Upload model
Browse files- config.json +60 -24
- configuration_cxrmate_ed.py +82 -49
- generation_config.json +1 -1
- model.safetensors +2 -2
- modelling_cxrmate_ed.py +295 -250
config.json
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"CXRMateEDModel"
|
| 4 |
],
|
|
@@ -6,49 +7,84 @@
|
|
| 6 |
"AutoConfig": "configuration_cxrmate_ed.CXRMateEDConfig",
|
| 7 |
"AutoModel": "modelling_cxrmate_ed.CXRMateEDModel"
|
| 8 |
},
|
| 9 |
-
"
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
"hidden_size": 768,
|
| 12 |
-
"history": 0,
|
| 13 |
-
"include_time_delta": true,
|
| 14 |
-
"index_value_encoder_intermediate_size": 2048,
|
| 15 |
"intermediate_size": 3072,
|
| 16 |
-
"is_decoder": true,
|
| 17 |
"model_type": "llama",
|
| 18 |
"num_attention_heads": 12,
|
| 19 |
"num_hidden_layers": 6,
|
| 20 |
"num_key_value_heads": 12,
|
| 21 |
-
"pad_token_id": 4,
|
| 22 |
-
"prompt_report_sections_filter": [
|
| 23 |
-
"indication",
|
| 24 |
-
"history"
|
| 25 |
-
],
|
| 26 |
-
"tables_filter": [
|
| 27 |
-
"mimic_cxr_sectioned",
|
| 28 |
-
"triage",
|
| 29 |
-
"medrecon"
|
| 30 |
-
],
|
| 31 |
-
"time_delta_monotonic_inversion": true,
|
| 32 |
"vocab_size": 30000
|
| 33 |
},
|
| 34 |
-
"
|
|
|
|
|
|
|
|
|
|
| 35 |
"_name_or_path": "aehrc/uniformer_base_tl_384",
|
| 36 |
"architectures": [
|
| 37 |
"UniFormerModel"
|
| 38 |
],
|
|
|
|
| 39 |
"auto_map": {
|
| 40 |
"AutoConfig": "aehrc/uniformer_base_tl_384--configuration_uniformer.UniFormerWithProjectionHeadConfig",
|
| 41 |
"AutoModel": "aehrc/uniformer_base_tl_384--modelling_uniformer.UniFormerModel"
|
| 42 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"init_value": 1e-06,
|
|
|
|
| 44 |
"layer_scale": false,
|
|
|
|
| 45 |
"model_type": "uniformer",
|
| 46 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
"torch_dtype": "float32"
|
| 48 |
},
|
| 49 |
-
"
|
| 50 |
-
"
|
| 51 |
-
"tie_word_embeddings": false,
|
| 52 |
-
"torch_dtype": "float32",
|
| 53 |
-
"transformers_version": "4.39.3"
|
| 54 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"add_time_deltas": true,
|
| 3 |
"architectures": [
|
| 4 |
"CXRMateEDModel"
|
| 5 |
],
|
|
|
|
| 7 |
"AutoConfig": "configuration_cxrmate_ed.CXRMateEDConfig",
|
| 8 |
"AutoModel": "modelling_cxrmate_ed.CXRMateEDModel"
|
| 9 |
},
|
| 10 |
+
"hidden_size": 768,
|
| 11 |
+
"history": 0,
|
| 12 |
+
"ignore_index": -100,
|
| 13 |
+
"image_seq_length": 576,
|
| 14 |
+
"image_token_index": 32000,
|
| 15 |
+
"include_time_delta": true,
|
| 16 |
+
"index_value_encoder_intermediate_size": 2048,
|
| 17 |
+
"model_type": "cxrmate-ed",
|
| 18 |
+
"pad_token_id": 4,
|
| 19 |
+
"projector_hidden_act": "gelu",
|
| 20 |
+
"prompt_report_sections_filter": [
|
| 21 |
+
"indication",
|
| 22 |
+
"history"
|
| 23 |
+
],
|
| 24 |
+
"tables_filter": [
|
| 25 |
+
"mimic_cxr_sectioned",
|
| 26 |
+
"triage",
|
| 27 |
+
"medrecon"
|
| 28 |
+
],
|
| 29 |
+
"text_config": {
|
| 30 |
+
"head_dim": 64,
|
| 31 |
"hidden_size": 768,
|
|
|
|
|
|
|
|
|
|
| 32 |
"intermediate_size": 3072,
|
|
|
|
| 33 |
"model_type": "llama",
|
| 34 |
"num_attention_heads": 12,
|
| 35 |
"num_hidden_layers": 6,
|
| 36 |
"num_key_value_heads": 12,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
"vocab_size": 30000
|
| 38 |
},
|
| 39 |
+
"time_delta_monotonic_inversion": true,
|
| 40 |
+
"torch_dtype": "float32",
|
| 41 |
+
"transformers_version": "4.47.0",
|
| 42 |
+
"vision_config": {
|
| 43 |
"_name_or_path": "aehrc/uniformer_base_tl_384",
|
| 44 |
"architectures": [
|
| 45 |
"UniFormerModel"
|
| 46 |
],
|
| 47 |
+
"attn_drop_rate": 0.0,
|
| 48 |
"auto_map": {
|
| 49 |
"AutoConfig": "aehrc/uniformer_base_tl_384--configuration_uniformer.UniFormerWithProjectionHeadConfig",
|
| 50 |
"AutoModel": "aehrc/uniformer_base_tl_384--modelling_uniformer.UniFormerModel"
|
| 51 |
},
|
| 52 |
+
"conv_stem": false,
|
| 53 |
+
"depth": [
|
| 54 |
+
5,
|
| 55 |
+
8,
|
| 56 |
+
20,
|
| 57 |
+
7
|
| 58 |
+
],
|
| 59 |
+
"drop_path_rate": 0.3,
|
| 60 |
+
"drop_rate": 0.0,
|
| 61 |
+
"embed_dim": [
|
| 62 |
+
64,
|
| 63 |
+
128,
|
| 64 |
+
320,
|
| 65 |
+
512
|
| 66 |
+
],
|
| 67 |
+
"head_dim": 64,
|
| 68 |
+
"image_size": 384,
|
| 69 |
+
"in_chans": 3,
|
| 70 |
"init_value": 1e-06,
|
| 71 |
+
"layer_norm_eps": 1e-06,
|
| 72 |
"layer_scale": false,
|
| 73 |
+
"mlp_ratio": 4,
|
| 74 |
"model_type": "uniformer",
|
| 75 |
+
"num_classes": 1000,
|
| 76 |
+
"patch_size": [
|
| 77 |
+
4,
|
| 78 |
+
2,
|
| 79 |
+
2,
|
| 80 |
+
2
|
| 81 |
+
],
|
| 82 |
+
"projection_size": null,
|
| 83 |
+
"qk_scale": null,
|
| 84 |
+
"qkv_bias": true,
|
| 85 |
+
"representation_size": null,
|
| 86 |
"torch_dtype": "float32"
|
| 87 |
},
|
| 88 |
+
"vision_feature_layer": -2,
|
| 89 |
+
"vision_feature_select_strategy": "default"
|
|
|
|
|
|
|
|
|
|
| 90 |
}
|
configuration_cxrmate_ed.py
CHANGED
|
@@ -1,61 +1,94 @@
|
|
| 1 |
-
import
|
| 2 |
-
from transformers.configuration_utils import PretrainedConfig
|
| 3 |
-
from transformers.utils import logging
|
| 4 |
|
| 5 |
-
|
| 6 |
|
| 7 |
|
| 8 |
-
class CXRMateEDConfig(
|
| 9 |
|
| 10 |
-
model_type =
|
| 11 |
|
| 12 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
max_position_embeddings=2048,
|
| 24 |
-
)
|
| 25 |
-
self.decoder.is_decoder = True
|
| 26 |
-
|
| 27 |
-
self.decoder.index_value_encoder_intermediate_size = 2048
|
| 28 |
-
self.decoder.include_time_delta = True
|
| 29 |
-
self.decoder.time_delta_monotonic_inversion = True
|
| 30 |
-
self.decoder.add_time_deltas = True
|
| 31 |
-
self.decoder.history = 0
|
| 32 |
-
self.decoder.tables_filter = ["mimic_cxr_sectioned", "triage", "medrecon"]
|
| 33 |
-
self.decoder.prompt_report_sections_filter = ["indication", "history"]
|
| 34 |
-
self.decoder.pad_token_id = 4
|
| 35 |
-
|
| 36 |
-
else:
|
| 37 |
-
self.decoder = kwargs.pop("decoder")
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
if 'encoder' not in kwargs:
|
| 41 |
-
self.encoder = transformers.AutoConfig.from_pretrained(
|
| 42 |
-
'aehrc/uniformer_base_tl_384',
|
| 43 |
-
projection_size=768,
|
| 44 |
-
trust_remote_code=True,
|
| 45 |
-
)
|
| 46 |
-
else:
|
| 47 |
-
self.encoder = kwargs.pop("encoder")
|
| 48 |
|
| 49 |
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
|
|
|
| 1 |
+
from typing import Any
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
from transformers import LlavaConfig
|
| 4 |
|
| 5 |
|
| 6 |
+
class CXRMateEDConfig(LlavaConfig):
|
| 7 |
|
| 8 |
+
model_type = 'cxrmate-ed'
|
| 9 |
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
index_value_encoder_intermediate_size: int = 2048,
|
| 13 |
+
include_time_delta: bool = True,
|
| 14 |
+
time_delta_monotonic_inversion: bool = True,
|
| 15 |
+
add_time_deltas: bool = True,
|
| 16 |
+
history: int = 0,
|
| 17 |
+
tables_filter: list = ['mimic_cxr_sectioned', 'triage', 'medrecon'],
|
| 18 |
+
prompt_report_sections_filter: list = ['indication', 'history'],
|
| 19 |
+
pad_token_id: int = 4,
|
| 20 |
+
**kwargs: Any,
|
| 21 |
+
) -> None:
|
| 22 |
super().__init__(**kwargs)
|
| 23 |
+
self.index_value_encoder_intermediate_size = index_value_encoder_intermediate_size
|
| 24 |
+
self.include_time_delta = include_time_delta
|
| 25 |
+
self.time_delta_monotonic_inversion = time_delta_monotonic_inversion
|
| 26 |
+
self.add_time_deltas = add_time_deltas
|
| 27 |
+
self.history = history
|
| 28 |
+
self.tables_filter = tables_filter
|
| 29 |
+
self.prompt_report_sections_filter = prompt_report_sections_filter
|
| 30 |
+
self.pad_token_id = pad_token_id
|
| 31 |
+
|
| 32 |
+
self.hidden_size = self.text_config.hidden_size
|
| 33 |
+
|
| 34 |
+
# import transformers
|
| 35 |
+
# from transformers.configuration_utils import PretrainedConfig
|
| 36 |
+
# from transformers.utils import logging
|
| 37 |
+
|
| 38 |
+
# logger = logging.get_logger(__name__)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# class CXRMateEDConfig(PretrainedConfig):
|
| 42 |
+
|
| 43 |
+
# model_type = "cxrmate-ed"
|
| 44 |
+
|
| 45 |
+
# def __init__(self, **kwargs):
|
| 46 |
+
# super().__init__(**kwargs)
|
| 47 |
+
|
| 48 |
+
# if 'decoder' not in kwargs:
|
| 49 |
+
|
| 50 |
+
# self.decoder = transformers.LlamaConfig(
|
| 51 |
+
# vocab_size=30000,
|
| 52 |
+
# hidden_size=768,
|
| 53 |
+
# intermediate_size=3072,
|
| 54 |
+
# num_attention_heads=12,
|
| 55 |
+
# num_hidden_layers=6,
|
| 56 |
+
# max_position_embeddings=2048,
|
| 57 |
+
# )
|
| 58 |
+
# self.decoder.is_decoder = True
|
| 59 |
+
|
| 60 |
+
# self.decoder.index_value_encoder_intermediate_size = 2048
|
| 61 |
+
# self.decoder.include_time_delta = True
|
| 62 |
+
# self.decoder.time_delta_monotonic_inversion = True
|
| 63 |
+
# self.decoder.add_time_deltas = True
|
| 64 |
+
# self.decoder.history = 0
|
| 65 |
+
# self.decoder.tables_filter = ["mimic_cxr_sectioned", "triage", "medrecon"]
|
| 66 |
+
# self.decoder.prompt_report_sections_filter = ["indication", "history"]
|
| 67 |
+
# self.decoder.pad_token_id = 4
|
| 68 |
+
|
| 69 |
+
# else:
|
| 70 |
+
# self.decoder = kwargs.pop("decoder")
|
| 71 |
+
|
| 72 |
|
| 73 |
+
# if 'encoder' not in kwargs:
|
| 74 |
+
# self.encoder = transformers.AutoConfig.from_pretrained(
|
| 75 |
+
# 'aehrc/uniformer_base_tl_384',
|
| 76 |
+
# projection_size=768,
|
| 77 |
+
# trust_remote_code=True,
|
| 78 |
+
# )
|
| 79 |
+
# else:
|
| 80 |
+
# self.encoder = kwargs.pop("encoder")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
+
# self.is_encoder_decoder = True
|
| 84 |
|
| 85 |
+
# @classmethod
|
| 86 |
+
# def from_encoder_decoder_configs(
|
| 87 |
+
# cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
|
| 88 |
+
# ) -> PretrainedConfig:
|
| 89 |
|
| 90 |
+
# logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
|
| 91 |
+
# decoder_config.is_decoder = True
|
| 92 |
+
# decoder_config.add_cross_attention = True
|
| 93 |
|
| 94 |
+
# return cls(encoder=encoder_config, decoder=decoder_config, **kwargs)
|
generation_config.json
CHANGED
|
@@ -3,5 +3,5 @@
|
|
| 3 |
"bos_token_id": 1,
|
| 4 |
"eos_token_id": 2,
|
| 5 |
"pad_token_id": 4,
|
| 6 |
-
"transformers_version": "4.
|
| 7 |
}
|
|
|
|
| 3 |
"bos_token_id": 1,
|
| 4 |
"eos_token_id": 2,
|
| 5 |
"pad_token_id": 4,
|
| 6 |
+
"transformers_version": "4.47.0"
|
| 7 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:00a9a6697b96ba73294054503626e877190b4c30b95d826d3ca3410d44739aed
|
| 3 |
+
size 789967160
|
modelling_cxrmate_ed.py
CHANGED
|
@@ -14,7 +14,7 @@ from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
|
|
| 14 |
from transformers.configuration_utils import PretrainedConfig
|
| 15 |
from transformers.modeling_outputs import ModelOutput, Seq2SeqLMOutput
|
| 16 |
from transformers.modeling_utils import PreTrainedModel
|
| 17 |
-
from transformers.utils import logging
|
| 18 |
|
| 19 |
from .configuration_cxrmate_ed import CXRMateEDConfig
|
| 20 |
from .dataset import PriorsDataset
|
|
@@ -108,74 +108,39 @@ class CXRStudyImagesEncoder(torch.nn.Module):
|
|
| 108 |
return ModelOutput(last_hidden_state=last_hidden_state, attention_mask=attention_mask)
|
| 109 |
|
| 110 |
|
| 111 |
-
|
| 112 |
-
class CXRMateEDModel(VisionEncoderDecoderModel):
|
| 113 |
|
| 114 |
config_class = CXRMateEDConfig
|
| 115 |
|
| 116 |
-
def __init__(
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
encoder: Optional[PreTrainedModel] = None,
|
| 120 |
-
decoder: Optional[PreTrainedModel] = None,
|
| 121 |
-
):
|
| 122 |
-
|
| 123 |
-
if decoder:
|
| 124 |
-
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
|
| 125 |
-
|
| 126 |
-
if config is None and (encoder is None or decoder is None):
|
| 127 |
-
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
| 128 |
-
if config is None:
|
| 129 |
-
config = CXRMateEDConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
| 130 |
-
else:
|
| 131 |
-
if not isinstance(config, self.config_class):
|
| 132 |
-
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
| 133 |
-
|
| 134 |
-
config.tie_word_embeddings = False
|
| 135 |
-
config.is_encoder_decoder = False
|
| 136 |
-
|
| 137 |
-
# Initialize with config:
|
| 138 |
-
PreTrainedModel.__init__(self, config)
|
| 139 |
-
|
| 140 |
-
# Encoder:
|
| 141 |
-
if encoder is None:
|
| 142 |
-
encoder = transformers.AutoModel.from_pretrained(
|
| 143 |
-
'aehrc/uniformer_base_tl_384',
|
| 144 |
-
config=config.encoder,
|
| 145 |
-
trust_remote_code=True,
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
# Decoder:
|
| 149 |
-
if decoder is None:
|
| 150 |
-
decoder = transformers.LlamaForCausalLM(config=config.decoder)
|
| 151 |
-
|
| 152 |
-
self.encoder = CXRStudyImagesEncoder(encoder, self.config.decoder)
|
| 153 |
-
self.decoder = decoder
|
| 154 |
-
|
| 155 |
-
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
| 156 |
-
logger.warning(
|
| 157 |
-
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
| 158 |
-
f" {self.config.encoder}"
|
| 159 |
-
)
|
| 160 |
-
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
| 161 |
-
logger.warning(
|
| 162 |
-
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
| 163 |
-
f" {self.config.decoder}"
|
| 164 |
-
)
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
assert config.
|
| 170 |
-
assert
|
| 171 |
-
assert '
|
| 172 |
-
assert '
|
| 173 |
-
assert '
|
| 174 |
-
assert '
|
| 175 |
-
assert 'tables_filter' in self.decoder.config.__dict__
|
| 176 |
-
assert 'prompt_report_sections_filter' in self.decoder.config.__dict__
|
| 177 |
|
| 178 |
-
assert isinstance(self.
|
| 179 |
|
| 180 |
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tables.json'), 'r') as f:
|
| 181 |
self.tables = json.load(f)
|
|
@@ -186,8 +151,8 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 186 |
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'token_type_ids.json'), 'r') as f:
|
| 187 |
self.token_type_to_token_type_id = json.load(f)
|
| 188 |
|
| 189 |
-
self.tables = {k: self.tables[k] for k in self.
|
| 190 |
-
self.tables['mimic_cxr_sectioned']['text_columns'] = self.
|
| 191 |
|
| 192 |
for k in self.tables.keys():
|
| 193 |
if self.luts[k]['total'] > 0:
|
|
@@ -196,179 +161,182 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 196 |
f'{k}_index_value_encoder',
|
| 197 |
FNNEncoder(
|
| 198 |
num_features=self.luts[k]['total'],
|
| 199 |
-
intermediate_size=self.
|
| 200 |
-
decoder_hidden_size=self.
|
| 201 |
),
|
| 202 |
)
|
| 203 |
|
| 204 |
-
if self.
|
| 205 |
self.time_delta_encoder = FNNEncoder(
|
| 206 |
num_features=1,
|
| 207 |
-
intermediate_size=self.
|
| 208 |
-
decoder_hidden_size=self.
|
| 209 |
)
|
| 210 |
|
| 211 |
-
self.token_type_embeddings = torch.nn.Embedding(max(self.token_type_to_token_type_id.values()) + 1, self.
|
| 212 |
|
| 213 |
self.time_delta_map = lambda x: 1 / math.sqrt(x + 1)
|
| 214 |
self.zero_time_delta_value = self.time_delta_map(0)
|
| 215 |
|
| 216 |
self.inf_time_delta_value = self.time_delta_map(float('inf'))
|
| 217 |
-
|
| 218 |
-
@classmethod
|
| 219 |
-
def from_encoder_decoder_pretrained(
|
| 220 |
-
cls,
|
| 221 |
-
encoder_pretrained_model_name_or_path: str = None,
|
| 222 |
-
decoder_pretrained_model_name_or_path: str = None,
|
| 223 |
-
*model_args,
|
| 224 |
-
**kwargs,
|
| 225 |
-
) -> PreTrainedModel:
|
| 226 |
-
r"""
|
| 227 |
-
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
|
| 228 |
-
checkpoints.
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
| 232 |
-
the model, you need to first set it back in training mode with `model.train()`.
|
| 233 |
-
|
| 234 |
-
Params:
|
| 235 |
-
encoder_pretrained_model_name_or_path (`str`, *optional*):
|
| 236 |
-
Information necessary to initiate the image encoder. Can be either:
|
| 237 |
-
|
| 238 |
-
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
|
| 239 |
-
example is `google/vit-base-patch16-224-in21k`.
|
| 240 |
-
- A path to a *directory* containing model weights saved using
|
| 241 |
-
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
| 242 |
-
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
| 243 |
-
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
| 244 |
-
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
| 245 |
-
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
| 246 |
-
|
| 247 |
-
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
|
| 248 |
-
Information necessary to initiate the text decoder. Can be either:
|
| 249 |
-
|
| 250 |
-
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
| 251 |
-
- A path to a *directory* containing model weights saved using
|
| 252 |
-
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
| 253 |
-
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
| 254 |
-
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
| 255 |
-
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
| 256 |
-
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
| 257 |
-
|
| 258 |
-
model_args (remaining positional arguments, *optional*):
|
| 259 |
-
All remaning positional arguments will be passed to the underlying model's `__init__` method.
|
| 260 |
-
|
| 261 |
-
kwargs (remaining dictionary of keyword arguments, *optional*):
|
| 262 |
-
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
| 263 |
-
`output_attentions=True`).
|
| 264 |
-
|
| 265 |
-
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
|
| 266 |
-
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
|
| 267 |
-
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
| 268 |
-
|
| 269 |
-
Behaves differently depending on whether a `config` is provided or automatically loaded.
|
| 270 |
-
|
| 271 |
-
Example:
|
| 272 |
-
|
| 273 |
-
```python
|
| 274 |
-
>>> from transformers import VisionEncoderDecoderModel
|
| 275 |
-
|
| 276 |
-
>>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
|
| 277 |
-
>>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
| 278 |
-
... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased"
|
| 279 |
-
... )
|
| 280 |
-
>>> # saving model after fine-tuning
|
| 281 |
-
>>> model.save_pretrained("./vit-bert")
|
| 282 |
-
>>> # load fine-tuned model
|
| 283 |
-
>>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
|
| 284 |
-
```"""
|
| 285 |
-
|
| 286 |
-
kwargs_encoder = {
|
| 287 |
-
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
| 288 |
-
}
|
| 289 |
-
|
| 290 |
-
kwargs_decoder = {
|
| 291 |
-
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
| 292 |
-
}
|
| 293 |
-
|
| 294 |
-
# remove encoder, decoder kwargs from kwargs
|
| 295 |
-
for key in kwargs_encoder.keys():
|
| 296 |
-
del kwargs["encoder_" + key]
|
| 297 |
-
for key in kwargs_decoder.keys():
|
| 298 |
-
del kwargs["decoder_" + key]
|
| 299 |
-
|
| 300 |
-
# Load and initialize the encoder and decoder
|
| 301 |
-
# The distinction between encoder and decoder at the model level is made
|
| 302 |
-
# by the value of the flag `is_decoder` that we need to set correctly.
|
| 303 |
-
encoder = kwargs_encoder.pop("model", None)
|
| 304 |
-
if encoder is None:
|
| 305 |
-
if encoder_pretrained_model_name_or_path is None:
|
| 306 |
-
raise ValueError(
|
| 307 |
-
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
| 308 |
-
"to be defined."
|
| 309 |
-
)
|
| 310 |
-
|
| 311 |
-
if "config" not in kwargs_encoder:
|
| 312 |
-
encoder_config, kwargs_encoder = transformers.AutoConfig.from_pretrained(
|
| 313 |
-
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
| 317 |
-
logger.info(
|
| 318 |
-
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
|
| 319 |
-
"from a decoder model. Cross-attention and casual mask are disabled."
|
| 320 |
-
)
|
| 321 |
-
encoder_config.is_decoder = False
|
| 322 |
-
encoder_config.add_cross_attention = False
|
| 323 |
-
|
| 324 |
-
kwargs_encoder["config"] = encoder_config
|
| 325 |
-
|
| 326 |
-
encoder = transformers.AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
|
| 327 |
-
|
| 328 |
-
decoder = kwargs_decoder.pop("model", None)
|
| 329 |
-
if decoder is None:
|
| 330 |
-
if decoder_pretrained_model_name_or_path is None:
|
| 331 |
-
raise ValueError(
|
| 332 |
-
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
| 333 |
-
"to be defined."
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
if "config" not in kwargs_decoder:
|
| 337 |
-
decoder_config, kwargs_decoder = transformers.AutoConfig.from_pretrained(
|
| 338 |
-
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
| 342 |
-
logger.info(
|
| 343 |
-
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
|
| 344 |
-
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
|
| 345 |
-
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
|
| 346 |
-
)
|
| 347 |
-
decoder_config.is_decoder = True
|
| 348 |
-
decoder_config.add_cross_attention = False
|
| 349 |
-
|
| 350 |
-
kwargs_decoder["config"] = decoder_config
|
| 351 |
-
|
| 352 |
-
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
|
| 353 |
-
logger.warning(
|
| 354 |
-
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
|
| 355 |
-
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
|
| 356 |
-
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
|
| 357 |
-
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
|
| 358 |
-
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
|
| 359 |
-
)
|
| 360 |
-
|
| 361 |
-
decoder = transformers.AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
| 362 |
-
|
| 363 |
-
# instantiate config with corresponding kwargs
|
| 364 |
-
config = CXRMateEDConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
|
| 365 |
-
|
| 366 |
-
# make sure input & output embeddings is not tied
|
| 367 |
-
config.tie_word_embeddings = False
|
| 368 |
|
| 369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
-
|
| 372 |
|
| 373 |
def forward(
|
| 374 |
self,
|
|
@@ -393,14 +361,17 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 393 |
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
| 394 |
}
|
| 395 |
|
| 396 |
-
assert decoder_attention_mask.dtype == torch.long, f'The dtype for {decoder_attention_mask} was {decoder_attention_mask.dtype}. It should be torch.long'
|
| 397 |
-
|
| 398 |
if decoder_inputs_embeds is None:
|
| 399 |
-
decoder_inputs_embeds = self.
|
| 400 |
decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)
|
| 401 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
# Generation:
|
| 403 |
-
decoder_outputs = self.
|
| 404 |
inputs_embeds=decoder_inputs_embeds,
|
| 405 |
attention_mask=decoder_attention_mask,
|
| 406 |
position_ids=decoder_position_ids,
|
|
@@ -417,7 +388,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 417 |
if labels is not None:
|
| 418 |
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
| 419 |
loss_fct = CrossEntropyLoss()
|
| 420 |
-
loss = loss_fct(logits.reshape(-1, self.
|
| 421 |
|
| 422 |
if not return_dict:
|
| 423 |
if loss is not None:
|
|
@@ -448,20 +419,22 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 448 |
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
|
| 449 |
"""
|
| 450 |
|
| 451 |
-
report_attention_mask = (input_ids != self.
|
| 452 |
|
| 453 |
-
if past_key_values
|
| 454 |
|
| 455 |
# 4D attention mask:
|
| 456 |
-
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(
|
| 457 |
-
|
|
|
|
|
|
|
| 458 |
# Position identifiers accounting for padding:
|
| 459 |
report_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
|
| 460 |
report_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
| 461 |
decoder_position_ids = torch.cat([prompt_position_ids, report_position_ids], dim=1)
|
| 462 |
|
| 463 |
# `inputs_embeds` are only to be used in the 1st generation step:
|
| 464 |
-
inputs_embeds = torch.cat([kwargs['decoder_inputs_embeds'], self.
|
| 465 |
|
| 466 |
decoder_token_type_ids = self.token_ids_to_token_type_ids(
|
| 467 |
input_ids, special_token_ids,
|
|
@@ -483,7 +456,9 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 483 |
else:
|
| 484 |
|
| 485 |
# 4D attention mask:
|
| 486 |
-
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(
|
|
|
|
|
|
|
| 487 |
|
| 488 |
# Position identifiers accounting for padding:
|
| 489 |
decoder_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
|
|
@@ -863,7 +838,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 863 |
time_delta.append(tokenized['time_delta'])
|
| 864 |
|
| 865 |
# Image encoder:
|
| 866 |
-
encoder_outputs = self.
|
| 867 |
inputs_embeds.append(encoder_outputs[0])
|
| 868 |
|
| 869 |
inputs_per_image = encoder_outputs[0].shape[-2] // images.shape[1]
|
|
@@ -883,14 +858,14 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 883 |
|
| 884 |
# Compute embeddings from token identifiers:
|
| 885 |
input_ids = torch.cat(input_ids, dim=1)
|
| 886 |
-
inputs_embeds.append(self.
|
| 887 |
|
| 888 |
# Concatentate time deltas and input embeddings before adding time delta embedding to prompt:
|
| 889 |
time_delta = torch.cat(time_delta, dim=1)
|
| 890 |
inputs_embeds = torch.cat(inputs_embeds, dim=1)
|
| 891 |
|
| 892 |
# Add time delta embeddings to prompt:
|
| 893 |
-
if time_delta.shape[1] > 0 and self.
|
| 894 |
time_delta = time_delta.to(dtype=inputs_embeds.dtype)
|
| 895 |
inputs_embeds += self.time_delta_encoder(time_delta)
|
| 896 |
|
|
@@ -902,7 +877,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 902 |
|
| 903 |
# Tokenize report:
|
| 904 |
if tokenized_report is not None:
|
| 905 |
-
inputs_embeds = torch.cat([inputs_embeds, self.
|
| 906 |
|
| 907 |
report_token_type_ids = self.token_ids_to_token_type_ids(
|
| 908 |
token_ids=tokenized_report['decoder_input_ids'],
|
|
@@ -917,7 +892,8 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 917 |
position_ids = torch.cat([position_ids, report_position_ids], dim=1)
|
| 918 |
|
| 919 |
# 4D attention mask:
|
| 920 |
-
attention_mask = self.create_4d_attention_mask_mixed_causality(attention_mask, tokenized_report['decoder_attention_mask'])
|
|
|
|
| 921 |
# attention_mask_diagonal = torch.diagonal(attention_mask[:, 0], dim1=1, dim2=2)
|
| 922 |
|
| 923 |
else:
|
|
@@ -934,7 +910,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 934 |
return inputs_embeds, attention_mask, token_type_ids, position_ids, bos_token_ids
|
| 935 |
|
| 936 |
@staticmethod
|
| 937 |
-
def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
| 938 |
|
| 939 |
prompt_seq_len = non_causal_2d_attention_mask.shape[-1]
|
| 940 |
report_seq_len = causal_2d_attention_mask.shape[-1]
|
|
@@ -982,22 +958,91 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 982 |
|
| 983 |
mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
|
| 984 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 985 |
return mixed_causality_4d_attention_mask
|
| 986 |
|
| 987 |
@staticmethod
|
| 988 |
-
def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
| 989 |
|
| 990 |
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
| 991 |
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
| 992 |
|
| 993 |
mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 994 |
return mixed_causality_4d_attention_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 995 |
|
| 996 |
def position_ids_from_time_deltas_and_attention_mask(self, time_deltas, attention_mask):
|
| 997 |
-
mask_value = torch.finfo(time_deltas.dtype).max if self.
|
| 998 |
|
| 999 |
masked_time_deltas = torch.where(attention_mask == 1, time_deltas[:, :, 0], mask_value)
|
| 1000 |
-
_, col_indices = torch.sort(masked_time_deltas, descending=not self.
|
| 1001 |
|
| 1002 |
num_rows, num_cols, _ = time_deltas.shape
|
| 1003 |
|
|
@@ -1081,7 +1126,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 1081 |
index_map = {study_id: idx for idx, study_id in enumerate(train_set_study_ids)}
|
| 1082 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1083 |
indices.sort()
|
| 1084 |
-
train_set = PriorsDataset(train_set, self.
|
| 1085 |
train_set.set_transform(train_set_transform)
|
| 1086 |
train_set = Subset(train_set, indices)
|
| 1087 |
else:
|
|
@@ -1096,7 +1141,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 1096 |
index_map = {study_id: idx for idx, study_id in enumerate(val_set_study_ids)}
|
| 1097 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1098 |
indices.sort()
|
| 1099 |
-
val_set = PriorsDataset(val_set, self.
|
| 1100 |
val_set.set_transform(test_set_transform)
|
| 1101 |
val_set = Subset(val_set, indices)
|
| 1102 |
else:
|
|
@@ -1110,7 +1155,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 1110 |
index_map = {study_id: idx for idx, study_id in enumerate(test_set_study_ids)}
|
| 1111 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1112 |
indices.sort()
|
| 1113 |
-
test_set = PriorsDataset(test_set, self.
|
| 1114 |
test_set.set_transform(test_set_transform)
|
| 1115 |
test_set = Subset(test_set, indices)
|
| 1116 |
|
|
@@ -1163,7 +1208,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 1163 |
index_map = {study_id: idx for idx, study_id in enumerate(train_set_study_ids)}
|
| 1164 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1165 |
indices.sort()
|
| 1166 |
-
train_set = PriorsDataset(train_set, self.
|
| 1167 |
train_set.set_transform(train_set_transform)
|
| 1168 |
train_set = Subset(train_set, indices)
|
| 1169 |
|
|
@@ -1175,7 +1220,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 1175 |
index_map = {study_id: idx for idx, study_id in enumerate(val_set_study_ids)}
|
| 1176 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1177 |
indices.sort()
|
| 1178 |
-
val_set = PriorsDataset(val_set, self.
|
| 1179 |
val_set.set_transform(test_set_transform)
|
| 1180 |
val_set = Subset(val_set, indices)
|
| 1181 |
|
|
@@ -1187,7 +1232,7 @@ class CXRMateEDModel(VisionEncoderDecoderModel):
|
|
| 1187 |
index_map = {study_id: idx for idx, study_id in enumerate(test_set_study_ids)}
|
| 1188 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1189 |
indices.sort()
|
| 1190 |
-
test_set = PriorsDataset(test_set, self.
|
| 1191 |
test_set.set_transform(test_set_transform)
|
| 1192 |
test_set = Subset(test_set, indices)
|
| 1193 |
|
|
|
|
| 14 |
from transformers.configuration_utils import PretrainedConfig
|
| 15 |
from transformers.modeling_outputs import ModelOutput, Seq2SeqLMOutput
|
| 16 |
from transformers.modeling_utils import PreTrainedModel
|
| 17 |
+
from transformers.utils import check_min_version, logging
|
| 18 |
|
| 19 |
from .configuration_cxrmate_ed import CXRMateEDConfig
|
| 20 |
from .dataset import PriorsDataset
|
|
|
|
| 108 |
return ModelOutput(last_hidden_state=last_hidden_state, attention_mask=attention_mask)
|
| 109 |
|
| 110 |
|
| 111 |
+
class CXRMateEDModel(transformers.LlavaForConditionalGeneration):
|
|
|
|
| 112 |
|
| 113 |
config_class = CXRMateEDConfig
|
| 114 |
|
| 115 |
+
def __init__(self, config: CXRMateEDConfig):
|
| 116 |
+
|
| 117 |
+
check_min_version("4.46.0.dev0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
super(transformers.LlavaPreTrainedModel, self).__init__(config)
|
| 120 |
+
|
| 121 |
+
self.config = config
|
| 122 |
+
|
| 123 |
+
self.vocab_size = config.text_config.vocab_size
|
| 124 |
+
|
| 125 |
+
self.image_encoder = transformers.AutoModel.from_config(self.config.vision_config, trust_remote_code=True)
|
| 126 |
+
|
| 127 |
+
self.language_model = transformers.AutoModelForCausalLM.from_config(
|
| 128 |
+
config.text_config,
|
| 129 |
+
attn_implementation=config._attn_implementation,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
self.image_encoder = CXRStudyImagesEncoder(self.image_encoder, config.text_config)
|
| 133 |
+
|
| 134 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
| 135 |
|
| 136 |
+
# assert 'pad_token_id' in self.config.__dict__
|
| 137 |
+
# assert 'time_delta_monotonic_inversion' in self.config.__dict__
|
| 138 |
+
# assert 'add_time_deltas' in self.config.__dict__
|
| 139 |
+
# assert 'history' in self.config.__dict__
|
| 140 |
+
# assert 'tables_filter' in self.config.__dict__
|
| 141 |
+
# assert 'prompt_report_sections_filter' in self.config.__dict__
|
|
|
|
|
|
|
| 142 |
|
| 143 |
+
# assert isinstance(self.config.time_delta_monotonic_inversion, bool)
|
| 144 |
|
| 145 |
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tables.json'), 'r') as f:
|
| 146 |
self.tables = json.load(f)
|
|
|
|
| 151 |
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'token_type_ids.json'), 'r') as f:
|
| 152 |
self.token_type_to_token_type_id = json.load(f)
|
| 153 |
|
| 154 |
+
self.tables = {k: self.tables[k] for k in self.config.tables_filter}
|
| 155 |
+
self.tables['mimic_cxr_sectioned']['text_columns'] = self.config.prompt_report_sections_filter
|
| 156 |
|
| 157 |
for k in self.tables.keys():
|
| 158 |
if self.luts[k]['total'] > 0:
|
|
|
|
| 161 |
f'{k}_index_value_encoder',
|
| 162 |
FNNEncoder(
|
| 163 |
num_features=self.luts[k]['total'],
|
| 164 |
+
intermediate_size=self.config.index_value_encoder_intermediate_size,
|
| 165 |
+
decoder_hidden_size=self.config.hidden_size,
|
| 166 |
),
|
| 167 |
)
|
| 168 |
|
| 169 |
+
if self.config.add_time_deltas:
|
| 170 |
self.time_delta_encoder = FNNEncoder(
|
| 171 |
num_features=1,
|
| 172 |
+
intermediate_size=self.config.index_value_encoder_intermediate_size,
|
| 173 |
+
decoder_hidden_size=self.config.hidden_size,
|
| 174 |
)
|
| 175 |
|
| 176 |
+
self.token_type_embeddings = torch.nn.Embedding(max(self.token_type_to_token_type_id.values()) + 1, self.config.hidden_size)
|
| 177 |
|
| 178 |
self.time_delta_map = lambda x: 1 / math.sqrt(x + 1)
|
| 179 |
self.zero_time_delta_value = self.time_delta_map(0)
|
| 180 |
|
| 181 |
self.inf_time_delta_value = self.time_delta_map(float('inf'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
self.post_init()
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# @classmethod
|
| 187 |
+
# def from_encoder_decoder_pretrained(
|
| 188 |
+
# cls,
|
| 189 |
+
# encoder_pretrained_model_name_or_path: str = None,
|
| 190 |
+
# decoder_pretrained_model_name_or_path: str = None,
|
| 191 |
+
# *model_args,
|
| 192 |
+
# **kwargs,
|
| 193 |
+
# ) -> PreTrainedModel:
|
| 194 |
+
# r"""
|
| 195 |
+
# Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
|
| 196 |
+
# checkpoints.
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
# The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
| 200 |
+
# the model, you need to first set it back in training mode with `model.train()`.
|
| 201 |
+
|
| 202 |
+
# Params:
|
| 203 |
+
# encoder_pretrained_model_name_or_path (`str`, *optional*):
|
| 204 |
+
# Information necessary to initiate the image encoder. Can be either:
|
| 205 |
+
|
| 206 |
+
# - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
|
| 207 |
+
# example is `google/vit-base-patch16-224-in21k`.
|
| 208 |
+
# - A path to a *directory* containing model weights saved using
|
| 209 |
+
# [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
| 210 |
+
# - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
| 211 |
+
# this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
| 212 |
+
# `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
| 213 |
+
# PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
| 214 |
+
|
| 215 |
+
# decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
|
| 216 |
+
# Information necessary to initiate the text decoder. Can be either:
|
| 217 |
+
|
| 218 |
+
# - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
| 219 |
+
# - A path to a *directory* containing model weights saved using
|
| 220 |
+
# [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
| 221 |
+
# - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
| 222 |
+
# this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
| 223 |
+
# `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
| 224 |
+
# PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
| 225 |
+
|
| 226 |
+
# model_args (remaining positional arguments, *optional*):
|
| 227 |
+
# All remaning positional arguments will be passed to the underlying model's `__init__` method.
|
| 228 |
+
|
| 229 |
+
# kwargs (remaining dictionary of keyword arguments, *optional*):
|
| 230 |
+
# Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
| 231 |
+
# `output_attentions=True`).
|
| 232 |
+
|
| 233 |
+
# - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
|
| 234 |
+
# - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
|
| 235 |
+
# - To update the parent model configuration, do not use a prefix for each configuration parameter.
|
| 236 |
+
|
| 237 |
+
# Behaves differently depending on whether a `config` is provided or automatically loaded.
|
| 238 |
+
|
| 239 |
+
# Example:
|
| 240 |
+
|
| 241 |
+
# ```python
|
| 242 |
+
# >>> from transformers import VisionEncoderDecoderModel
|
| 243 |
+
|
| 244 |
+
# >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
|
| 245 |
+
# >>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
| 246 |
+
# ... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased"
|
| 247 |
+
# ... )
|
| 248 |
+
# >>> # saving model after fine-tuning
|
| 249 |
+
# >>> model.save_pretrained("./vit-bert")
|
| 250 |
+
# >>> # load fine-tuned model
|
| 251 |
+
# >>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
|
| 252 |
+
# ```"""
|
| 253 |
+
|
| 254 |
+
# kwargs_encoder = {
|
| 255 |
+
# argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
| 256 |
+
# }
|
| 257 |
+
|
| 258 |
+
# kwargs_decoder = {
|
| 259 |
+
# argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
| 260 |
+
# }
|
| 261 |
+
|
| 262 |
+
# # remove encoder, decoder kwargs from kwargs
|
| 263 |
+
# for key in kwargs_encoder.keys():
|
| 264 |
+
# del kwargs["encoder_" + key]
|
| 265 |
+
# for key in kwargs_decoder.keys():
|
| 266 |
+
# del kwargs["decoder_" + key]
|
| 267 |
+
|
| 268 |
+
# # Load and initialize the encoder and decoder
|
| 269 |
+
# # The distinction between encoder and decoder at the model level is made
|
| 270 |
+
# # by the value of the flag `is_decoder` that we need to set correctly.
|
| 271 |
+
# encoder = kwargs_encoder.pop("model", None)
|
| 272 |
+
# if encoder is None:
|
| 273 |
+
# if encoder_pretrained_model_name_or_path is None:
|
| 274 |
+
# raise ValueError(
|
| 275 |
+
# "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
| 276 |
+
# "to be defined."
|
| 277 |
+
# )
|
| 278 |
+
|
| 279 |
+
# if "config" not in kwargs_encoder:
|
| 280 |
+
# encoder_config, kwargs_encoder = transformers.AutoConfig.from_pretrained(
|
| 281 |
+
# encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
|
| 282 |
+
# )
|
| 283 |
+
|
| 284 |
+
# if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
| 285 |
+
# logger.info(
|
| 286 |
+
# f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
|
| 287 |
+
# "from a decoder model. Cross-attention and casual mask are disabled."
|
| 288 |
+
# )
|
| 289 |
+
# encoder_config.is_decoder = False
|
| 290 |
+
# encoder_config.add_cross_attention = False
|
| 291 |
+
|
| 292 |
+
# kwargs_encoder["config"] = encoder_config
|
| 293 |
+
|
| 294 |
+
# encoder = transformers.AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
|
| 295 |
+
|
| 296 |
+
# decoder = kwargs_decoder.pop("model", None)
|
| 297 |
+
# if decoder is None:
|
| 298 |
+
# if decoder_pretrained_model_name_or_path is None:
|
| 299 |
+
# raise ValueError(
|
| 300 |
+
# "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
| 301 |
+
# "to be defined."
|
| 302 |
+
# )
|
| 303 |
+
|
| 304 |
+
# if "config" not in kwargs_decoder:
|
| 305 |
+
# decoder_config, kwargs_decoder = transformers.AutoConfig.from_pretrained(
|
| 306 |
+
# decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
| 307 |
+
# )
|
| 308 |
+
|
| 309 |
+
# if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
| 310 |
+
# logger.info(
|
| 311 |
+
# f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
|
| 312 |
+
# f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
|
| 313 |
+
# f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
|
| 314 |
+
# )
|
| 315 |
+
# decoder_config.is_decoder = True
|
| 316 |
+
# decoder_config.add_cross_attention = False
|
| 317 |
+
|
| 318 |
+
# kwargs_decoder["config"] = decoder_config
|
| 319 |
+
|
| 320 |
+
# if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
|
| 321 |
+
# logger.warning(
|
| 322 |
+
# f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
|
| 323 |
+
# f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
|
| 324 |
+
# "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
|
| 325 |
+
# "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
|
| 326 |
+
# "`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
|
| 327 |
+
# )
|
| 328 |
+
|
| 329 |
+
# decoder = transformers.AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
| 330 |
+
|
| 331 |
+
# # instantiate config with corresponding kwargs
|
| 332 |
+
# config = CXRMateEDConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
|
| 333 |
+
|
| 334 |
+
# # make sure input & output embeddings is not tied
|
| 335 |
+
# config.tie_word_embeddings = False
|
| 336 |
+
|
| 337 |
+
# config.is_encoder_decoder = False
|
| 338 |
|
| 339 |
+
# return cls(encoder=encoder, decoder=decoder, config=config)
|
| 340 |
|
| 341 |
def forward(
|
| 342 |
self,
|
|
|
|
| 361 |
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
| 362 |
}
|
| 363 |
|
|
|
|
|
|
|
| 364 |
if decoder_inputs_embeds is None:
|
| 365 |
+
decoder_inputs_embeds = self.language_model.get_input_embeddings()(decoder_input_ids)
|
| 366 |
decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)
|
| 367 |
|
| 368 |
+
if decoder_attention_mask.dim() == 4:
|
| 369 |
+
assert decoder_attention_mask.dtype == decoder_inputs_embeds.dtype, f'The dtype for {decoder_attention_mask} was {decoder_attention_mask.dtype}. It should be {decoder_inputs_embeds.dtype}'
|
| 370 |
+
else:
|
| 371 |
+
assert decoder_attention_mask.dtype == torch.long, f'The dtype for {decoder_attention_mask} was {decoder_attention_mask.dtype}. It should be torch.long'
|
| 372 |
+
|
| 373 |
# Generation:
|
| 374 |
+
decoder_outputs = self.language_model(
|
| 375 |
inputs_embeds=decoder_inputs_embeds,
|
| 376 |
attention_mask=decoder_attention_mask,
|
| 377 |
position_ids=decoder_position_ids,
|
|
|
|
| 388 |
if labels is not None:
|
| 389 |
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
| 390 |
loss_fct = CrossEntropyLoss()
|
| 391 |
+
loss = loss_fct(logits.reshape(-1, self.vocab_size), labels.reshape(-1))
|
| 392 |
|
| 393 |
if not return_dict:
|
| 394 |
if loss is not None:
|
|
|
|
| 419 |
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
|
| 420 |
"""
|
| 421 |
|
| 422 |
+
report_attention_mask = (input_ids != self.config.pad_token_id).long()
|
| 423 |
|
| 424 |
+
if len(past_key_values) == 0:
|
| 425 |
|
| 426 |
# 4D attention mask:
|
| 427 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(
|
| 428 |
+
prompt_attention_mask, report_attention_mask, dtype=kwargs['decoder_inputs_embeds'].dtype,
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
# Position identifiers accounting for padding:
|
| 432 |
report_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
|
| 433 |
report_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
| 434 |
decoder_position_ids = torch.cat([prompt_position_ids, report_position_ids], dim=1)
|
| 435 |
|
| 436 |
# `inputs_embeds` are only to be used in the 1st generation step:
|
| 437 |
+
inputs_embeds = torch.cat([kwargs['decoder_inputs_embeds'], self.language_model.get_input_embeddings()(input_ids)], dim=1)
|
| 438 |
|
| 439 |
decoder_token_type_ids = self.token_ids_to_token_type_ids(
|
| 440 |
input_ids, special_token_ids,
|
|
|
|
| 456 |
else:
|
| 457 |
|
| 458 |
# 4D attention mask:
|
| 459 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(
|
| 460 |
+
prompt_attention_mask, report_attention_mask, dtype=kwargs['decoder_inputs_embeds'].dtype,
|
| 461 |
+
)
|
| 462 |
|
| 463 |
# Position identifiers accounting for padding:
|
| 464 |
decoder_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
|
|
|
|
| 838 |
time_delta.append(tokenized['time_delta'])
|
| 839 |
|
| 840 |
# Image encoder:
|
| 841 |
+
encoder_outputs = self.image_encoder(images)
|
| 842 |
inputs_embeds.append(encoder_outputs[0])
|
| 843 |
|
| 844 |
inputs_per_image = encoder_outputs[0].shape[-2] // images.shape[1]
|
|
|
|
| 858 |
|
| 859 |
# Compute embeddings from token identifiers:
|
| 860 |
input_ids = torch.cat(input_ids, dim=1)
|
| 861 |
+
inputs_embeds.append(self.language_model.get_input_embeddings()(input_ids))
|
| 862 |
|
| 863 |
# Concatentate time deltas and input embeddings before adding time delta embedding to prompt:
|
| 864 |
time_delta = torch.cat(time_delta, dim=1)
|
| 865 |
inputs_embeds = torch.cat(inputs_embeds, dim=1)
|
| 866 |
|
| 867 |
# Add time delta embeddings to prompt:
|
| 868 |
+
if time_delta.shape[1] > 0 and self.config.add_time_deltas:
|
| 869 |
time_delta = time_delta.to(dtype=inputs_embeds.dtype)
|
| 870 |
inputs_embeds += self.time_delta_encoder(time_delta)
|
| 871 |
|
|
|
|
| 877 |
|
| 878 |
# Tokenize report:
|
| 879 |
if tokenized_report is not None:
|
| 880 |
+
inputs_embeds = torch.cat([inputs_embeds, self.language_model.get_input_embeddings()(tokenized_report['decoder_input_ids'])], dim=1)
|
| 881 |
|
| 882 |
report_token_type_ids = self.token_ids_to_token_type_ids(
|
| 883 |
token_ids=tokenized_report['decoder_input_ids'],
|
|
|
|
| 892 |
position_ids = torch.cat([position_ids, report_position_ids], dim=1)
|
| 893 |
|
| 894 |
# 4D attention mask:
|
| 895 |
+
attention_mask = self.create_4d_attention_mask_mixed_causality(attention_mask, tokenized_report['decoder_attention_mask'], dtype=inputs_embeds.dtype)
|
| 896 |
+
# attention_mask = self.create_4d_attention_mask_mixed_causality(attention_mask, tokenized_report['decoder_attention_mask'])
|
| 897 |
# attention_mask_diagonal = torch.diagonal(attention_mask[:, 0], dim1=1, dim2=2)
|
| 898 |
|
| 899 |
else:
|
|
|
|
| 910 |
return inputs_embeds, attention_mask, token_type_ids, position_ids, bos_token_ids
|
| 911 |
|
| 912 |
@staticmethod
|
| 913 |
+
def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask, dtype):
|
| 914 |
|
| 915 |
prompt_seq_len = non_causal_2d_attention_mask.shape[-1]
|
| 916 |
report_seq_len = causal_2d_attention_mask.shape[-1]
|
|
|
|
| 958 |
|
| 959 |
mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
|
| 960 |
|
| 961 |
+
mixed_causality_4d_attention_mask = mixed_causality_4d_attention_mask.to(dtype=dtype)
|
| 962 |
+
mixed_causality_4d_attention_mask[mixed_causality_4d_attention_mask == 0] = torch.finfo(mixed_causality_4d_attention_mask.dtype).min
|
| 963 |
+
mixed_causality_4d_attention_mask[mixed_causality_4d_attention_mask == 1] = 0.0
|
| 964 |
+
|
| 965 |
return mixed_causality_4d_attention_mask
|
| 966 |
|
| 967 |
@staticmethod
|
| 968 |
+
def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask, dtype):
|
| 969 |
|
| 970 |
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
| 971 |
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
| 972 |
|
| 973 |
mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
|
| 974 |
+
|
| 975 |
+
mixed_causality_4d_attention_mask = mixed_causality_4d_attention_mask.to(dtype=dtype)
|
| 976 |
+
mixed_causality_4d_attention_mask[mixed_causality_4d_attention_mask == 0] = torch.finfo(mixed_causality_4d_attention_mask.dtype).min
|
| 977 |
+
mixed_causality_4d_attention_mask[mixed_causality_4d_attention_mask == 1] = 0.0
|
| 978 |
+
|
| 979 |
return mixed_causality_4d_attention_mask
|
| 980 |
+
|
| 981 |
+
# @staticmethod
|
| 982 |
+
# def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
| 983 |
+
|
| 984 |
+
# prompt_seq_len = non_causal_2d_attention_mask.shape[-1]
|
| 985 |
+
# report_seq_len = causal_2d_attention_mask.shape[-1]
|
| 986 |
+
|
| 987 |
+
# non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
| 988 |
+
# causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
| 989 |
+
|
| 990 |
+
# # Upper left of attention matrix:
|
| 991 |
+
# upper_left = non_causal_2d_attention_mask.expand(-1, -1, prompt_seq_len, -1)
|
| 992 |
+
# upper_left = upper_left * non_causal_2d_attention_mask
|
| 993 |
+
# upper_left = upper_left * non_causal_2d_attention_mask.permute(0, 1, 3, 2)
|
| 994 |
+
|
| 995 |
+
# causal_mask = torch.tril(
|
| 996 |
+
# torch.ones(
|
| 997 |
+
# (
|
| 998 |
+
# report_seq_len,
|
| 999 |
+
# report_seq_len,
|
| 1000 |
+
# ),
|
| 1001 |
+
# dtype=torch.long,
|
| 1002 |
+
# device=causal_2d_attention_mask.device,
|
| 1003 |
+
# ),
|
| 1004 |
+
# )
|
| 1005 |
+
|
| 1006 |
+
# # Lower right of attention matrix:
|
| 1007 |
+
# lower_right = causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
| 1008 |
+
# lower_right = lower_right * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
| 1009 |
+
# lower_right = lower_right * causal_mask
|
| 1010 |
+
|
| 1011 |
+
# # Upper right of attention matrix:
|
| 1012 |
+
# upper_right = torch.zeros(
|
| 1013 |
+
# causal_2d_attention_mask.shape[0],
|
| 1014 |
+
# 1,
|
| 1015 |
+
# prompt_seq_len,
|
| 1016 |
+
# report_seq_len,
|
| 1017 |
+
# dtype=torch.long,
|
| 1018 |
+
# device=causal_2d_attention_mask.device,
|
| 1019 |
+
# )
|
| 1020 |
+
|
| 1021 |
+
# # Lower left of attention matrix:
|
| 1022 |
+
# lower_left = non_causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
| 1023 |
+
# lower_left = lower_left * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
| 1024 |
+
|
| 1025 |
+
# left = torch.cat((upper_left, lower_left), dim=2)
|
| 1026 |
+
# right = torch.cat((upper_right, lower_right), dim=2)
|
| 1027 |
+
|
| 1028 |
+
# mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
|
| 1029 |
+
|
| 1030 |
+
# return mixed_causality_4d_attention_mask
|
| 1031 |
+
|
| 1032 |
+
# @staticmethod
|
| 1033 |
+
# def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
| 1034 |
+
|
| 1035 |
+
# non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
| 1036 |
+
# causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
| 1037 |
+
|
| 1038 |
+
# mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
|
| 1039 |
+
# return mixed_causality_4d_attention_mask
|
| 1040 |
|
| 1041 |
def position_ids_from_time_deltas_and_attention_mask(self, time_deltas, attention_mask):
|
| 1042 |
+
mask_value = torch.finfo(time_deltas.dtype).max if self.config.time_delta_monotonic_inversion else torch.finfo(time_deltas.dtype).min
|
| 1043 |
|
| 1044 |
masked_time_deltas = torch.where(attention_mask == 1, time_deltas[:, :, 0], mask_value)
|
| 1045 |
+
_, col_indices = torch.sort(masked_time_deltas, descending=not self.config.time_delta_monotonic_inversion)
|
| 1046 |
|
| 1047 |
num_rows, num_cols, _ = time_deltas.shape
|
| 1048 |
|
|
|
|
| 1126 |
index_map = {study_id: idx for idx, study_id in enumerate(train_set_study_ids)}
|
| 1127 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1128 |
indices.sort()
|
| 1129 |
+
train_set = PriorsDataset(train_set, self.config.history, self.time_delta_map)
|
| 1130 |
train_set.set_transform(train_set_transform)
|
| 1131 |
train_set = Subset(train_set, indices)
|
| 1132 |
else:
|
|
|
|
| 1141 |
index_map = {study_id: idx for idx, study_id in enumerate(val_set_study_ids)}
|
| 1142 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1143 |
indices.sort()
|
| 1144 |
+
val_set = PriorsDataset(val_set, self.config.history, self.time_delta_map)
|
| 1145 |
val_set.set_transform(test_set_transform)
|
| 1146 |
val_set = Subset(val_set, indices)
|
| 1147 |
else:
|
|
|
|
| 1155 |
index_map = {study_id: idx for idx, study_id in enumerate(test_set_study_ids)}
|
| 1156 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1157 |
indices.sort()
|
| 1158 |
+
test_set = PriorsDataset(test_set, self.config.history, self.time_delta_map)
|
| 1159 |
test_set.set_transform(test_set_transform)
|
| 1160 |
test_set = Subset(test_set, indices)
|
| 1161 |
|
|
|
|
| 1208 |
index_map = {study_id: idx for idx, study_id in enumerate(train_set_study_ids)}
|
| 1209 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1210 |
indices.sort()
|
| 1211 |
+
train_set = PriorsDataset(train_set, self.config.history, self.time_delta_map)
|
| 1212 |
train_set.set_transform(train_set_transform)
|
| 1213 |
train_set = Subset(train_set, indices)
|
| 1214 |
|
|
|
|
| 1220 |
index_map = {study_id: idx for idx, study_id in enumerate(val_set_study_ids)}
|
| 1221 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1222 |
indices.sort()
|
| 1223 |
+
val_set = PriorsDataset(val_set, self.config.history, self.time_delta_map)
|
| 1224 |
val_set.set_transform(test_set_transform)
|
| 1225 |
val_set = Subset(val_set, indices)
|
| 1226 |
|
|
|
|
| 1232 |
index_map = {study_id: idx for idx, study_id in enumerate(test_set_study_ids)}
|
| 1233 |
indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
|
| 1234 |
indices.sort()
|
| 1235 |
+
test_set = PriorsDataset(test_set, self.config.history, self.time_delta_map)
|
| 1236 |
test_set.set_transform(test_set_transform)
|
| 1237 |
test_set = Subset(test_set, indices)
|
| 1238 |
|