Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#made by gpt
|
| 2 |
+
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification, Trainer, TrainingArguments
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
# Load a small dataset (IMDB with just a few samples for quick testing)
|
| 8 |
+
dataset = load_dataset("imdb", split='train[:2%]').train_test_split(test_size=0.2)
|
| 9 |
+
|
| 10 |
+
# Tokenizer and model
|
| 11 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
| 12 |
+
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
|
| 13 |
+
|
| 14 |
+
# Tokenize the dataset
|
| 15 |
+
def tokenize(batch):
|
| 16 |
+
return tokenizer(batch['text'], padding=True, truncation=True)
|
| 17 |
+
|
| 18 |
+
tokenized_dataset = dataset.map(tokenize, batched=True)
|
| 19 |
+
tokenized_dataset = tokenized_dataset.rename_column("label", "labels")
|
| 20 |
+
|
| 21 |
+
# Training arguments
|
| 22 |
+
training_args = TrainingArguments(
|
| 23 |
+
output_dir="./results",
|
| 24 |
+
evaluation_strategy="epoch",
|
| 25 |
+
per_device_train_batch_size=4,
|
| 26 |
+
per_device_eval_batch_size=4,
|
| 27 |
+
num_train_epochs=1,
|
| 28 |
+
logging_steps=10,
|
| 29 |
+
save_steps=10,
|
| 30 |
+
report_to="none"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Trainer
|
| 34 |
+
trainer = Trainer(
|
| 35 |
+
model=model,
|
| 36 |
+
args=training_args,
|
| 37 |
+
train_dataset=tokenized_dataset["train"],
|
| 38 |
+
eval_dataset=tokenized_dataset["test"]
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Train the model
|
| 42 |
+
trainer.train()
|
| 43 |
+
|
| 44 |
+
# Save model
|
| 45 |
+
trainer.save_model("my-simple-sentiment-model")
|