|  | import math | 
					
						
						|  | from copy import deepcopy | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  |  | 
					
						
						|  | from transformers.models.auto import AutoModelForCausalLM, AutoModelForImageTextToText | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache | 
					
						
						|  | from transformers.generation import GenerationMixin | 
					
						
						|  | from transformers.generation.configuration_utils import GenerationConfig | 
					
						
						|  | from transformers.generation.utils import GenerateOutput | 
					
						
						|  | from transformers.integrations import use_kernel_forward_from_hub | 
					
						
						|  | from transformers.modeling_attn_mask_utils import AttentionMaskConverter | 
					
						
						|  | from transformers.modeling_flash_attention_utils import _flash_attention_forward, FlashAttentionKwargs | 
					
						
						|  | from transformers import GradientCheckpointingLayer | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutput, | 
					
						
						|  | BaseModelOutputWithPast, | 
					
						
						|  | BaseModelOutputWithPooling, | 
					
						
						|  | CausalLMOutputWithPast, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update | 
					
						
						|  | from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel | 
					
						
						|  | from transformers.processing_utils import Unpack | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | ModelOutput, | 
					
						
						|  | can_return_tuple, | 
					
						
						|  | is_torch_flex_attn_available, | 
					
						
						|  | logging, | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | from .configuration_molmoact import MolmoActConfig, MolmoActVitConfig, MolmoActAdapterConfig, MolmoActLlmConfig | 
					
						
						|  |  | 
					
						
						|  | import re | 
					
						
						|  | import numpy as np | 
					
						
						|  | from transformers import Qwen2Tokenizer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_torch_flex_attn_available(): | 
					
						
						|  | from torch.nn.attention.flex_attention import BlockMask | 
					
						
						|  |  | 
					
						
						|  | from transformers.integrations.flex_attention import make_flex_block_causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MOLMO_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`MolmoActConfig`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | NUM_RE = re.compile(r'[+-]?(?:\d+(?:\.\d+)?|\.\d+)(?:[eE][+-]?\d+)?$') | 
					
						
						|  | DEPTH_RE = re.compile(r'<DEPTH_START>(.*?)<DEPTH_END>', re.DOTALL) | 
					
						
						|  |  | 
					
						
						|  | OUTER_BLOCK_RE = re.compile(r'\[(?:[^\[\]]|\[[^\[\]]*\])+\]') | 
					
						
						|  |  | 
					
						
						|  | def _is_number(s: str) -> bool: | 
					
						
						|  | return bool(NUM_RE.match(s)) | 
					
						
						|  |  | 
					
						
						|  | def _has_non_ascii(s: str) -> bool: | 
					
						
						|  | return any(ord(ch) > 127 for ch in s) | 
					
						
						|  |  | 
					
						
						|  | def _to_number(s: str): | 
					
						
						|  | """Parse string number to int when possible, else float.""" | 
					
						
						|  | v = float(s) | 
					
						
						|  | return int(v) if v.is_integer() else v | 
					
						
						|  |  | 
					
						
						|  | def extract_depth_string(text: str, include_tags: bool = False) -> list[str]: | 
					
						
						|  | """ | 
					
						
						|  | Return all occurrences of depth strings. | 
					
						
						|  | If include_tags=True, each item is '<DEPTH_START>...<DEPTH_END>'; | 
					
						
						|  | otherwise each item is just the inner '...'. | 
					
						
						|  | """ | 
					
						
						|  | matches = list(DEPTH_RE.finditer(text)) | 
					
						
						|  | if include_tags: | 
					
						
						|  | return [m.group(0) for m in matches] | 
					
						
						|  | return [m.group(1) for m in matches] | 
					
						
						|  |  | 
					
						
						|  | def extract_trace_lists( | 
					
						
						|  | text: str, | 
					
						
						|  | point_len: int | None = 2, | 
					
						
						|  | min_points: int = 1 | 
					
						
						|  | ) -> list[list[list[float]]]: | 
					
						
						|  | """ | 
					
						
						|  | Extract *numeric* lists-of-lists like [[140,225],[130,212],...]. | 
					
						
						|  | Returns a list of traces; each trace is a list of points (lists of numbers). | 
					
						
						|  |  | 
					
						
						|  | Heuristic: | 
					
						
						|  | - Find outer [ ... ] blocks that may contain inner lists | 
					
						
						|  | - Keep blocks where every inner list is fully numeric | 
					
						
						|  | - Enforce per-point length (point_len) and a minimum number of points (min_points) | 
					
						
						|  | """ | 
					
						
						|  | traces: list[list[list[float]]] = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for block in OUTER_BLOCK_RE.findall(text): | 
					
						
						|  | inner_strs = re.findall(r'\[([^\[\]]+)\]', block) | 
					
						
						|  | if len(inner_strs) < min_points: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | rows: list[list[float]] = [] | 
					
						
						|  | ok = True | 
					
						
						|  | for row in inner_strs: | 
					
						
						|  | parts = [p.strip().strip('"').strip("'") for p in row.split(',')] | 
					
						
						|  | if point_len is not None and len(parts) != point_len: | 
					
						
						|  | ok = False | 
					
						
						|  | break | 
					
						
						|  | if not all(_is_number(p) for p in parts): | 
					
						
						|  | ok = False | 
					
						
						|  | break | 
					
						
						|  | rows.append([_to_number(p) for p in parts]) | 
					
						
						|  |  | 
					
						
						|  | if ok: | 
					
						
						|  | traces.append(rows) | 
					
						
						|  |  | 
					
						
						|  | return traces | 
					
						
						|  |  | 
					
						
						|  | def extract_action_token_lists( | 
					
						
						|  | text: str, | 
					
						
						|  | only_len: int | None = None, | 
					
						
						|  | require_non_ascii: bool = True | 
					
						
						|  | ) -> list[list[str]]: | 
					
						
						|  | """ | 
					
						
						|  | Extract all [ ... ] groups split by commas, discard numeric lists, | 
					
						
						|  | and return token lists (quotes stripped, whitespace trimmed). | 
					
						
						|  | """ | 
					
						
						|  | lists = [] | 
					
						
						|  |  | 
					
						
						|  | for inner in re.findall(r'\[([^\[\]]+)\]', text): | 
					
						
						|  | parts = [p.strip().strip('"').strip("'") for p in inner.split(',')] | 
					
						
						|  |  | 
					
						
						|  | if only_len is not None and len(parts) != only_len: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if all(_is_number(p) for p in parts): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if require_non_ascii and not any(_has_non_ascii(p) for p in parts): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | lists.append(parts) | 
					
						
						|  |  | 
					
						
						|  | return lists | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class MolmoActCausalLMOutputWithPast(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Base class for MolmoAct causal language model (or autoregressive) outputs. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | 
					
						
						|  | Language modeling loss (for next-token prediction). | 
					
						
						|  | logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | 
					
						
						|  | Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | 
					
						
						|  | `(batch_size, num_heads, sequence_length, embed_size_per_head)`) | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | 
					
						
						|  | `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | image_hidden_states (`torch.FloatTensor`, *optional*): | 
					
						
						|  | A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. | 
					
						
						|  | image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | logits: Optional[torch.FloatTensor] = None | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | image_hidden_states: Optional[torch.FloatTensor] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class MolmoActModelOutputWithPast(BaseModelOutputWithPast): | 
					
						
						|  | """ | 
					
						
						|  | Base class for MolmoAct outputs, with hidden states and attentions. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the model. | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | 
					
						
						|  | `(batch_size, num_heads, sequence_length, embed_size_per_head)`) | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | 
					
						
						|  | `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | image_hidden_states (`torch.FloatTensor`, *optional*): | 
					
						
						|  | A `torch.FloatTensor` of size `(batch_num_patches, hidden_size)`. | 
					
						
						|  | image_hidden_states of the model produced by the vision backbone | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | image_hidden_states: Optional[torch.FloatTensor] = None | 
					
						
						|  | logits: Optional[torch.FloatTensor] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = MolmoActLlmConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["MolmoActDecoderLayer", "MolmoActPostNormDecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = ["past_key_values"] | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_flex_attn = False | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  | _supports_quantized_cache = True | 
					
						
						|  | _supports_static_cache = True | 
					
						
						|  | _supports_attention_backend = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, (nn.Linear,)): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, MolmoActEmbedding): | 
					
						
						|  | module.embedding.data.normal_(mean=0.0, std=std) | 
					
						
						|  | module.new_embedding.data.normal_(mean=0.0, std=std) | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  | elif isinstance(module, MolmoActRMSNorm): | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  | elif isinstance(module, nn.LayerNorm): | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ViTMLP(nn.Module): | 
					
						
						|  | def __init__(self, dim: int, hidden_dim: int, hidden_act: str, device: Union[str, torch.device] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.w1 = nn.Linear(dim, hidden_dim, bias=True, device=device) | 
					
						
						|  | self.act = ACT2FN[hidden_act] | 
					
						
						|  | self.w2 = nn.Linear(hidden_dim, dim, bias=True, device=device) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.w2(self.act(self.w1(x))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ViTMultiHeadDotProductAttention(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | hidden_size: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | num_key_value_heads: int, | 
					
						
						|  | head_dim: int, | 
					
						
						|  | use_bias: bool = True, | 
					
						
						|  | input_dim: Optional[int] = None, | 
					
						
						|  | float32_attention: bool = True, | 
					
						
						|  | attention_dropout: float = 0.0, | 
					
						
						|  | residual_dropout: float = 0.0, | 
					
						
						|  | device: Union[str, torch.device] = None, | 
					
						
						|  | attn_implementation: str = "eager", | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.head_dim = head_dim | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.attn_implementation = attn_implementation | 
					
						
						|  | self.is_causal = False | 
					
						
						|  |  | 
					
						
						|  | input_dim = input_dim or hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.wq = nn.Linear( | 
					
						
						|  | input_dim, | 
					
						
						|  | self.num_heads * self.head_dim, | 
					
						
						|  | bias=use_bias, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  | self.wk = nn.Linear( | 
					
						
						|  | input_dim, | 
					
						
						|  | self.num_key_value_heads * self.head_dim, | 
					
						
						|  | bias=use_bias, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  | self.wv = nn.Linear( | 
					
						
						|  | input_dim, | 
					
						
						|  | self.num_key_value_heads * self.head_dim, | 
					
						
						|  | bias=use_bias, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  | self.wo = nn.Linear( | 
					
						
						|  | self.num_heads * self.head_dim, | 
					
						
						|  | self.hidden_size, | 
					
						
						|  | ) | 
					
						
						|  | self.float32_attention = float32_attention | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  | self.residual_dropout = nn.Dropout(residual_dropout) | 
					
						
						|  |  | 
					
						
						|  | def _split_heads(self, hidden_states, num_heads) -> torch.Tensor: | 
					
						
						|  | return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) | 
					
						
						|  |  | 
					
						
						|  | def _merge_heads(self, hidden_states) -> torch.Tensor: | 
					
						
						|  | return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,)) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | inputs_q: torch.Tensor, | 
					
						
						|  | inputs_kv: Optional[torch.Tensor] = None, | 
					
						
						|  | attn_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  | if inputs_kv is not None: | 
					
						
						|  | inputs_k = inputs_kv | 
					
						
						|  | inputs_v = inputs_kv | 
					
						
						|  | else: | 
					
						
						|  | inputs_k = inputs_q | 
					
						
						|  | inputs_v = inputs_q | 
					
						
						|  |  | 
					
						
						|  | xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v) | 
					
						
						|  |  | 
					
						
						|  | xq = self._split_heads(xq, self.num_heads) | 
					
						
						|  | xk = self._split_heads(xk, self.num_key_value_heads) | 
					
						
						|  | xv = self._split_heads(xv, self.num_key_value_heads) | 
					
						
						|  |  | 
					
						
						|  | if self.num_heads != self.num_key_value_heads: | 
					
						
						|  | xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) | 
					
						
						|  | xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) | 
					
						
						|  |  | 
					
						
						|  | og_dtype = xq.dtype | 
					
						
						|  |  | 
					
						
						|  | if self.float32_attention: | 
					
						
						|  | xq = xq.to(torch.float) | 
					
						
						|  | xk = xk.to(torch.float) | 
					
						
						|  |  | 
					
						
						|  | dropout_p = 0.0 if not self.training else self.attention_dropout | 
					
						
						|  |  | 
					
						
						|  | if self.attn_implementation == "eager": | 
					
						
						|  | attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk) | 
					
						
						|  | attn_weights = F.softmax(attn_weights, dim=-1) | 
					
						
						|  | attn_weights = F.dropout( | 
					
						
						|  | attn_weights, | 
					
						
						|  | p=dropout_p, | 
					
						
						|  | training=self.training | 
					
						
						|  | ) | 
					
						
						|  | attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv) | 
					
						
						|  |  | 
					
						
						|  | elif self.attn_implementation == "sdpa": | 
					
						
						|  | if not torch.is_autocast_enabled(): | 
					
						
						|  | xv = xv.to(torch.float) | 
					
						
						|  |  | 
					
						
						|  | attn_output = F.scaled_dot_product_attention( | 
					
						
						|  | xq.transpose(1, 2).contiguous(), | 
					
						
						|  | xk.transpose(1, 2).contiguous(), | 
					
						
						|  | xv.transpose(1, 2).contiguous(), | 
					
						
						|  | attn_mask=attn_mask, | 
					
						
						|  | is_causal=False, | 
					
						
						|  | dropout_p=dropout_p, | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | elif self.attn_implementation == "flash_attention_2": | 
					
						
						|  | assert not self.config.float32_attention | 
					
						
						|  |  | 
					
						
						|  | attn_output = _flash_attention_forward( | 
					
						
						|  | xq.transpose(1, 2).to(torch.bfloat16), | 
					
						
						|  | xk.transpose(1, 2).to(torch.bfloat16), | 
					
						
						|  | xv.transpose(1, 2).to(torch.bfloat16), | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | query_length=inputs_q.shape[1], | 
					
						
						|  | is_causal=False, | 
					
						
						|  | dropout=dropout_p, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Attention implementation {self.attn_implementation} not supported") | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.to(og_dtype) | 
					
						
						|  | attn_output = self._merge_heads(attn_output) | 
					
						
						|  | attn_output = self.wo(attn_output) | 
					
						
						|  | attn_output = self.residual_dropout(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActVisionBlock(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.attention = ViTMultiHeadDotProductAttention( | 
					
						
						|  | hidden_size=config.hidden_size, | 
					
						
						|  | num_heads=config.num_attention_heads, | 
					
						
						|  | num_key_value_heads=config.num_key_value_heads, | 
					
						
						|  | head_dim=config.head_dim, | 
					
						
						|  | float32_attention=config.float32_attention, | 
					
						
						|  | attention_dropout=config.attention_dropout, | 
					
						
						|  | residual_dropout=config.residual_dropout, | 
					
						
						|  | device=device, | 
					
						
						|  | attn_implementation=config._attn_implementation, | 
					
						
						|  | ) | 
					
						
						|  | self.feed_forward = ViTMLP(config.hidden_size, config.intermediate_size, config.hidden_act, device=device) | 
					
						
						|  | self.attention_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) | 
					
						
						|  | self.ffn_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | x = x + self.attention(self.attention_norm(x)) | 
					
						
						|  | x = x + self.feed_forward(self.ffn_norm(x)) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActVisionBlockCollection(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.conifg = config | 
					
						
						|  | self.resblocks = nn.ModuleList([ | 
					
						
						|  | MolmoActVisionBlock(config, device) for _ in range(config.num_hidden_layers) | 
					
						
						|  | ]) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> List[torch.Tensor]: | 
					
						
						|  | hidden_states = [] | 
					
						
						|  | for r in self.resblocks: | 
					
						
						|  | x = r(x) | 
					
						
						|  | hidden_states.append(x) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _expand_token(token, batch_size: int): | 
					
						
						|  | return token.view(1, 1, -1).expand(batch_size, -1, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActVisionTransformer(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.scale = config.hidden_size ** -0.5 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.num_prefix_tokens: int = 1 if config.use_cls_token else 0 | 
					
						
						|  | if config.use_cls_token: | 
					
						
						|  | self.class_embedding = nn.Parameter( | 
					
						
						|  | torch.zeros(config.hidden_size, device=device) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.positional_embedding = nn.Parameter( | 
					
						
						|  | torch.zeros(config.image_num_pos, config.hidden_size, device=device), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image_patch_size = config.image_patch_size | 
					
						
						|  | self.patch_embedding = nn.Linear( | 
					
						
						|  | image_patch_size * image_patch_size * 3, | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | bias=config.patch_bias, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) \ | 
					
						
						|  | if config.pre_layernorm else None | 
					
						
						|  |  | 
					
						
						|  | self.transformer = MolmoActVisionBlockCollection(config, device) | 
					
						
						|  |  | 
					
						
						|  | def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor: | 
					
						
						|  | pos_emb = self.positional_embedding | 
					
						
						|  | if self.config.use_cls_token: | 
					
						
						|  | cls_pos, pos_emb = pos_emb[:1], pos_emb[1:] | 
					
						
						|  |  | 
					
						
						|  | pos_emb = pos_emb.reshape( | 
					
						
						|  | (int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | (patch_num_0, patch_num_1) = patch_num | 
					
						
						|  |  | 
					
						
						|  | if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2) | 
					
						
						|  | pos_emb = F.interpolate( | 
					
						
						|  | pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True, | 
					
						
						|  | ) | 
					
						
						|  | pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0) | 
					
						
						|  |  | 
					
						
						|  | pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if self.config.use_cls_token: | 
					
						
						|  | x = x + torch.cat([cls_pos[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype) | 
					
						
						|  | else: | 
					
						
						|  | x = x + pos_emb[None, :, :].to(x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]: | 
					
						
						|  | """ | 
					
						
						|  | : param x: (batch_size, num_patch, n_pixels) | 
					
						
						|  | """ | 
					
						
						|  | if patch_num is None: | 
					
						
						|  | patch_num = self.config.image_num_patch | 
					
						
						|  |  | 
					
						
						|  | B, N, D = x.shape | 
					
						
						|  |  | 
					
						
						|  | x = self.patch_embedding(x) | 
					
						
						|  |  | 
					
						
						|  | if self.config.use_cls_token: | 
					
						
						|  | x = torch.cat([_expand_token(self.class_embedding, x.size(0)).to(x.dtype), x], dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = self.add_pos_emb(x, patch_num) | 
					
						
						|  |  | 
					
						
						|  | if self.pre_ln is not None: | 
					
						
						|  | x = self.pre_ln(x) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.transformer(x) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ImageProjectorMLP(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | input_dim: int, | 
					
						
						|  | hidden_dim: int, | 
					
						
						|  | output_dim: int, | 
					
						
						|  | hidden_act: str, | 
					
						
						|  | device: Union[str, torch.device] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.w1 = nn.Linear(input_dim, hidden_dim, bias=False, device=device) | 
					
						
						|  | self.w2 = nn.Linear(hidden_dim, output_dim, bias=False, device=device) | 
					
						
						|  | self.w3 = nn.Linear(input_dim, hidden_dim, bias=False, device=device) | 
					
						
						|  | self.act = ACT2FN[hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.w2(self.act(self.w1(x)) * self.w3(x)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActVisionBackbone(nn.Module): | 
					
						
						|  | def __init__(self, vit_config: MolmoActVitConfig, adapter_config: MolmoActAdapterConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.vit_config = vit_config | 
					
						
						|  | self.adapter_config = adapter_config | 
					
						
						|  |  | 
					
						
						|  | self.vit_layers = [] | 
					
						
						|  | for layer in adapter_config.vit_layers: | 
					
						
						|  | if layer >= 0: | 
					
						
						|  | self.vit_layers.append(layer) | 
					
						
						|  | else: | 
					
						
						|  | self.vit_layers.append(layer + vit_config.num_hidden_layers) | 
					
						
						|  |  | 
					
						
						|  | last_layer_needed = max(self.vit_layers) + 1 | 
					
						
						|  | if last_layer_needed < vit_config.num_hidden_layers: | 
					
						
						|  | new_vit_config = deepcopy(vit_config) | 
					
						
						|  | new_vit_config.num_hidden_layers = last_layer_needed | 
					
						
						|  | self.image_vit = MolmoActVisionTransformer(new_vit_config) | 
					
						
						|  | else: | 
					
						
						|  | self.image_vit = MolmoActVisionTransformer(vit_config) | 
					
						
						|  |  | 
					
						
						|  | self.num_prefix_tokens: int = self.image_vit.num_prefix_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.pad_embed = None | 
					
						
						|  | if adapter_config.image_padding_embed == "pad_and_partial_pad": | 
					
						
						|  | pool_dim = vit_config.hidden_size * len(adapter_config.vit_layers) | 
					
						
						|  | self.pad_embed = nn.Parameter(torch.zeros((2, pool_dim))) | 
					
						
						|  |  | 
					
						
						|  | pool_dim = vit_config.hidden_size * len(adapter_config.vit_layers) | 
					
						
						|  | self.image_pooling_2d = ViTMultiHeadDotProductAttention( | 
					
						
						|  | hidden_size=adapter_config.hidden_size, | 
					
						
						|  | num_heads=adapter_config.num_attention_heads, | 
					
						
						|  | num_key_value_heads=adapter_config.num_key_value_heads, | 
					
						
						|  | head_dim=adapter_config.head_dim, | 
					
						
						|  | input_dim=pool_dim, | 
					
						
						|  | float32_attention=adapter_config.float32_attention, | 
					
						
						|  | attention_dropout=adapter_config.attention_dropout, | 
					
						
						|  | residual_dropout=adapter_config.residual_dropout, | 
					
						
						|  | attn_implementation=adapter_config._attn_implementation, | 
					
						
						|  | ) | 
					
						
						|  | self.image_projector = ImageProjectorMLP( | 
					
						
						|  | adapter_config.hidden_size, | 
					
						
						|  | adapter_config.intermediate_size, | 
					
						
						|  | adapter_config.text_hidden_size, | 
					
						
						|  | adapter_config.hidden_act, | 
					
						
						|  | ) | 
					
						
						|  | self.image_feature_dropout = nn.Dropout(adapter_config.image_feature_dropout) | 
					
						
						|  |  | 
					
						
						|  | def encode_image(self, images: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | : param images: (batch_size, num_crops, num_patch, n_pixels) | 
					
						
						|  | """ | 
					
						
						|  | B, T, N, D = images.shape | 
					
						
						|  | images = images.view(B * T, N, D) | 
					
						
						|  | image_features = self.image_vit(images) | 
					
						
						|  |  | 
					
						
						|  | features = [] | 
					
						
						|  | for layer in self.vit_layers: | 
					
						
						|  | features.append(image_features[layer]) | 
					
						
						|  | image_features = torch.cat(features, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | if self.num_prefix_tokens > 0: | 
					
						
						|  | image_features = image_features[:, 1:] | 
					
						
						|  | image_features = image_features.view(B, T, N, -1) | 
					
						
						|  | return image_features | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dtype(self) -> torch.dtype: | 
					
						
						|  | return self.image_vit.patch_embedding.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def device(self) -> torch.device: | 
					
						
						|  | return self.image_vit.patch_embedding.weight.device | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | images: torch.Tensor, | 
					
						
						|  | pooled_patches_idx: torch.Tensor, | 
					
						
						|  | image_masks: torch.Tensor = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size, num_image = images.shape[:2] | 
					
						
						|  | images = images.to(device=self.device, dtype=self.dtype) | 
					
						
						|  | image_features = self.encode_image(images) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.pad_embed is not None and image_masks is not None: | 
					
						
						|  | image_masks = image_masks.to(device=self.device) | 
					
						
						|  | all_pad = (image_masks == 0).to(image_features.dtype) | 
					
						
						|  | partial = torch.logical_and(image_masks < 1, ~ (image_masks == 0)).to(image_features.dtype) | 
					
						
						|  | image_features = image_features + self.pad_embed[0][None,None,None,:] * all_pad[...,None] \ | 
					
						
						|  | + self.pad_embed[1][None,None,None,:] * partial[...,None] | 
					
						
						|  |  | 
					
						
						|  | image_features = self.image_feature_dropout(image_features) | 
					
						
						|  | dim = image_features.shape[-1] | 
					
						
						|  |  | 
					
						
						|  | valid = pooled_patches_idx >= 0 | 
					
						
						|  | valid_token = torch.any(valid, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_idx = torch.arange(pooled_patches_idx.shape[0], dtype=torch.long, device=pooled_patches_idx.device) | 
					
						
						|  | batch_idx = torch.tile(batch_idx.view(batch_size, 1, 1), [1, pooled_patches_idx.shape[1], pooled_patches_idx.shape[2]]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | to_pool = image_features.reshape(batch_size, -1, dim)[batch_idx, torch.clip(pooled_patches_idx, 0)] | 
					
						
						|  | to_pool = to_pool * valid.to(self.dtype)[:, :, :, None] | 
					
						
						|  | to_pool = to_pool.reshape([-1, pooled_patches_idx.shape[-1], dim]) | 
					
						
						|  |  | 
					
						
						|  | query = to_pool.mean(-2, keepdim=True) | 
					
						
						|  | pooled_features = self.image_pooling_2d(query, to_pool) | 
					
						
						|  | pooled_features = pooled_features.reshape([batch_size, -1, pooled_features.shape[-1]]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pooled_features = self.image_projector(pooled_features) | 
					
						
						|  | return pooled_features.view(-1, pooled_features.shape[-1])[valid_token.flatten()] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`, *optional*): | 
					
						
						|  | Deprecated and unused. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos.unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin.unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActRotaryEmbedding(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MolmoActLlmConfig, device: Union[str, torch.device] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if hasattr(config, "rope_scaling") and config.rope_scaling is not None: | 
					
						
						|  | self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | 
					
						
						|  | else: | 
					
						
						|  | self.rope_type = "default" | 
					
						
						|  | self.max_seq_len_cached = config.max_position_embeddings | 
					
						
						|  | self.original_max_seq_len = config.max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | 
					
						
						|  |  | 
					
						
						|  | inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  | self.original_inv_freq = self.inv_freq | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @dynamic_rope_update | 
					
						
						|  | def forward(self, x, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = emb.cos() * self.attention_scaling | 
					
						
						|  | sin = emb.sin() * self.attention_scaling | 
					
						
						|  |  | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @use_kernel_forward_from_hub("RMSNorm") | 
					
						
						|  | class MolmoActRMSNorm(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | size: int, | 
					
						
						|  | eps: float = 1e-6, | 
					
						
						|  | device: Union[str, torch.device] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(size, device=device)) | 
					
						
						|  | self.eps = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | with torch.autocast(enabled=False, device_type=x.device.type): | 
					
						
						|  | og_dtype = x.dtype | 
					
						
						|  | x = x.to(torch.float32) | 
					
						
						|  | variance = x.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | x = x * torch.rsqrt(variance + self.eps) | 
					
						
						|  | x = x.to(og_dtype) | 
					
						
						|  |  | 
					
						
						|  | return self.weight * x | 
					
						
						|  |  | 
					
						
						|  | def extra_repr(self): | 
					
						
						|  | return f"{tuple(self.weight.shape)}, eps={self.eps}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def eager_attention_forward( | 
					
						
						|  | module: nn.Module, | 
					
						
						|  | query: torch.Tensor, | 
					
						
						|  | key: torch.Tensor, | 
					
						
						|  | value: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor], | 
					
						
						|  | scaling: float, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | 
					
						
						|  | key_states = repeat_kv(key, module.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value, module.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  | attn_weights = attn_weights + causal_mask | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MolmoActLlmConfig, layer_idx: Optional[int] = None) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
						
						|  | "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads | 
					
						
						|  | self.head_dim = config.head_dim | 
					
						
						|  | self.scaling = self.head_dim**-0.5 | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | if (config.head_dim * config.num_attention_heads) != config.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {config.hidden_size}" | 
					
						
						|  | f" and `num_attention_heads`: {config.num_attention_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.fused_dims = ( | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | config.head_dim * config.num_key_value_heads, | 
					
						
						|  | config.head_dim * config.num_key_value_heads, | 
					
						
						|  | ) | 
					
						
						|  | self.att_proj = nn.Linear( | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | sum(self.fused_dims), | 
					
						
						|  | bias=config.qkv_bias, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.k_norm: Optional[MolmoActRMSNorm] = None | 
					
						
						|  | self.q_norm: Optional[MolmoActRMSNorm] = None | 
					
						
						|  | self.qk_norm_type: Optional[str] = None | 
					
						
						|  | if config.use_qk_norm: | 
					
						
						|  | k_norm_size = ( | 
					
						
						|  | config.head_dim | 
					
						
						|  | if config.qk_norm_type == "qwen3" else | 
					
						
						|  | config.num_key_value_heads * config.head_dim | 
					
						
						|  | ) | 
					
						
						|  | self.k_norm = MolmoActRMSNorm(k_norm_size, eps=config.layer_norm_eps) | 
					
						
						|  | q_norm_size = ( | 
					
						
						|  | config.head_dim | 
					
						
						|  | if config.qk_norm_type == "qwen3" else | 
					
						
						|  | config.num_attention_heads * config.head_dim | 
					
						
						|  | ) | 
					
						
						|  | self.q_norm = MolmoActRMSNorm(q_norm_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.qk_norm_type = config.qk_norm_type | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  |  | 
					
						
						|  | self.attn_out = nn.Linear( | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | bias=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | position_embeddings: Tuple[torch.Tensor, torch.Tensor], | 
					
						
						|  | attention_mask: Optional[torch.Tensor], | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **kwargs: Unpack[FlashAttentionKwargs], | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | input_shape = hidden_states.shape[:-1] | 
					
						
						|  | hidden_shape = (*input_shape, -1, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | qkv = self.att_proj(hidden_states) | 
					
						
						|  | query_states, key_states, value_states = qkv.split(self.fused_dims, dim=-1) | 
					
						
						|  | value_states = value_states.view(hidden_shape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type != "qwen3": | 
					
						
						|  | query_states = self.q_norm(query_states) | 
					
						
						|  | key_states = self.k_norm(key_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(hidden_shape) | 
					
						
						|  | key_states = key_states.view(hidden_shape) | 
					
						
						|  | if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type == "qwen3": | 
					
						
						|  | query_states = self.q_norm(query_states) | 
					
						
						|  | key_states = self.k_norm(key_states) | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | attention_interface: Callable = eager_attention_forward | 
					
						
						|  | if self.config._attn_implementation != "eager": | 
					
						
						|  | if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " | 
					
						
						|  | 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] | 
					
						
						|  |  | 
					
						
						|  | attn_output, attn_weights = attention_interface( | 
					
						
						|  | self, | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | dropout=0.0 if not self.training else self.attention_dropout, | 
					
						
						|  | scaling=self.scaling, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(*input_shape, -1).contiguous() | 
					
						
						|  | attn_output = self.attn_out(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LanguageModelMLP(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | input_dim: int, | 
					
						
						|  | intermediate_size: int, | 
					
						
						|  | hidden_act: str, | 
					
						
						|  | device: Union[str, torch.device] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.ff_proj = nn.Linear(input_dim, intermediate_size * 2, bias=False, device=device) | 
					
						
						|  | self.ff_out = nn.Linear(intermediate_size, input_dim, bias=False, device=device) | 
					
						
						|  | self.act = ACT2FN[hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | x = self.ff_proj(x) | 
					
						
						|  | x, gate = x.chunk(2, dim=-1) | 
					
						
						|  | x = self.act(gate) * x | 
					
						
						|  | x = self.ff_out(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActDecoderLayer(GradientCheckpointingLayer): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | config: MolmoActLlmConfig, | 
					
						
						|  | layer_idx: Optional[int] = None, | 
					
						
						|  | device: Union[str, torch.device] = None | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = MolmoActAttention(config, layer_idx) | 
					
						
						|  | self.attn_norm = MolmoActRMSNorm( | 
					
						
						|  | config.hidden_size, eps=config.layer_norm_eps, device=device) | 
					
						
						|  | self.dropout = nn.Dropout(config.residual_dropout) | 
					
						
						|  | self.mlp = LanguageModelMLP( | 
					
						
						|  | config.hidden_size, config.intermediate_size, config.hidden_act, device=device) | 
					
						
						|  | self.ff_norm = MolmoActRMSNorm( | 
					
						
						|  | config.hidden_size, eps=config.layer_norm_eps, device=device) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
						
						|  | `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. | 
					
						
						|  | position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | 
					
						
						|  | Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | 
					
						
						|  | with `head_dim` being the embedding dimension of each attention head. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | 
					
						
						|  | into the model | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.attn_norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = residual + self.dropout(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.ff_norm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = residual + self.dropout(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActPostNormDecoderLayer(MolmoActDecoderLayer): | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
						
						|  | `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. | 
					
						
						|  | position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | 
					
						
						|  | Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | 
					
						
						|  | with `head_dim` being the embedding dimension of each attention head. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | 
					
						
						|  | into the model | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = self.attn_norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = residual + self.dropout(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | hidden_states = self.ff_norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = residual + self.dropout(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MolmoActEmbedding(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | num_embeddings: int, | 
					
						
						|  | num_new_embeddings: int, | 
					
						
						|  | features: int, | 
					
						
						|  | device: Union[str, torch.device] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embedding = nn.Parameter( | 
					
						
						|  | torch.zeros(num_embeddings, features, device=device), | 
					
						
						|  | ) | 
					
						
						|  | self.new_embedding = nn.Parameter( | 
					
						
						|  | torch.zeros(num_new_embeddings, features, device=device), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  |  | 
					
						
						|  | Two formats are allowed: | 
					
						
						|  | - a [`~cache_utils.Cache`] instance, see our | 
					
						
						|  | [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); | 
					
						
						|  | - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
						
						|  | cache format. | 
					
						
						|  |  | 
					
						
						|  | The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
						
						|  | legacy cache format will be returned. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`CausalLMOutputWithPast`] instead of a plain tuple. | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | 
					
						
						|  | this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | 
					
						
						|  | the complete sequence length. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare MolmoAct text-only model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | MOLMO_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class MolmoActLlm(MolmoActPreTrainedModel): | 
					
						
						|  | def __init__(self, config: MolmoActLlmConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.config = config | 
					
						
						|  | if config.additional_vocab_size is not None: | 
					
						
						|  | self.wte = MolmoActEmbedding( | 
					
						
						|  | config.vocab_size, | 
					
						
						|  | config.additional_vocab_size, | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.wte = nn.Embedding(config.vocab_size, config.hidden_size) | 
					
						
						|  | self.emb_drop = nn.Dropout(config.embedding_dropout) | 
					
						
						|  | decoder_layer = MolmoActPostNormDecoderLayer if config.norm_after else MolmoActDecoderLayer | 
					
						
						|  | self.blocks = nn.ModuleList( | 
					
						
						|  | [decoder_layer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.ln_f = MolmoActRMSNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.rotary_emb = MolmoActRotaryEmbedding(config) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self) -> torch.nn.Module: | 
					
						
						|  | return self.wte | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value: torch.nn.Module) -> None: | 
					
						
						|  | self.wte = value | 
					
						
						|  |  | 
					
						
						|  | @can_return_tuple | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Cache] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **flash_attn_kwargs: Unpack[FlashAttentionKwargs], | 
					
						
						|  | ) -> BaseModelOutputWithPast: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training and use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(past_key_values, (type(None), Cache)): | 
					
						
						|  | raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) | 
					
						
						|  | inputs_embeds = self.wte(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if use_cache and past_key_values is None: | 
					
						
						|  | past_key_values = DynamicCache() | 
					
						
						|  |  | 
					
						
						|  | if cache_position is None: | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | cache_position = torch.arange( | 
					
						
						|  | past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = cache_position.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = self._update_causal_mask( | 
					
						
						|  | attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | position_embeddings = self.rotary_emb(hidden_states, position_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | for decoder_block in self.blocks[: self.config.num_hidden_layers]: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | layer_outputs = decoder_block( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=causal_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | **flash_attn_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.ln_f(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=past_key_values if use_cache else None, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _update_causal_mask( | 
					
						
						|  | self, | 
					
						
						|  | attention_mask: Union[torch.Tensor, "BlockMask"], | 
					
						
						|  | input_tensor: torch.Tensor, | 
					
						
						|  | cache_position: torch.Tensor, | 
					
						
						|  | past_key_values: Cache, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | if self.config._attn_implementation == "flash_attention_2": | 
					
						
						|  | if attention_mask is not None and (attention_mask == 0.0).any(): | 
					
						
						|  | return attention_mask | 
					
						
						|  | return None | 
					
						
						|  | if self.config._attn_implementation == "flex_attention": | 
					
						
						|  | if isinstance(attention_mask, torch.Tensor): | 
					
						
						|  | attention_mask = make_flex_block_causal_mask(attention_mask) | 
					
						
						|  | return attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions: | 
					
						
						|  | if AttentionMaskConverter._ignore_causal_mask_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | inputs_embeds=input_tensor, | 
					
						
						|  | past_key_values_length=past_seen_tokens, | 
					
						
						|  | is_training=self.training, | 
					
						
						|  | ): | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | dtype = input_tensor.dtype | 
					
						
						|  | sequence_length = input_tensor.shape[1] | 
					
						
						|  | if using_compilable_cache: | 
					
						
						|  | target_length = past_key_values.get_max_cache_shape() | 
					
						
						|  | else: | 
					
						
						|  | target_length = ( | 
					
						
						|  | attention_mask.shape[-1] | 
					
						
						|  | if isinstance(attention_mask, torch.Tensor) | 
					
						
						|  | else past_seen_tokens + sequence_length + 1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( | 
					
						
						|  | attention_mask, | 
					
						
						|  | sequence_length=sequence_length, | 
					
						
						|  | target_length=target_length, | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | batch_size=input_tensor.shape[0], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | self.config._attn_implementation == "sdpa" | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and attention_mask.device.type in ["cuda", "xpu", "npu"] | 
					
						
						|  | and not output_attentions | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | min_dtype = torch.finfo(dtype).min | 
					
						
						|  | causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | 
					
						
						|  |  | 
					
						
						|  | return causal_mask | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _prepare_4d_causal_attention_mask_with_cache_position( | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | sequence_length: int, | 
					
						
						|  | target_length: int, | 
					
						
						|  | dtype: torch.dtype, | 
					
						
						|  | cache_position: torch.Tensor, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
						
						|  | `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape | 
					
						
						|  | `(batch_size, 1, query_length, key_value_length)`. | 
					
						
						|  | sequence_length (`int`): | 
					
						
						|  | The sequence length being processed. | 
					
						
						|  | target_length (`int`): | 
					
						
						|  | The target length: when generating with static cache, the mask should be as long as the static cache, | 
					
						
						|  | to account for the 0 padding, the part of the cache that is not filled yet. | 
					
						
						|  | dtype (`torch.dtype`): | 
					
						
						|  | The dtype to use for the 4D attention mask. | 
					
						
						|  | cache_position (`torch.Tensor`): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. | 
					
						
						|  | batch_size (`torch.Tensor`): | 
					
						
						|  | Batch size. | 
					
						
						|  | """ | 
					
						
						|  | if attention_mask is not None and attention_mask.dim() == 4: | 
					
						
						|  |  | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  | else: | 
					
						
						|  | min_dtype = torch.finfo(dtype).min | 
					
						
						|  | causal_mask = torch.full( | 
					
						
						|  | (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device | 
					
						
						|  | ) | 
					
						
						|  | if sequence_length != 1: | 
					
						
						|  | causal_mask = torch.triu(causal_mask, diagonal=1) | 
					
						
						|  | causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) | 
					
						
						|  | causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = causal_mask.clone() | 
					
						
						|  | mask_length = attention_mask.shape[-1] | 
					
						
						|  | padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( | 
					
						
						|  | causal_mask.device | 
					
						
						|  | ) | 
					
						
						|  | padding_mask = padding_mask == 0 | 
					
						
						|  | causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | 
					
						
						|  | padding_mask, min_dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The MolmoAct text-only model which consists of a language model + lm head.", | 
					
						
						|  | MOLMO_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class MolmoActForCausalLM(MolmoActPreTrainedModel, GenerationMixin): | 
					
						
						|  | _tied_weights_keys = [] | 
					
						
						|  | _tp_plan = {"lm_head": "colwise_rep"} | 
					
						
						|  | _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MolmoActLlmConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = MolmoActLlm(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self) -> torch.nn.Module: | 
					
						
						|  | return self.model.wte | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value: torch.nn.Module) -> None: | 
					
						
						|  | self.model.wte = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, value: torch.nn.Module) -> None: | 
					
						
						|  | self.lm_head = value | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder: torch.nn.Module) -> None: | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self) -> torch.nn.Module: | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | @can_return_tuple | 
					
						
						|  | @add_start_docstrings_to_model_forward(MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Cache] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | logits_to_keep: Union[int, torch.Tensor] = 0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> CausalLMOutputWithPast: | 
					
						
						|  | r""" | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, MolmoActForCausalLM | 
					
						
						|  |  | 
					
						
						|  | >>> model = MolmoActForCausalLM.from_pretrained("...") | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("...") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
						
						|  | ```""" | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs: BaseModelOutputWithPast = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs.last_hidden_state | 
					
						
						|  |  | 
					
						
						|  | slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | 
					
						
						|  | logits = self.lm_head(hidden_states[:, slice_indices, :]) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MOLMO2_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | images (`torch.FloatTensor` of shape `(batch_size, n_crops, 27*27, 3*14*14)`, *optional*): | 
					
						
						|  | The input crops in with pixel values between 0 and 1 and normalized with SigLIP2 mean/std | 
					
						
						|  |  | 
					
						
						|  | Each crop contains 27x27 patches with 14*14*3 pixel values | 
					
						
						|  | image_masks  (`torch.FloatTensor` of shape `(batch_size, n_crops, n_patches, n_features)`, *optional*): | 
					
						
						|  | Image masks showing what percent of each patch is paddding | 
					
						
						|  | pooled_patches_idx (`torch.LongTensor` of shape `(batch_size, n_image_tokens, n_pooled_patches)`): | 
					
						
						|  | For each patch_id tokens in `input_ids`, the indices of the patches in `images` | 
					
						
						|  | to pool for that token, masked with -1 | 
					
						
						|  | means ignore the patch. | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  |  | 
					
						
						|  | Two formats are allowed: | 
					
						
						|  | - a [`~cache_utils.Cache`] instance, see our | 
					
						
						|  | [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); | 
					
						
						|  | - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
						
						|  | cache format. | 
					
						
						|  |  | 
					
						
						|  | The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
						
						|  | legacy cache format will be returned. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`MolmoActCausalLMOutputWithPast`] instead of a plain tuple. | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | 
					
						
						|  | this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | 
					
						
						|  | the complete sequence length. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare MolmoAct model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | MOLMO_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class MolmoActModel(MolmoActPreTrainedModel): | 
					
						
						|  | _checkpoint_conversion_mapping = {} | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MolmoActConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.transformer: MolmoActLlm = MolmoActLlm(config.llm_config) | 
					
						
						|  | self.vision_backbone: Optional[MolmoActVisionBackbone] = None | 
					
						
						|  | if config.vit_config is not None and config.adapter_config is not None: | 
					
						
						|  | self.vision_backbone = MolmoActVisionBackbone(config.vit_config, config.adapter_config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self) -> torch.nn.Module: | 
					
						
						|  | return self.transformer.wte | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value: torch.nn.Module) -> None: | 
					
						
						|  | self.transformer.wte = value | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def device(self) -> torch.device: | 
					
						
						|  | return self.transformer.ln_f.weight.device | 
					
						
						|  |  | 
					
						
						|  | def build_input_embeddings( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor, | 
					
						
						|  | images: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_masks: Optional[torch.Tensor] = None, | 
					
						
						|  | pooled_patches_idx: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) | 
					
						
						|  | x = self.transformer.wte(input_ids) | 
					
						
						|  |  | 
					
						
						|  | image_features: Optional[torch.FloatTensor] = None | 
					
						
						|  | if images is not None: | 
					
						
						|  | image_features = self.vision_backbone(images, pooled_patches_idx) | 
					
						
						|  | is_image_patch = input_ids.view(-1) == self.config.image_patch_id | 
					
						
						|  | assert is_image_patch.sum() == len(image_features) | 
					
						
						|  | x.view(-1, x.shape[-1])[is_image_patch] += image_features | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = self.transformer.emb_drop(x) | 
					
						
						|  |  | 
					
						
						|  | return x, image_features | 
					
						
						|  |  | 
					
						
						|  | @can_return_tuple | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | images: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_masks: Optional[torch.Tensor] = None, | 
					
						
						|  | pooled_patches_idx: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Union[Tuple, MolmoActModelOutputWithPast]: | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if images is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You cannot specify both images and inputs_embeds at the same time." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds, image_features = self.build_input_embeddings( | 
					
						
						|  | input_ids, images, image_masks, pooled_patches_idx) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.transformer( | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return MolmoActModelOutputWithPast( | 
					
						
						|  | last_hidden_state=outputs.last_hidden_state, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | image_hidden_states=image_features if images is not None else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The MolmoAct model which consists of a vision backbone and a language model + lm head.", | 
					
						
						|  | MOLMO_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class MolmoActForActionReasoning(MolmoActPreTrainedModel, GenerationMixin): | 
					
						
						|  | _checkpoint_conversion_mapping = {} | 
					
						
						|  | _tied_weights_keys = [] | 
					
						
						|  | config_class = MolmoActConfig | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MolmoActConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.model = MolmoActModel(config) | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.norm_stats = getattr(config, "norm_stats", None) or {} | 
					
						
						|  |  | 
					
						
						|  | self.n_action_bins = getattr(config, "n_action_bins", 256) | 
					
						
						|  |  | 
					
						
						|  | self.bins = np.linspace(-1.0, 1.0, self.n_action_bins) | 
					
						
						|  | self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0 | 
					
						
						|  |  | 
					
						
						|  | self._qwen_tokenizer = None | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self) -> torch.nn.Module: | 
					
						
						|  | return self.model.transformer.wte | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value: torch.nn.Module) -> None: | 
					
						
						|  | self.model.transformer.wte = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, value: torch.nn.Module) -> None: | 
					
						
						|  | self.lm_head = value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def language_model(self) -> torch.nn.Module: | 
					
						
						|  | return self.model.transformer | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def vision_backbone(self) -> torch.nn.Module: | 
					
						
						|  | return self.model.vision_backbone | 
					
						
						|  |  | 
					
						
						|  | @can_return_tuple | 
					
						
						|  | @add_start_docstrings_to_model_forward(MOLMO2_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | images: Optional[torch.Tensor] = None, | 
					
						
						|  | image_masks: Optional[torch.Tensor] = None, | 
					
						
						|  | pooled_patches_idx: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | logits_to_keep: Union[int, torch.Tensor] = 0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[Tuple, MolmoActCausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | ```python | 
					
						
						|  | >>> from PIL import Image | 
					
						
						|  | >>> import requests | 
					
						
						|  | >>> from transformers import AutoProcessor, MolmoActForActionReasoning | 
					
						
						|  |  | 
					
						
						|  | >>> model = MolmoActForActionReasoning.from_pretrained("...") | 
					
						
						|  | >>> processor = AutoProcessor.from_pretrained("...") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "What's the content of the image?" | 
					
						
						|  | >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" | 
					
						
						|  | >>> image = Image.open(requests.get(url, stream=True).raw) | 
					
						
						|  |  | 
					
						
						|  | >>> inputs = processor(images=image, text=prompt, apply_chat_template=True, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generated_ids = model.generate(**inputs, max_new_tokens=15) | 
					
						
						|  | >>> generated_tokens = generated_ids[:, inputs['input_ids'].size(1):] | 
					
						
						|  | >>> processor.batch_decode(generated_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | "The image features a busy city street with a stop sign prominently displayed" | 
					
						
						|  | ```""" | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | images=images, | 
					
						
						|  | image_masks=image_masks, | 
					
						
						|  | pooled_patches_idx=pooled_patches_idx, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs.last_hidden_state | 
					
						
						|  | slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | 
					
						
						|  | logits = self.lm_head(hidden_states[:, slice_indices, :]) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size) | 
					
						
						|  |  | 
					
						
						|  | return MolmoActCausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | image_hidden_states=outputs.image_hidden_states, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _check_unnorm_key(self, unnorm_key: Optional[str]) -> str: | 
					
						
						|  | """Validate and resolve which dataset key to use from self.norm_stats.""" | 
					
						
						|  | if not self.norm_stats: | 
					
						
						|  | raise ValueError("No norm_stats found in config; cannot unnormalize actions.") | 
					
						
						|  | if unnorm_key is None: | 
					
						
						|  | if len(self.norm_stats) != 1: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Model has multiple dataset stats; please pass `unnorm_key` from {list(self.norm_stats.keys())}" | 
					
						
						|  | ) | 
					
						
						|  | return next(iter(self.norm_stats.keys())) | 
					
						
						|  | if unnorm_key not in self.norm_stats: | 
					
						
						|  | raise ValueError(f"`unnorm_key`={unnorm_key!r} not in {list(self.norm_stats.keys())}") | 
					
						
						|  | return unnorm_key | 
					
						
						|  |  | 
					
						
						|  | def get_action_dim(self, unnorm_key: Optional[str] = None) -> int: | 
					
						
						|  | """Return action dimensionality from q01 stats length for the dataset key.""" | 
					
						
						|  | key = self._check_unnorm_key(unnorm_key) | 
					
						
						|  | return len(self.norm_stats[key]["action"]["q01"]) | 
					
						
						|  |  | 
					
						
						|  | def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]: | 
					
						
						|  | """Return the full action stats dict for a given dataset key.""" | 
					
						
						|  | key = self._check_unnorm_key(unnorm_key) | 
					
						
						|  | return self.norm_stats[key]["action"] | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def parse_action(self, text: str, unnorm_key: Optional[str] = None) -> list: | 
					
						
						|  | """ | 
					
						
						|  | Parse a generated text to extract one 1×D action token list, decode to continuous values, | 
					
						
						|  | and unnormalize using dataset-specific stats from `config.norm_stats`. | 
					
						
						|  |  | 
					
						
						|  | This follows the pipeline used in `experiments/robot/libero/main_libero_10_evaluation.py`: | 
					
						
						|  | - Find bracketed token lists following the phrase "the action that the robot should take is" (case-insensitive), | 
					
						
						|  | falling back to any bracketed list in the text. | 
					
						
						|  | - Convert token strings → ids via Qwen2Tokenizer. | 
					
						
						|  | - Map ids → discretized bin indices using: `discretized = vocab_size - token_id - 1` (clipped to bins) | 
					
						
						|  | - Convert bins → normalized actions in [-1, 1] using precomputed `bin_centers`. | 
					
						
						|  | - Unnormalize with q01/q99 and optional `mask` from norm_stats. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | List[float]: unnormalized action vector of length D. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | action_dim = self.get_action_dim(unnorm_key) | 
					
						
						|  | stats = self.get_action_stats(unnorm_key) | 
					
						
						|  | q01 = np.asarray(stats["q01"], dtype=np.float32) | 
					
						
						|  | q99 = np.asarray(stats["q99"], dtype=np.float32) | 
					
						
						|  | mask = np.asarray(stats.get("mask", np.ones_like(q01, dtype=bool)), dtype=bool) | 
					
						
						|  |  | 
					
						
						|  | mask[-1] = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self._qwen_tokenizer is None: | 
					
						
						|  | self._qwen_tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen2-7B") | 
					
						
						|  |  | 
					
						
						|  | token_lists = extract_action_token_lists(text, only_len=action_dim) | 
					
						
						|  | action_lists = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for tokens in token_lists: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ids = self._qwen_tokenizer.convert_tokens_to_ids(tokens) | 
					
						
						|  | ids = [self._qwen_tokenizer.vocab_size if i is None else int(i) for i in ids] | 
					
						
						|  | ids = np.asarray(ids, dtype=np.int64) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | discretized = self._qwen_tokenizer.vocab_size - ids | 
					
						
						|  | discretized = np.clip(discretized - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1) | 
					
						
						|  | normalized = self.bin_centers[discretized] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | unnorm = 0.5 * (normalized + 1.0) * (q99 - q01) + q01 | 
					
						
						|  | actions = np.where(mask, unnorm, normalized) | 
					
						
						|  |  | 
					
						
						|  | action_lists.append([float(x) for x in actions]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return action_lists | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def parse_trace(self, text: str) -> list: | 
					
						
						|  | return extract_trace_lists(text, point_len=2, min_points=1) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def parse_depth(self, text: str) -> list: | 
					
						
						|  | return extract_depth_string(text, include_tags=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | images: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_masks: Optional[torch.Tensor] = None, | 
					
						
						|  | pooled_patches_idx: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | logits_to_keep: Optional[Union[int, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | model_inputs = super().prepare_inputs_for_generation( | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | logits_to_keep=logits_to_keep, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if cache_position[0] == 0: | 
					
						
						|  | model_inputs["images"] = images | 
					
						
						|  | model_inputs["pooled_patches_idx"] = pooled_patches_idx | 
					
						
						|  | model_inputs["image_masks"] = image_masks | 
					
						
						|  |  | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | def _update_model_kwargs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | outputs: ModelOutput, | 
					
						
						|  | model_kwargs: Dict[str, Any], | 
					
						
						|  | is_encoder_decoder: bool = False, | 
					
						
						|  | num_new_tokens: int = 1, | 
					
						
						|  | ) -> Dict[str, Any]: | 
					
						
						|  | if model_kwargs["use_cache"] and "images" in model_kwargs: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for k in ["images", "image_masks", "pooled_patches_idx"]: | 
					
						
						|  | del model_kwargs[k] | 
					
						
						|  | return super()._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder, num_new_tokens) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _prepare_4d_causal_attention_mask_with_cache_position( | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | sequence_length: int, | 
					
						
						|  | target_length: int, | 
					
						
						|  | dtype: torch.dtype, | 
					
						
						|  | cache_position: torch.Tensor, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
						
						|  | `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape | 
					
						
						|  | `(batch_size, 1, query_length, key_value_length)`. | 
					
						
						|  | sequence_length (`int`): | 
					
						
						|  | The sequence length being processed. | 
					
						
						|  | target_length (`int`): | 
					
						
						|  | The target length: when generating with static cache, the mask should be as long as the static cache, | 
					
						
						|  | to account for the 0 padding, the part of the cache that is not filled yet. | 
					
						
						|  | dtype (`torch.dtype`): | 
					
						
						|  | The dtype to use for the 4D attention mask. | 
					
						
						|  | cache_position (`torch.Tensor`): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. | 
					
						
						|  | batch_size (`torch.Tensor`): | 
					
						
						|  | Batch size. | 
					
						
						|  | """ | 
					
						
						|  | if attention_mask is not None and attention_mask.dim() == 4: | 
					
						
						|  |  | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  | else: | 
					
						
						|  | min_dtype = torch.finfo(dtype).min | 
					
						
						|  | causal_mask = torch.full( | 
					
						
						|  | (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device | 
					
						
						|  | ) | 
					
						
						|  | if sequence_length != 1: | 
					
						
						|  | causal_mask = torch.triu(causal_mask, diagonal=1) | 
					
						
						|  | causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) | 
					
						
						|  | causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = causal_mask.clone() | 
					
						
						|  | mask_length = attention_mask.shape[-1] | 
					
						
						|  | padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( | 
					
						
						|  | causal_mask.device | 
					
						
						|  | ) | 
					
						
						|  | padding_mask = padding_mask == 0 | 
					
						
						|  | causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | 
					
						
						|  | padding_mask, min_dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | AutoModelForImageTextToText.register(MolmoActConfig, MolmoActForActionReasoning) | 
					
						
						|  | AutoModelForCausalLM.register(MolmoActLlmConfig, MolmoActForCausalLM) |