fix dependencies issue
Browse files
unit2/llama-index/agents.ipynb
CHANGED
|
@@ -21,11 +21,11 @@
|
|
| 21 |
},
|
| 22 |
{
|
| 23 |
"cell_type": "code",
|
| 24 |
-
"execution_count":
|
| 25 |
"metadata": {},
|
| 26 |
"outputs": [],
|
| 27 |
"source": [
|
| 28 |
-
"!pip install llama-index
|
| 29 |
]
|
| 30 |
},
|
| 31 |
{
|
|
@@ -167,7 +167,7 @@
|
|
| 167 |
},
|
| 168 |
{
|
| 169 |
"cell_type": "code",
|
| 170 |
-
"execution_count":
|
| 171 |
"metadata": {},
|
| 172 |
"outputs": [],
|
| 173 |
"source": [
|
|
@@ -175,7 +175,7 @@
|
|
| 175 |
"\n",
|
| 176 |
"from llama_index.core import VectorStoreIndex\n",
|
| 177 |
"from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI\n",
|
| 178 |
-
"from llama_index.embeddings.
|
| 179 |
"from llama_index.core.tools import QueryEngineTool\n",
|
| 180 |
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
|
| 181 |
"\n",
|
|
@@ -185,7 +185,7 @@
|
|
| 185 |
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
| 186 |
"\n",
|
| 187 |
"# Create a query engine\n",
|
| 188 |
-
"embed_model =
|
| 189 |
"llm = HuggingFaceInferenceAPI(model_name=\"Qwen/Qwen2.5-Coder-32B-Instruct\")\n",
|
| 190 |
"index = VectorStoreIndex.from_vector_store(\n",
|
| 191 |
" vector_store=vector_store, embed_model=embed_model\n",
|
|
|
|
| 21 |
},
|
| 22 |
{
|
| 23 |
"cell_type": "code",
|
| 24 |
+
"execution_count": null,
|
| 25 |
"metadata": {},
|
| 26 |
"outputs": [],
|
| 27 |
"source": [
|
| 28 |
+
"!pip install llama-index llama-index-vector-stores-chroma llama-index-llms-huggingface-api llama-index-embeddings-huggingface -U -q"
|
| 29 |
]
|
| 30 |
},
|
| 31 |
{
|
|
|
|
| 167 |
},
|
| 168 |
{
|
| 169 |
"cell_type": "code",
|
| 170 |
+
"execution_count": null,
|
| 171 |
"metadata": {},
|
| 172 |
"outputs": [],
|
| 173 |
"source": [
|
|
|
|
| 175 |
"\n",
|
| 176 |
"from llama_index.core import VectorStoreIndex\n",
|
| 177 |
"from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI\n",
|
| 178 |
+
"from llama_index.embeddings.huggingface import HuggingFaceEmbedding\n",
|
| 179 |
"from llama_index.core.tools import QueryEngineTool\n",
|
| 180 |
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
|
| 181 |
"\n",
|
|
|
|
| 185 |
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
| 186 |
"\n",
|
| 187 |
"# Create a query engine\n",
|
| 188 |
+
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")\n",
|
| 189 |
"llm = HuggingFaceInferenceAPI(model_name=\"Qwen/Qwen2.5-Coder-32B-Instruct\")\n",
|
| 190 |
"index = VectorStoreIndex.from_vector_store(\n",
|
| 191 |
" vector_store=vector_store, embed_model=embed_model\n",
|
unit2/llama-index/components.ipynb
CHANGED
|
@@ -23,7 +23,7 @@
|
|
| 23 |
"metadata": {},
|
| 24 |
"outputs": [],
|
| 25 |
"source": [
|
| 26 |
-
"!pip install llama-index datasets llama-index-callbacks-arize-phoenix llama-index-vector-stores-chroma llama-index-llms-huggingface-api -U -q"
|
| 27 |
]
|
| 28 |
},
|
| 29 |
{
|
|
@@ -113,12 +113,12 @@
|
|
| 113 |
"cell_type": "markdown",
|
| 114 |
"metadata": {},
|
| 115 |
"source": [
|
| 116 |
-
"Now we have a list of `Document` objects, we can use the `IngestionPipeline` to create nodes from the documents and prepare them for the `QueryEngine`. We will use the `SentenceSplitter` to split the documents into smaller chunks and the `
|
| 117 |
]
|
| 118 |
},
|
| 119 |
{
|
| 120 |
"cell_type": "code",
|
| 121 |
-
"execution_count":
|
| 122 |
"metadata": {},
|
| 123 |
"outputs": [
|
| 124 |
{
|
|
@@ -142,7 +142,7 @@
|
|
| 142 |
}
|
| 143 |
],
|
| 144 |
"source": [
|
| 145 |
-
"from llama_index.embeddings.
|
| 146 |
"from llama_index.core.node_parser import SentenceSplitter\n",
|
| 147 |
"from llama_index.core.ingestion import IngestionPipeline\n",
|
| 148 |
"\n",
|
|
@@ -150,7 +150,7 @@
|
|
| 150 |
"pipeline = IngestionPipeline(\n",
|
| 151 |
" transformations=[\n",
|
| 152 |
" SentenceSplitter(),\n",
|
| 153 |
-
"
|
| 154 |
" ]\n",
|
| 155 |
")\n",
|
| 156 |
"\n",
|
|
@@ -175,7 +175,7 @@
|
|
| 175 |
},
|
| 176 |
{
|
| 177 |
"cell_type": "code",
|
| 178 |
-
"execution_count":
|
| 179 |
"metadata": {},
|
| 180 |
"outputs": [
|
| 181 |
{
|
|
@@ -200,7 +200,7 @@
|
|
| 200 |
"pipeline = IngestionPipeline(\n",
|
| 201 |
" transformations=[\n",
|
| 202 |
" SentenceSplitter(),\n",
|
| 203 |
-
"
|
| 204 |
" ],\n",
|
| 205 |
" vector_store=vector_store,\n",
|
| 206 |
")\n",
|
|
@@ -218,14 +218,14 @@
|
|
| 218 |
},
|
| 219 |
{
|
| 220 |
"cell_type": "code",
|
| 221 |
-
"execution_count":
|
| 222 |
"metadata": {},
|
| 223 |
"outputs": [],
|
| 224 |
"source": [
|
| 225 |
"from llama_index.core import VectorStoreIndex\n",
|
| 226 |
-
"from llama_index.embeddings.
|
| 227 |
"\n",
|
| 228 |
-
"embed_model =
|
| 229 |
"index = VectorStoreIndex.from_vector_store(\n",
|
| 230 |
" vector_store=vector_store, embed_model=embed_model\n",
|
| 231 |
")"
|
|
|
|
| 23 |
"metadata": {},
|
| 24 |
"outputs": [],
|
| 25 |
"source": [
|
| 26 |
+
"!pip install llama-index datasets llama-index-callbacks-arize-phoenix arize-phoenix llama-index-vector-stores-chroma llama-index-llms-huggingface-api llama-index-embeddings-huggingface -U -q"
|
| 27 |
]
|
| 28 |
},
|
| 29 |
{
|
|
|
|
| 113 |
"cell_type": "markdown",
|
| 114 |
"metadata": {},
|
| 115 |
"source": [
|
| 116 |
+
"Now we have a list of `Document` objects, we can use the `IngestionPipeline` to create nodes from the documents and prepare them for the `QueryEngine`. We will use the `SentenceSplitter` to split the documents into smaller chunks and the `HuggingFaceEmbedding` to embed the chunks."
|
| 117 |
]
|
| 118 |
},
|
| 119 |
{
|
| 120 |
"cell_type": "code",
|
| 121 |
+
"execution_count": null,
|
| 122 |
"metadata": {},
|
| 123 |
"outputs": [
|
| 124 |
{
|
|
|
|
| 142 |
}
|
| 143 |
],
|
| 144 |
"source": [
|
| 145 |
+
"from llama_index.embeddings.huggingface import HuggingFaceEmbedding\n",
|
| 146 |
"from llama_index.core.node_parser import SentenceSplitter\n",
|
| 147 |
"from llama_index.core.ingestion import IngestionPipeline\n",
|
| 148 |
"\n",
|
|
|
|
| 150 |
"pipeline = IngestionPipeline(\n",
|
| 151 |
" transformations=[\n",
|
| 152 |
" SentenceSplitter(),\n",
|
| 153 |
+
" HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\"),\n",
|
| 154 |
" ]\n",
|
| 155 |
")\n",
|
| 156 |
"\n",
|
|
|
|
| 175 |
},
|
| 176 |
{
|
| 177 |
"cell_type": "code",
|
| 178 |
+
"execution_count": null,
|
| 179 |
"metadata": {},
|
| 180 |
"outputs": [
|
| 181 |
{
|
|
|
|
| 200 |
"pipeline = IngestionPipeline(\n",
|
| 201 |
" transformations=[\n",
|
| 202 |
" SentenceSplitter(),\n",
|
| 203 |
+
" HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\"),\n",
|
| 204 |
" ],\n",
|
| 205 |
" vector_store=vector_store,\n",
|
| 206 |
")\n",
|
|
|
|
| 218 |
},
|
| 219 |
{
|
| 220 |
"cell_type": "code",
|
| 221 |
+
"execution_count": null,
|
| 222 |
"metadata": {},
|
| 223 |
"outputs": [],
|
| 224 |
"source": [
|
| 225 |
"from llama_index.core import VectorStoreIndex\n",
|
| 226 |
+
"from llama_index.embeddings.huggingface import HuggingFaceEmbedding\n",
|
| 227 |
"\n",
|
| 228 |
+
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")\n",
|
| 229 |
"index = VectorStoreIndex.from_vector_store(\n",
|
| 230 |
" vector_store=vector_store, embed_model=embed_model\n",
|
| 231 |
")"
|
unit2/llama-index/tools.ipynb
CHANGED
|
@@ -18,11 +18,11 @@
|
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"cell_type": "code",
|
| 21 |
-
"execution_count":
|
| 22 |
"metadata": {},
|
| 23 |
"outputs": [],
|
| 24 |
"source": [
|
| 25 |
-
"!pip install llama-index
|
| 26 |
]
|
| 27 |
},
|
| 28 |
{
|
|
@@ -86,7 +86,7 @@
|
|
| 86 |
},
|
| 87 |
{
|
| 88 |
"cell_type": "code",
|
| 89 |
-
"execution_count":
|
| 90 |
"metadata": {},
|
| 91 |
"outputs": [
|
| 92 |
{
|
|
@@ -105,14 +105,14 @@
|
|
| 105 |
"\n",
|
| 106 |
"from llama_index.core import VectorStoreIndex\n",
|
| 107 |
"from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI\n",
|
| 108 |
-
"from llama_index.embeddings.
|
| 109 |
"from llama_index.core.tools import QueryEngineTool\n",
|
| 110 |
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
|
| 111 |
"\n",
|
| 112 |
"db = chromadb.PersistentClient(path=\"./alfred_chroma_db\")\n",
|
| 113 |
"chroma_collection = db.get_or_create_collection(\"alfred\")\n",
|
| 114 |
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
| 115 |
-
"embed_model =
|
| 116 |
"llm = HuggingFaceInferenceAPI(model_name=\"meta-llama/Llama-3.2-3B-Instruct\")\n",
|
| 117 |
"index = VectorStoreIndex.from_vector_store(\n",
|
| 118 |
" vector_store=vector_store, embed_model=embed_model\n",
|
|
|
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"cell_type": "code",
|
| 21 |
+
"execution_count": null,
|
| 22 |
"metadata": {},
|
| 23 |
"outputs": [],
|
| 24 |
"source": [
|
| 25 |
+
"!pip install llama-index llama-index-vector-stores-chroma llama-index-llms-huggingface-api llama-index-embeddings-huggingface llama-index-tools-google -U -q"
|
| 26 |
]
|
| 27 |
},
|
| 28 |
{
|
|
|
|
| 86 |
},
|
| 87 |
{
|
| 88 |
"cell_type": "code",
|
| 89 |
+
"execution_count": null,
|
| 90 |
"metadata": {},
|
| 91 |
"outputs": [
|
| 92 |
{
|
|
|
|
| 105 |
"\n",
|
| 106 |
"from llama_index.core import VectorStoreIndex\n",
|
| 107 |
"from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI\n",
|
| 108 |
+
"from llama_index.embeddings.huggingface import HuggingFaceEmbedding\n",
|
| 109 |
"from llama_index.core.tools import QueryEngineTool\n",
|
| 110 |
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
|
| 111 |
"\n",
|
| 112 |
"db = chromadb.PersistentClient(path=\"./alfred_chroma_db\")\n",
|
| 113 |
"chroma_collection = db.get_or_create_collection(\"alfred\")\n",
|
| 114 |
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
| 115 |
+
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")\n",
|
| 116 |
"llm = HuggingFaceInferenceAPI(model_name=\"meta-llama/Llama-3.2-3B-Instruct\")\n",
|
| 117 |
"index = VectorStoreIndex.from_vector_store(\n",
|
| 118 |
" vector_store=vector_store, embed_model=embed_model\n",
|
unit2/llama-index/workflows.ipynb
CHANGED
|
@@ -18,11 +18,11 @@
|
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"cell_type": "code",
|
| 21 |
-
"execution_count":
|
| 22 |
"metadata": {},
|
| 23 |
"outputs": [],
|
| 24 |
"source": [
|
| 25 |
-
"!pip install llama-index
|
| 26 |
]
|
| 27 |
},
|
| 28 |
{
|
|
|
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"cell_type": "code",
|
| 21 |
+
"execution_count": null,
|
| 22 |
"metadata": {},
|
| 23 |
"outputs": [],
|
| 24 |
"source": [
|
| 25 |
+
"!pip install llama-index llama-index-vector-stores-chroma llama-index-utils-workflow llama-index-llms-huggingface-api pyvis -U -q"
|
| 26 |
]
|
| 27 |
},
|
| 28 |
{
|