+ # NOTE: cached_key_values is None if use_cache is False
408
+
409
+ h = input + attention_output
410
+ out = h + self.swiglu(self.swiglu_norm(h))
411
+ return out, cached_key_values
412
+
413
+
414
+ ########################################################
415
+ #
416
+ # Pico Decoder (Causal Transformer Model)
417
+ #
418
+ ########################################################
419
+
420
+
421
+ class PicoDecoder(nn.Module):
422
+ """
423
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
424
+ single autoregressive model.
425
+
426
+ For more information on the model, see the classes for the modules that make up the model.
427
+ """
428
+
429
+ def __init__(
430
+ self,
431
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
432
+ ):
433
+ super().__init__()
434
+ self.config = model_config
435
+
436
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
437
+ self.layers = nn.ModuleList(
438
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
439
+ )
440
+ self.output_norm = RMSNorm(self.config)
441
+ self.de_embedding_proj = nn.Linear(
442
+ self.config.d_model, self.config.vocab_size, bias=False
443
+ )
444
+
445
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
446
+ """Convert the Lightning model to a HuggingFace model."""
447
+ # Create HF config without fabric-specific settings
448
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
449
+
450
+ # Create new HF model
451
+ hf_model = PicoDecoderHF(hf_config)
452
+
453
+ # Copy state dict, excluding fabric-specific keys
454
+ hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
455
+
456
+ return hf_model
457
+
458
+ def forward(
459
+ self,
460
+ input_ids: torch.Tensor,
461
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
462
+ use_cache: bool = False,
463
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
464
+ """
465
+ This is the forward pass for the entire Pico model. It boils down to:
466
+ - Embedding the input ids
467
+ - Creating a causal mask
468
+ - Processing through the pico layers
469
+ - Projecting the output to logits
470
+
471
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
472
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
473
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
474
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
475
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
476
+ KV caches (so a tuple of tuples).
477
+ """
478
+
479
+ seq_len = input_ids.shape[-1]
480
+ h = self.embedding_proj(input_ids)
481
+
482
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
483
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
484
+ # correct layer and then for either the keys or values.
485
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
486
+
487
+ # Create causal mask for current sequence
488
+ mask = None
489
+ if seq_len > 1:
490
+ mask = torch.full((seq_len, seq_len), float("-inf"))
491
+ mask = torch.triu(mask, diagonal=1)
492
+
493
+ # If using KV cache, extend mask to cover cached sequence length
494
+ if past_key_values is not None:
495
+ # Add zeros for cached tokens (we can attend to all of them)
496
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
497
+
498
+ mask = mask.to(h.device)
499
+
500
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
501
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
502
+ cached_key_values = () if use_cache else None
503
+
504
+ # Process through transformer blocks
505
+ for idx, layer in enumerate(self.layers):
506
+ layer_past_key_values = (
507
+ past_key_values[idx] if past_key_values is not None else None
508
+ )
509
+
510
+ h, layer_cached_key_values = layer(
511
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
512
+ )
513
+
514
+ if use_cache:
515
+ cached_key_values += (layer_cached_key_values,)
516
+
517
+ # Final norm and projection
518
+ h = self.output_norm(h)
519
+ logits = self.de_embedding_proj(h).float()
520
+
521
+ return logits, cached_key_values
522
+
523
+
524
+ ########################################################
525
+ #
526
+ # HuggingFace Wrapper for the Pico Decoder model.
527
+ #
528
+ ########################################################
529
+
530
+
531
+ class PicoDecoderHFConfig(PretrainedConfig):
532
+ """Config class for the Pico Decoder HuggingFace wrapper."""
533
+
534
+ model_type = "pico_decoder"
535
+
536
+ @classmethod
537
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
538
+ """
539
+ Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
540
+ this is because with some kwargs special handling is required and can make this class
541
+ brittle.
542
+ """
543
+ pico_config = cls(**config_dict)
544
+
545
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
546
+ unused_kwargs = {
547
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
548
+ }
549
+
550
+ if return_unused_kwargs:
551
+ return pico_config, unused_kwargs
552
+ return pico_config
553
+
554
+ @classmethod
555
+ def from_dataclass(cls, model_config: "ModelConfig"):
556
+ """Initialise from our custom config dataclass."""
557
+ return cls.from_dict(asdict(model_config))
558
+
559
+
560
+ class PicoDecoderHF(PreTrainedModel, GenerationMixin):
561
+ """
562
+ HuggingFace wrapper for the Pico model with generation support.
563
+
564
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
565
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
566
+ Pico model as well as the model wrapped in this HuggingFace class.
567
+
568
+ This also lets you do cool things like:
569
+
570
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
571
+ """
572
+
573
+ config_class = PicoDecoderHFConfig
574
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
575
+ main_input_name = "input_ids"
576
+
577
+ def __init__(self, config: PicoDecoderHFConfig):
578
+ super().__init__(config)
579
+ self.pico_decoder = PicoDecoder(config)
580
+ # Initialize generation config with defaults
581
+ self.generation_config = GenerationConfig()
582
+ # Set some reasonable defaults for the model
583
+ if hasattr(config, "max_position_embeddings"):
584
+ self.generation_config.max_length = config.max_position_embeddings
585
+ if hasattr(config, "vocab_size"):
586
+ self.generation_config.vocab_size = config.vocab_size
587
+
588
+ def forward(
589
+ self,
590
+ input_ids: torch.Tensor,
591
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
592
+ use_cache: bool = False,
593
+ **kwargs,
594
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
595
+ """HuggingFace forward pass wrapper.
596
+
597
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
598
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
599
+ """
600
+ logits, past_key_values = self.pico_decoder(
601
+ input_ids, past_key_values, use_cache
602
+ )
603
+ if use_cache:
604
+ return CausalLMOutputWithPast(
605
+ logits=logits,
606
+ past_key_values=past_key_values,
607
+ )
608
+ else:
609
+ return CausalLMOutput(
610
+ logits=logits,
611
+ )
612
+
613
+ def prepare_inputs_for_generation(
614
+ self,
615
+ input_ids: torch.LongTensor,
616
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
617
+ attention_mask: Optional[torch.LongTensor] = None,
618
+ **kwargs,
619
+ ) -> Dict[str, Any]:
620
+ """
621
+ Prepare inputs for generation.
622
+
623
+ Args:
624
+ input_ids: Input token IDs
625
+ past_key_values: Cached key-value pairs from previous forward passes
626
+ attention_mask: Attention mask for the input
627
+ **kwargs: Additional arguments
628
+
629
+ Returns:
630
+ Dictionary containing prepared inputs
631
+ """
632
+ # If we have past_key_values, we only need the last token
633
+ if past_key_values is not None:
634
+ input_ids = input_ids[:, -1:]
635
+
636
+ return {
637
+ "input_ids": input_ids,
638
+ "past_key_values": past_key_values,
639
+ "use_cache": True,
640
+ }
641
+
642
+ def get_input_embeddings(self):
643
+ """Get the input embeddings layer."""
644
+ return self.pico_decoder.embedding_proj
645
+
646
+ def set_input_embeddings(self, value):
647
+ """Set the input embeddings layer."""
648
+ self.pico_decoder.embedding_proj = value
649
+
650
+ def get_output_embeddings(self):
651
+ """Get the output embeddings layer."""
652
+ return self.pico_decoder.de_embedding_proj
653
+
654
+ def set_output_embeddings(self, value):
655
+ """Set the output embeddings layer."""
656
+ self.pico_decoder.de_embedding_proj = value
657
+
658
+ def get_lm_head(self):
659
+ """Get the language model head."""
660
+ return self.pico_decoder.de_embedding_proj
661
+
662
+ def can_generate(self) -> bool:
663
+ """Check if the model can generate text."""
664
+ return True
665
+
666
+ @property
667
+ def is_encoder_decoder(self) -> bool:
668
+ """Check if the model is an encoder-decoder model."""
669
+ return False
670
+
671
+ @property
672
+ def can_use_cache(self) -> bool:
673
+ """Check if the model can use KV cache."""
674
+ return True
675
+
676
+ def resize_token_embeddings(
677
+ self, new_num_tokens: Optional[int] = None
678
+ ) -> torch.nn.Embedding:
679
+ """Resize token embeddings."""
680
+ old_embeddings = self.get_input_embeddings()
681
+ if new_num_tokens is None:
682
+ new_num_tokens = old_embeddings.num_embeddings
683
+
684
+ new_embeddings = torch.nn.Embedding(
685
+ new_num_tokens, old_embeddings.embedding_dim
686
+ )
687
+ new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
688
+ old_embeddings.weight.data
689
+ )
690
+
691
+ self.pico_decoder.embedding_proj = new_embeddings
692
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
693
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
694
+ )
695
+
696
+ return new_embeddings
697
+
698
+
699
+ # Register for auto classes
700
+ PicoDecoderHFConfig.register_for_auto_class()
701
+ PicoDecoderHF.register_for_auto_class("AutoModel")
702
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
703
+
704
+
705
+ ########################################################
706
+ #
707
+ # New PicoDecoderForCausalLM class for generation support
708
+ #
709
+ ########################################################
710
+
711
+
712
+ class PicoDecoderForCausalLM(PreTrainedModel, GenerationMixin):
713
+ """
714
+ PicoDecoderForCausalLM: A HuggingFace-compatible model that properly supports generation.
715
+
716
+ This class is designed to work with existing checkpoints and provides full generation support.
717
+ It inherits from the right base classes that HuggingFace expects for text generation.
718
+ """
719
+
720
+ config_class = PicoDecoderHFConfig
721
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
722
+ main_input_name = "input_ids"
723
+
724
+ def __init__(self, config: PicoDecoderHFConfig):
725
+ super().__init__(config)
726
+ self.pico_decoder = PicoDecoder(config)
727
+ # Initialize generation config with defaults
728
+ self.generation_config = GenerationConfig()
729
+ # Set some reasonable defaults for the model
730
+ if hasattr(config, "max_position_embeddings"):
731
+ self.generation_config.max_length = config.max_position_embeddings
732
+ if hasattr(config, "vocab_size"):
733
+ self.generation_config.vocab_size = config.vocab_size
734
+
735
+ def forward(
736
+ self,
737
+ input_ids: torch.Tensor,
738
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
739
+ use_cache: bool = False,
740
+ **kwargs,
741
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
742
+ """Forward pass for text generation."""
743
+ logits, past_key_values = self.pico_decoder(
744
+ input_ids, past_key_values, use_cache
745
+ )
746
+ if use_cache:
747
+ return CausalLMOutputWithPast(
748
+ logits=logits,
749
+ past_key_values=past_key_values,
750
+ )
751
+ else:
752
+ return CausalLMOutput(
753
+ logits=logits,
754
+ )
755
+
756
+ def prepare_inputs_for_generation(
757
+ self,
758
+ input_ids: torch.LongTensor,
759
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
760
+ attention_mask: Optional[torch.LongTensor] = None,
761
+ **kwargs,
762
+ ) -> Dict[str, Any]:
763
+ """Prepare inputs for generation."""
764
+ # If we have past_key_values, we only need the last token
765
+ if past_key_values is not None:
766
+ input_ids = input_ids[:, -1:]
767
+
768
+ return {
769
+ "input_ids": input_ids,
770
+ "past_key_values": past_key_values,
771
+ "use_cache": True,
772
+ }
773
+
774
+ def get_input_embeddings(self):
775
+ """Get the input embeddings layer."""
776
+ return self.pico_decoder.embedding_proj
777
+
778
+ def set_input_embeddings(self, value):
779
+ """Set the input embeddings layer."""
780
+ self.pico_decoder.embedding_proj = value
781
+
782
+ def get_output_embeddings(self):
783
+ """Get the output embeddings layer."""
784
+ return self.pico_decoder.de_embedding_proj
785
+
786
+ def set_output_embeddings(self, value):
787
+ """Set the output embeddings layer."""
788
+ self.pico_decoder.de_embedding_proj = value
789
+
790
+ def get_lm_head(self):
791
+ """Get the language model head."""
792
+ return self.pico_decoder.de_embedding_proj
793
+
794
+ def can_generate(self) -> bool:
795
+ """Check if the model can generate text."""
796
+ return True
797
+
798
+ @property
799
+ def is_encoder_decoder(self) -> bool:
800
+ """Check if the model is an encoder-decoder model."""
801
+ return False
802
+
803
+ @property
804
+ def can_use_cache(self) -> bool:
805
+ """Check if the model can use KV cache."""
806
+ return True
807
+
808
+ def resize_token_embeddings(
809
+ self, new_num_tokens: Optional[int] = None
810
+ ) -> torch.nn.Embedding:
811
+ """Resize token embeddings."""
812
+ old_embeddings = self.get_input_embeddings()
813
+ if new_num_tokens is None:
814
+ new_num_tokens = old_embeddings.num_embeddings
815
+
816
+ new_embeddings = torch.nn.Embedding(
817
+ new_num_tokens, old_embeddings.embedding_dim
818
+ )
819
+ new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
820
+ old_embeddings.weight.data
821
+ )
822
+
823
+ self.pico_decoder.embedding_proj = new_embeddings
824
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
825
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
826
+ )
827
+
828
+ return new_embeddings
829
+
830
+ @classmethod
831
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
832
+ """
833
+ Load a pretrained model from a checkpoint.
834
+
835
+ This method handles loading from both the old PicoDecoderHF format and the new format.
836
+ """
837
+ # First try to load with the new class
838
+ try:
839
+ return super().from_pretrained(
840
+ pretrained_model_name_or_path, *model_args, **kwargs
841
+ )
842
+ except Exception as e:
843
+ print(f"Failed to load with new class: {e}")
844
+ print("Attempting to load with legacy class and convert...")
845
+
846
+ # Try to load with the old class and convert
847
+ try:
848
+ from transformers import AutoModel
849
+
850
+ old_model = AutoModel.from_pretrained(
851
+ pretrained_model_name_or_path,
852
+ trust_remote_code=True,
853
+ *model_args,
854
+ **kwargs,
855
+ )
856
+
857
+ # Create new model instance
858
+ new_model = cls(old_model.config)
859
+
860
+ # Copy state dict
861
+ new_model.load_state_dict(old_model.state_dict(), strict=False)
862
+
863
+ return new_model
864
+
865
+ except Exception as e2:
866
+ print(f"Failed to convert from legacy format: {e2}")
867
+ raise e
868
+
869
+
870
+ # Register the new class
871
+ PicoDecoderForCausalLM.register_for_auto_class("AutoModelForCausalLM")
pico-decoder-tiny-dolma-teensy-v1/checkpoints/step_1000/special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<|padding|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }