Upload 2 files
Browse files- zia_model.pt +3 -0
- zia_model.py +44 -0
zia_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:90d29ff8c870a548ab1868f6a17b5c13d1d65df590e5096472e0b03981e7be69
|
| 3 |
+
size 4826444
|
zia_model.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
| 4 |
+
|
| 5 |
+
class ZIAModel(nn.Module):
|
| 6 |
+
def __init__(self, n_intents=10, d_model=128, nhead=8, num_layers=6, dim_feedforward=512):
|
| 7 |
+
super(ZIAModel, self).__init__()
|
| 8 |
+
self.d_model = d_model
|
| 9 |
+
|
| 10 |
+
# Modality-specific encoders
|
| 11 |
+
self.gaze_encoder = nn.Linear(2, d_model)
|
| 12 |
+
self.hr_encoder = nn.Linear(1, d_model)
|
| 13 |
+
self.eeg_encoder = nn.Linear(4, d_model)
|
| 14 |
+
self.context_encoder = nn.Linear(32 + 3 + 20, d_model) # Time (32) + Location (3) + Usage (20)
|
| 15 |
+
|
| 16 |
+
# Transformer
|
| 17 |
+
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout=0.1, batch_first=True)
|
| 18 |
+
self.transformer = TransformerEncoder(encoder_layer, num_layers)
|
| 19 |
+
|
| 20 |
+
# Output layer
|
| 21 |
+
self.fc = nn.Linear(d_model, n_intents)
|
| 22 |
+
|
| 23 |
+
def forward(self, gaze, hr, eeg, context):
|
| 24 |
+
# Encode modalities
|
| 25 |
+
gaze_emb = self.gaze_encoder(gaze) # [batch, seq, d_model]
|
| 26 |
+
hr_emb = self.hr_encoder(hr.unsqueeze(-1))
|
| 27 |
+
eeg_emb = self.eeg_encoder(eeg)
|
| 28 |
+
context_emb = self.context_encoder(context)
|
| 29 |
+
|
| 30 |
+
# Fuse modalities
|
| 31 |
+
fused = (gaze_emb + hr_emb + eeg_emb + context_emb) / 4 # Simple averaging
|
| 32 |
+
|
| 33 |
+
# Transformer
|
| 34 |
+
output = self.transformer(fused)
|
| 35 |
+
output = output.mean(dim=1) # Pool over sequence
|
| 36 |
+
|
| 37 |
+
# Predict intent
|
| 38 |
+
logits = self.fc(output)
|
| 39 |
+
return logits
|
| 40 |
+
|
| 41 |
+
# Example usage
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
model = ZIAModel()
|
| 44 |
+
print(model)
|