File size: 8,604 Bytes
f24563f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
"""
Configuration for LLM training.
"""
from dataclasses import dataclass, field
from typing import Optional, List, Dict, Any, Union
import jax.numpy as jnp
from model.llm import LLMConfig
@dataclass
class TrainingConfig:
"""
Configuration for training.
Attributes:
output_dir: Output directory
model_config: Model configuration
# Training parameters
learning_rate: Learning rate
weight_decay: Weight decay
warmup_steps: Number of warmup steps
max_steps: Maximum number of training steps
batch_size: Batch size per device
gradient_accumulation_steps: Number of steps to accumulate gradients
max_grad_norm: Maximum gradient norm for clipping
# Optimizer parameters
optimizer: Optimizer type
adam_beta1: Beta1 for Adam optimizer
adam_beta2: Beta2 for Adam optimizer
adam_epsilon: Epsilon for Adam optimizer
# Logging parameters
logging_steps: Number of steps between logging
save_steps: Number of steps between checkpoints
eval_steps: Number of steps between evaluations
# Dataset parameters
train_file: Path to training file
eval_file: Path to evaluation file
max_seq_length: Maximum sequence length
# Tokenizer parameters
tokenizer_file: Path to tokenizer file
# Parallelism parameters
parallelism_type: Type of parallelism
tensor_parallel_size: Number of tensor parallel devices
pipeline_parallel_size: Number of pipeline parallel devices
# Performance optimization parameters
use_flash_attention: Whether to use flash attention for efficiency
use_gradient_checkpointing: Whether to use gradient checkpointing to save memory
# Long context support parameters
use_rope_scaling: Whether to use RoPE scaling for longer contexts
rope_scaling_factor: Scaling factor for RoPE frequencies
# Reasoning capabilities parameters
use_reasoning_layer: Whether to use additional reasoning layers
num_reasoning_layers: Number of additional reasoning layers
reasoning_intermediate_size: Hidden dimension in reasoning feed-forward network
# Miscellaneous parameters
seed: Random seed
dtype: Data type for computations
mixed_precision: Whether to use mixed precision training
"""
# Output directory
output_dir: str = "output"
# Model configuration
model_config: LLMConfig = field(default_factory=LLMConfig)
# Training parameters
learning_rate: float = 3e-4
weight_decay: float = 0.01
warmup_steps: int = 1000
max_steps: int = 100000
batch_size: int = 32
gradient_accumulation_steps: int = 1
max_grad_norm: float = 1.0
# Optimizer parameters
optimizer: str = "adamw" # "adamw", "lion"
adam_beta1: float = 0.9
adam_beta2: float = 0.999
adam_epsilon: float = 1e-8
# Logging parameters
logging_steps: int = 100
save_steps: int = 1000
eval_steps: int = 1000
# Dataset parameters
train_file: str = ""
eval_file: str = ""
max_seq_length: int = 32768 # Increased to support longer contexts
# Tokenizer parameters
tokenizer_file: str = ""
# Parallelism parameters
parallelism_type: str = "data" # "data", "tensor", "pipeline"
tensor_parallel_size: int = 1
pipeline_parallel_size: int = 1
# Performance optimization parameters
use_flash_attention: bool = True # Use flash attention for efficiency
use_gradient_checkpointing: bool = True # Use gradient checkpointing to save memory
# Long context support parameters
use_rope_scaling: bool = True # Use RoPE scaling for longer contexts
rope_scaling_factor: float = 0.5 # Scaling factor for RoPE frequencies
# Reasoning capabilities parameters
use_reasoning_layer: bool = True # Use additional reasoning layers
num_reasoning_layers: int = 2 # Number of additional reasoning layers
reasoning_intermediate_size: int = 16384 # Hidden dimension in reasoning feed-forward network
# Miscellaneous parameters
seed: int = 42
dtype: jnp.dtype = jnp.bfloat16
mixed_precision: bool = True
@dataclass
class ModelSizeConfig:
"""
Configuration for different model sizes.
Attributes:
name: Model size name
hidden_size: Hidden dimension
num_hidden_layers: Number of transformer layers
num_query_heads: Number of query heads
num_kv_heads: Number of key-value heads
intermediate_size: Hidden dimension in feed-forward network
max_position_embeddings: Maximum sequence length
vocab_size: Size of vocabulary
reasoning_intermediate_size: Hidden dimension in reasoning feed-forward network
num_reasoning_layers: Number of additional reasoning layers
"""
name: str
hidden_size: int
num_hidden_layers: int
num_query_heads: int
num_kv_heads: int
intermediate_size: int
max_position_embeddings: int = 131072 # Increased to support 128K token contexts
vocab_size: int = 32000
reasoning_intermediate_size: int = 16384 # Hidden dimension for reasoning layers
num_reasoning_layers: int = 2 # Number of reasoning layers
# Model size configurations
MODEL_SIZES = {
"7b": ModelSizeConfig(
name="7b",
hidden_size=4096,
num_hidden_layers=32,
num_query_heads=32,
num_kv_heads=8,
intermediate_size=11008,
max_position_embeddings=131072, # Increased to support 128K token contexts
vocab_size=32000,
reasoning_intermediate_size=16384,
num_reasoning_layers=1
),
"13b": ModelSizeConfig(
name="13b",
hidden_size=5120,
num_hidden_layers=40,
num_query_heads=40,
num_kv_heads=10,
intermediate_size=13824,
max_position_embeddings=131072, # Increased to support 128K token contexts
vocab_size=32000,
reasoning_intermediate_size=20480,
num_reasoning_layers=1
),
"70b": ModelSizeConfig(
name="70b",
hidden_size=8192,
num_hidden_layers=80,
num_query_heads=64,
num_kv_heads=8,
intermediate_size=28672,
max_position_embeddings=131072, # Increased to support 128K token contexts
vocab_size=32000,
reasoning_intermediate_size=32768,
num_reasoning_layers=2
),
"175b": ModelSizeConfig(
name="175b",
hidden_size=12288,
num_hidden_layers=96,
num_query_heads=96,
num_kv_heads=12,
intermediate_size=49152,
max_position_embeddings=131072, # Increased to support 128K token contexts
vocab_size=32000,
reasoning_intermediate_size=49152,
num_reasoning_layers=2
),
"600b": ModelSizeConfig(
name="600b",
hidden_size=18432,
num_hidden_layers=128,
num_query_heads=128,
num_kv_heads=16,
intermediate_size=73728,
max_position_embeddings=131072, # Increased to support 128K token contexts
vocab_size=32000,
reasoning_intermediate_size=73728,
num_reasoning_layers=3
)
}
def get_model_config(model_size: str) -> LLMConfig:
"""
Get model configuration for a specific model size.
Args:
model_size: Model size name
Returns:
Model configuration
"""
if model_size not in MODEL_SIZES:
raise ValueError(f"Model size {model_size} not supported")
size_config = MODEL_SIZES[model_size]
return LLMConfig(
vocab_size=size_config.vocab_size,
hidden_size=size_config.hidden_size,
num_hidden_layers=size_config.num_hidden_layers,
num_query_heads=size_config.num_query_heads,
num_kv_heads=size_config.num_kv_heads,
intermediate_size=size_config.intermediate_size,
max_position_embeddings=size_config.max_position_embeddings,
# Performance optimizations
use_flash_attention=True,
use_gradient_checkpointing=True,
# Long context support for 128K tokens
use_rope_scaling=True,
rope_scaling_factor=0.25, # More aggressive scaling for 128K tokens
rope_theta=1000000.0, # Increased base for better long-context performance
# Reasoning capabilities
use_reasoning_layer=True,
num_reasoning_layers=size_config.num_reasoning_layers,
reasoning_intermediate_size=size_config.reasoning_intermediate_size
)
|