Training in progress, epoch 1
Browse files- config.json +37 -0
- configuration_autoencoder.py +275 -0
- model.safetensors +3 -0
- modeling_autoencoder.py +1437 -0
- training_args.bin +3 -0
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation": "gelu",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"AutoencoderForReconstruction"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_autoencoder.AutoencoderConfig",
|
| 8 |
+
"AutoModel": "modeling_autoencoder.AutoencoderForReconstruction"
|
| 9 |
+
},
|
| 10 |
+
"autoencoder_type": "classic",
|
| 11 |
+
"beta": 1.0,
|
| 12 |
+
"bidirectional": true,
|
| 13 |
+
"dropout_rate": 0.1,
|
| 14 |
+
"flow_coupling_layers": 2,
|
| 15 |
+
"hidden_dims": [
|
| 16 |
+
64,
|
| 17 |
+
32
|
| 18 |
+
],
|
| 19 |
+
"input_dim": 20,
|
| 20 |
+
"latent_dim": 16,
|
| 21 |
+
"learn_inverse_preprocessing": true,
|
| 22 |
+
"model_type": "autoencoder",
|
| 23 |
+
"noise_factor": 0.1,
|
| 24 |
+
"num_layers": 2,
|
| 25 |
+
"preprocessing_hidden_dim": 32,
|
| 26 |
+
"preprocessing_num_layers": 2,
|
| 27 |
+
"preprocessing_type": "robust_scaler",
|
| 28 |
+
"reconstruction_loss": "mse",
|
| 29 |
+
"rnn_type": "lstm",
|
| 30 |
+
"sequence_length": null,
|
| 31 |
+
"teacher_forcing_ratio": 0.5,
|
| 32 |
+
"tie_weights": false,
|
| 33 |
+
"torch_dtype": "float32",
|
| 34 |
+
"transformers_version": "4.55.2",
|
| 35 |
+
"use_batch_norm": true,
|
| 36 |
+
"use_learnable_preprocessing": true
|
| 37 |
+
}
|
configuration_autoencoder.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Autoencoder configuration for Hugging Face Transformers.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from transformers import PretrainedConfig
|
| 6 |
+
from typing import List, Optional
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class AutoencoderConfig(PretrainedConfig):
|
| 10 |
+
"""
|
| 11 |
+
Configuration class for Autoencoder models.
|
| 12 |
+
|
| 13 |
+
This configuration class stores the configuration of an autoencoder model. It is used to instantiate
|
| 14 |
+
an autoencoder model according to the specified arguments, defining the model architecture.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
input_dim (int, optional): Dimensionality of the input data. Defaults to 784.
|
| 18 |
+
hidden_dims (List[int], optional): List of hidden layer dimensions for the encoder.
|
| 19 |
+
The decoder will use the reverse of this list. Defaults to [512, 256, 128].
|
| 20 |
+
latent_dim (int, optional): Dimensionality of the latent space. Defaults to 64.
|
| 21 |
+
activation (str, optional): Activation function to use. Options: "relu", "tanh", "sigmoid",
|
| 22 |
+
"leaky_relu", "gelu", "swish", "silu", "elu", "prelu", "relu6", "hardtanh",
|
| 23 |
+
"hardsigmoid", "hardswish", "mish", "softplus", "softsign", "tanhshrink", "threshold".
|
| 24 |
+
Defaults to "relu".
|
| 25 |
+
dropout_rate (float, optional): Dropout rate for regularization. Defaults to 0.1.
|
| 26 |
+
use_batch_norm (bool, optional): Whether to use batch normalization. Defaults to True.
|
| 27 |
+
tie_weights (bool, optional): Whether to tie encoder and decoder weights. Defaults to False.
|
| 28 |
+
reconstruction_loss (str, optional): Type of reconstruction loss. Options: "mse", "bce", "l1",
|
| 29 |
+
"huber", "smooth_l1", "kl_div", "cosine", "focal", "dice", "tversky", "ssim", "perceptual".
|
| 30 |
+
Defaults to "mse".
|
| 31 |
+
autoencoder_type (str, optional): Type of autoencoder architecture. Options: "classic",
|
| 32 |
+
"variational", "beta_vae", "denoising", "sparse", "contractive", "recurrent". Defaults to "classic".
|
| 33 |
+
beta (float, optional): Beta parameter for beta-VAE. Defaults to 1.0.
|
| 34 |
+
temperature (float, optional): Temperature parameter for Gumbel softmax or other operations. Defaults to 1.0.
|
| 35 |
+
noise_factor (float, optional): Noise factor for denoising autoencoders. Defaults to 0.1.
|
| 36 |
+
rnn_type (str, optional): Type of RNN cell for recurrent autoencoders. Options: "lstm", "gru", "rnn".
|
| 37 |
+
Defaults to "lstm".
|
| 38 |
+
num_layers (int, optional): Number of RNN layers for recurrent autoencoders. Defaults to 2.
|
| 39 |
+
bidirectional (bool, optional): Whether to use bidirectional RNN for encoding. Defaults to True.
|
| 40 |
+
sequence_length (int, optional): Fixed sequence length. If None, supports variable length sequences.
|
| 41 |
+
Defaults to None.
|
| 42 |
+
teacher_forcing_ratio (float, optional): Ratio of teacher forcing during training for recurrent decoders.
|
| 43 |
+
Defaults to 0.5.
|
| 44 |
+
use_learnable_preprocessing (bool, optional): Whether to use learnable preprocessing. Defaults to False.
|
| 45 |
+
preprocessing_type (str, optional): Type of learnable preprocessing. Options: "none", "neural_scaler",
|
| 46 |
+
"normalizing_flow", "minmax_scaler", "robust_scaler", "yeo_johnson". Defaults to "none".
|
| 47 |
+
preprocessing_hidden_dim (int, optional): Hidden dimension for preprocessing networks. Defaults to 64.
|
| 48 |
+
preprocessing_num_layers (int, optional): Number of layers in preprocessing networks. Defaults to 2.
|
| 49 |
+
learn_inverse_preprocessing (bool, optional): Whether to learn inverse preprocessing for reconstruction.
|
| 50 |
+
Defaults to True.
|
| 51 |
+
flow_coupling_layers (int, optional): Number of coupling layers for normalizing flows. Defaults to 4.
|
| 52 |
+
**kwargs: Additional keyword arguments passed to the parent class.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
model_type = "autoencoder"
|
| 56 |
+
|
| 57 |
+
def __init__(
|
| 58 |
+
self,
|
| 59 |
+
input_dim: int = 784,
|
| 60 |
+
hidden_dims: List[int] = None,
|
| 61 |
+
latent_dim: int = 64,
|
| 62 |
+
activation: str = "relu",
|
| 63 |
+
dropout_rate: float = 0.1,
|
| 64 |
+
use_batch_norm: bool = True,
|
| 65 |
+
tie_weights: bool = False,
|
| 66 |
+
reconstruction_loss: str = "mse",
|
| 67 |
+
autoencoder_type: str = "classic",
|
| 68 |
+
beta: float = 1.0,
|
| 69 |
+
temperature: float = 1.0,
|
| 70 |
+
noise_factor: float = 0.1,
|
| 71 |
+
# Recurrent autoencoder parameters
|
| 72 |
+
rnn_type: str = "lstm",
|
| 73 |
+
num_layers: int = 2,
|
| 74 |
+
bidirectional: bool = True,
|
| 75 |
+
sequence_length: Optional[int] = None,
|
| 76 |
+
teacher_forcing_ratio: float = 0.5,
|
| 77 |
+
# Deep learning preprocessing parameters
|
| 78 |
+
use_learnable_preprocessing: bool = False,
|
| 79 |
+
preprocessing_type: str = "none",
|
| 80 |
+
preprocessing_hidden_dim: int = 64,
|
| 81 |
+
preprocessing_num_layers: int = 2,
|
| 82 |
+
learn_inverse_preprocessing: bool = True,
|
| 83 |
+
flow_coupling_layers: int = 4,
|
| 84 |
+
**kwargs,
|
| 85 |
+
):
|
| 86 |
+
# Validate parameters
|
| 87 |
+
if hidden_dims is None:
|
| 88 |
+
hidden_dims = [512, 256, 128]
|
| 89 |
+
|
| 90 |
+
# Extended activation functions
|
| 91 |
+
valid_activations = [
|
| 92 |
+
"relu", "tanh", "sigmoid", "leaky_relu", "gelu", "swish", "silu",
|
| 93 |
+
"elu", "prelu", "relu6", "hardtanh", "hardsigmoid", "hardswish",
|
| 94 |
+
"mish", "softplus", "softsign", "tanhshrink", "threshold"
|
| 95 |
+
]
|
| 96 |
+
if activation not in valid_activations:
|
| 97 |
+
raise ValueError(
|
| 98 |
+
f"`activation` must be one of {valid_activations}, got {activation}."
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Extended loss functions
|
| 102 |
+
valid_losses = [
|
| 103 |
+
"mse", "bce", "l1", "huber", "smooth_l1", "kl_div", "cosine",
|
| 104 |
+
"focal", "dice", "tversky", "ssim", "perceptual"
|
| 105 |
+
]
|
| 106 |
+
if reconstruction_loss not in valid_losses:
|
| 107 |
+
raise ValueError(
|
| 108 |
+
f"`reconstruction_loss` must be one of {valid_losses}, got {reconstruction_loss}."
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Autoencoder types
|
| 112 |
+
valid_types = ["classic", "variational", "beta_vae", "denoising", "sparse", "contractive", "recurrent"]
|
| 113 |
+
if autoencoder_type not in valid_types:
|
| 114 |
+
raise ValueError(
|
| 115 |
+
f"`autoencoder_type` must be one of {valid_types}, got {autoencoder_type}."
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# RNN types for recurrent autoencoders
|
| 119 |
+
valid_rnn_types = ["lstm", "gru", "rnn"]
|
| 120 |
+
if rnn_type not in valid_rnn_types:
|
| 121 |
+
raise ValueError(
|
| 122 |
+
f"`rnn_type` must be one of {valid_rnn_types}, got {rnn_type}."
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
if not (0.0 <= dropout_rate <= 1.0):
|
| 126 |
+
raise ValueError(f"`dropout_rate` must be between 0.0 and 1.0, got {dropout_rate}.")
|
| 127 |
+
|
| 128 |
+
if input_dim <= 0:
|
| 129 |
+
raise ValueError(f"`input_dim` must be positive, got {input_dim}.")
|
| 130 |
+
|
| 131 |
+
if latent_dim <= 0:
|
| 132 |
+
raise ValueError(f"`latent_dim` must be positive, got {latent_dim}.")
|
| 133 |
+
|
| 134 |
+
if not all(dim > 0 for dim in hidden_dims):
|
| 135 |
+
raise ValueError("All dimensions in `hidden_dims` must be positive.")
|
| 136 |
+
|
| 137 |
+
if beta <= 0:
|
| 138 |
+
raise ValueError(f"`beta` must be positive, got {beta}.")
|
| 139 |
+
|
| 140 |
+
if num_layers <= 0:
|
| 141 |
+
raise ValueError(f"`num_layers` must be positive, got {num_layers}.")
|
| 142 |
+
|
| 143 |
+
if not (0.0 <= teacher_forcing_ratio <= 1.0):
|
| 144 |
+
raise ValueError(f"`teacher_forcing_ratio` must be between 0.0 and 1.0, got {teacher_forcing_ratio}.")
|
| 145 |
+
|
| 146 |
+
if sequence_length is not None and sequence_length <= 0:
|
| 147 |
+
raise ValueError(f"`sequence_length` must be positive when specified, got {sequence_length}.")
|
| 148 |
+
|
| 149 |
+
# Preprocessing validation
|
| 150 |
+
valid_preprocessing = [
|
| 151 |
+
"none",
|
| 152 |
+
"neural_scaler",
|
| 153 |
+
"normalizing_flow",
|
| 154 |
+
"minmax_scaler",
|
| 155 |
+
"robust_scaler",
|
| 156 |
+
"yeo_johnson",
|
| 157 |
+
]
|
| 158 |
+
if preprocessing_type not in valid_preprocessing:
|
| 159 |
+
raise ValueError(
|
| 160 |
+
f"`preprocessing_type` must be one of {valid_preprocessing}, got {preprocessing_type}."
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
if preprocessing_hidden_dim <= 0:
|
| 164 |
+
raise ValueError(f"`preprocessing_hidden_dim` must be positive, got {preprocessing_hidden_dim}.")
|
| 165 |
+
|
| 166 |
+
if preprocessing_num_layers <= 0:
|
| 167 |
+
raise ValueError(f"`preprocessing_num_layers` must be positive, got {preprocessing_num_layers}.")
|
| 168 |
+
|
| 169 |
+
if flow_coupling_layers <= 0:
|
| 170 |
+
raise ValueError(f"`flow_coupling_layers` must be positive, got {flow_coupling_layers}.")
|
| 171 |
+
|
| 172 |
+
# Set configuration attributes
|
| 173 |
+
self.input_dim = input_dim
|
| 174 |
+
self.hidden_dims = hidden_dims
|
| 175 |
+
self.latent_dim = latent_dim
|
| 176 |
+
self.activation = activation
|
| 177 |
+
self.dropout_rate = dropout_rate
|
| 178 |
+
self.use_batch_norm = use_batch_norm
|
| 179 |
+
self.tie_weights = tie_weights
|
| 180 |
+
self.reconstruction_loss = reconstruction_loss
|
| 181 |
+
self.autoencoder_type = autoencoder_type
|
| 182 |
+
self.beta = beta
|
| 183 |
+
self.temperature = temperature
|
| 184 |
+
self.noise_factor = noise_factor
|
| 185 |
+
self.rnn_type = rnn_type
|
| 186 |
+
self.num_layers = num_layers
|
| 187 |
+
self.bidirectional = bidirectional
|
| 188 |
+
self.sequence_length = sequence_length
|
| 189 |
+
self.teacher_forcing_ratio = teacher_forcing_ratio
|
| 190 |
+
self.use_learnable_preprocessing = use_learnable_preprocessing
|
| 191 |
+
self.preprocessing_type = preprocessing_type
|
| 192 |
+
self.preprocessing_hidden_dim = preprocessing_hidden_dim
|
| 193 |
+
self.preprocessing_num_layers = preprocessing_num_layers
|
| 194 |
+
self.learn_inverse_preprocessing = learn_inverse_preprocessing
|
| 195 |
+
self.flow_coupling_layers = flow_coupling_layers
|
| 196 |
+
|
| 197 |
+
# Call parent constructor
|
| 198 |
+
super().__init__(**kwargs)
|
| 199 |
+
|
| 200 |
+
@property
|
| 201 |
+
def decoder_dims(self) -> List[int]:
|
| 202 |
+
"""Get decoder dimensions (reverse of encoder hidden dims)."""
|
| 203 |
+
return list(reversed(self.hidden_dims))
|
| 204 |
+
|
| 205 |
+
@property
|
| 206 |
+
def is_variational(self) -> bool:
|
| 207 |
+
"""Check if this is a variational autoencoder."""
|
| 208 |
+
return self.autoencoder_type in ["variational", "beta_vae"]
|
| 209 |
+
|
| 210 |
+
@property
|
| 211 |
+
def is_denoising(self) -> bool:
|
| 212 |
+
"""Check if this is a denoising autoencoder."""
|
| 213 |
+
return self.autoencoder_type == "denoising"
|
| 214 |
+
|
| 215 |
+
@property
|
| 216 |
+
def is_sparse(self) -> bool:
|
| 217 |
+
"""Check if this is a sparse autoencoder."""
|
| 218 |
+
return self.autoencoder_type == "sparse"
|
| 219 |
+
|
| 220 |
+
@property
|
| 221 |
+
def is_contractive(self) -> bool:
|
| 222 |
+
"""Check if this is a contractive autoencoder."""
|
| 223 |
+
return self.autoencoder_type == "contractive"
|
| 224 |
+
|
| 225 |
+
@property
|
| 226 |
+
def is_recurrent(self) -> bool:
|
| 227 |
+
"""Check if this is a recurrent autoencoder."""
|
| 228 |
+
return self.autoencoder_type == "recurrent"
|
| 229 |
+
|
| 230 |
+
@property
|
| 231 |
+
def rnn_hidden_size(self) -> int:
|
| 232 |
+
"""Get the RNN hidden size (same as latent_dim for recurrent AE)."""
|
| 233 |
+
return self.latent_dim
|
| 234 |
+
|
| 235 |
+
@property
|
| 236 |
+
def rnn_output_size(self) -> int:
|
| 237 |
+
"""Get the RNN output size considering bidirectionality."""
|
| 238 |
+
return self.latent_dim * (2 if self.bidirectional else 1)
|
| 239 |
+
|
| 240 |
+
@property
|
| 241 |
+
def has_preprocessing(self) -> bool:
|
| 242 |
+
"""Check if learnable preprocessing is enabled."""
|
| 243 |
+
return self.use_learnable_preprocessing and self.preprocessing_type != "none"
|
| 244 |
+
|
| 245 |
+
@property
|
| 246 |
+
def is_neural_scaler(self) -> bool:
|
| 247 |
+
"""Check if using neural scaler preprocessing."""
|
| 248 |
+
return self.preprocessing_type == "neural_scaler"
|
| 249 |
+
|
| 250 |
+
@property
|
| 251 |
+
def is_normalizing_flow(self) -> bool:
|
| 252 |
+
"""Check if using normalizing flow preprocessing."""
|
| 253 |
+
return self.preprocessing_type == "normalizing_flow"
|
| 254 |
+
|
| 255 |
+
@property
|
| 256 |
+
def is_minmax_scaler(self) -> bool:
|
| 257 |
+
"""Check if using learnable MinMax scaler preprocessing."""
|
| 258 |
+
return self.preprocessing_type == "minmax_scaler"
|
| 259 |
+
|
| 260 |
+
@property
|
| 261 |
+
def is_robust_scaler(self) -> bool:
|
| 262 |
+
"""Check if using learnable Robust scaler preprocessing."""
|
| 263 |
+
return self.preprocessing_type == "robust_scaler"
|
| 264 |
+
|
| 265 |
+
@property
|
| 266 |
+
def is_yeo_johnson(self) -> bool:
|
| 267 |
+
"""Check if using learnable Yeo-Johnson power transform preprocessing."""
|
| 268 |
+
return self.preprocessing_type == "yeo_johnson"
|
| 269 |
+
|
| 270 |
+
def to_dict(self):
|
| 271 |
+
"""
|
| 272 |
+
Serializes this instance to a Python dictionary.
|
| 273 |
+
"""
|
| 274 |
+
output = super().to_dict()
|
| 275 |
+
return output
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0ee24472ccb835430c31a59e88747df793c96f455940d4f308dd894fd765dcd
|
| 3 |
+
size 59368
|
modeling_autoencoder.py
ADDED
|
@@ -0,0 +1,1437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
PyTorch Autoencoder model for Hugging Face Transformers.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from typing import Optional, Tuple, Union, Dict, Any, List
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
import random
|
| 11 |
+
|
| 12 |
+
from transformers import PreTrainedModel
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutput
|
| 14 |
+
from transformers.utils import ModelOutput
|
| 15 |
+
|
| 16 |
+
from configuration_autoencoder import AutoencoderConfig
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class NeuralScaler(nn.Module):
|
| 20 |
+
"""Learnable alternative to StandardScaler using neural networks."""
|
| 21 |
+
|
| 22 |
+
def __init__(self, config: AutoencoderConfig):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.config = config
|
| 25 |
+
input_dim = config.input_dim
|
| 26 |
+
hidden_dim = config.preprocessing_hidden_dim
|
| 27 |
+
|
| 28 |
+
# Networks to learn data-dependent statistics
|
| 29 |
+
self.mean_estimator = nn.Sequential(
|
| 30 |
+
nn.Linear(input_dim, hidden_dim),
|
| 31 |
+
nn.ReLU(),
|
| 32 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 33 |
+
nn.ReLU(),
|
| 34 |
+
nn.Linear(hidden_dim, input_dim)
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
self.std_estimator = nn.Sequential(
|
| 38 |
+
nn.Linear(input_dim, hidden_dim),
|
| 39 |
+
nn.ReLU(),
|
| 40 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 41 |
+
nn.ReLU(),
|
| 42 |
+
nn.Linear(hidden_dim, input_dim),
|
| 43 |
+
nn.Softplus() # Ensure positive standard deviation
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Learnable affine transformation parameters
|
| 47 |
+
self.weight = nn.Parameter(torch.ones(input_dim))
|
| 48 |
+
self.bias = nn.Parameter(torch.zeros(input_dim))
|
| 49 |
+
|
| 50 |
+
# Running statistics for inference (like BatchNorm)
|
| 51 |
+
self.register_buffer('running_mean', torch.zeros(input_dim))
|
| 52 |
+
self.register_buffer('running_std', torch.ones(input_dim))
|
| 53 |
+
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
|
| 54 |
+
|
| 55 |
+
# Momentum for running statistics
|
| 56 |
+
self.momentum = 0.1
|
| 57 |
+
|
| 58 |
+
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 59 |
+
"""
|
| 60 |
+
Forward pass through neural scaler.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
x: Input tensor (2D or 3D)
|
| 64 |
+
inverse: Whether to apply inverse transformation
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
Tuple of (transformed_tensor, regularization_loss)
|
| 68 |
+
"""
|
| 69 |
+
if inverse:
|
| 70 |
+
return self._inverse_transform(x)
|
| 71 |
+
|
| 72 |
+
# Handle both 2D and 3D tensors
|
| 73 |
+
original_shape = x.shape
|
| 74 |
+
if x.dim() == 3:
|
| 75 |
+
# Reshape (batch, seq, features) -> (batch*seq, features)
|
| 76 |
+
x = x.view(-1, x.size(-1))
|
| 77 |
+
|
| 78 |
+
if self.training:
|
| 79 |
+
# Training mode: learn statistics from current batch
|
| 80 |
+
batch_mean = x.mean(dim=0, keepdim=True)
|
| 81 |
+
batch_std = x.std(dim=0, keepdim=True)
|
| 82 |
+
|
| 83 |
+
# Learn data-dependent adjustments
|
| 84 |
+
learned_mean_adj = self.mean_estimator(batch_mean)
|
| 85 |
+
learned_std_adj = self.std_estimator(batch_std)
|
| 86 |
+
|
| 87 |
+
# Combine batch statistics with learned adjustments
|
| 88 |
+
effective_mean = batch_mean + learned_mean_adj
|
| 89 |
+
effective_std = batch_std + learned_std_adj + 1e-8
|
| 90 |
+
|
| 91 |
+
# Update running statistics
|
| 92 |
+
with torch.no_grad():
|
| 93 |
+
self.num_batches_tracked += 1
|
| 94 |
+
if self.num_batches_tracked == 1:
|
| 95 |
+
self.running_mean.copy_(batch_mean.squeeze())
|
| 96 |
+
self.running_std.copy_(batch_std.squeeze())
|
| 97 |
+
else:
|
| 98 |
+
self.running_mean.mul_(1 - self.momentum).add_(batch_mean.squeeze(), alpha=self.momentum)
|
| 99 |
+
self.running_std.mul_(1 - self.momentum).add_(batch_std.squeeze(), alpha=self.momentum)
|
| 100 |
+
else:
|
| 101 |
+
# Inference mode: use running statistics
|
| 102 |
+
effective_mean = self.running_mean.unsqueeze(0)
|
| 103 |
+
effective_std = self.running_std.unsqueeze(0) + 1e-8
|
| 104 |
+
|
| 105 |
+
# Normalize
|
| 106 |
+
normalized = (x - effective_mean) / effective_std
|
| 107 |
+
|
| 108 |
+
# Apply learnable affine transformation
|
| 109 |
+
transformed = normalized * self.weight + self.bias
|
| 110 |
+
|
| 111 |
+
# Reshape back to original shape if needed
|
| 112 |
+
if len(original_shape) == 3:
|
| 113 |
+
transformed = transformed.view(original_shape)
|
| 114 |
+
|
| 115 |
+
# Regularization loss to encourage meaningful learning
|
| 116 |
+
reg_loss = 0.01 * (self.weight.var() + self.bias.var())
|
| 117 |
+
|
| 118 |
+
return transformed, reg_loss
|
| 119 |
+
|
| 120 |
+
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 121 |
+
"""Apply inverse transformation to get back original scale."""
|
| 122 |
+
if not self.config.learn_inverse_preprocessing:
|
| 123 |
+
return x, torch.tensor(0.0, device=x.device)
|
| 124 |
+
|
| 125 |
+
# Handle both 2D and 3D tensors
|
| 126 |
+
original_shape = x.shape
|
| 127 |
+
if x.dim() == 3:
|
| 128 |
+
# Reshape (batch, seq, features) -> (batch*seq, features)
|
| 129 |
+
x = x.view(-1, x.size(-1))
|
| 130 |
+
|
| 131 |
+
# Reverse affine transformation
|
| 132 |
+
x = (x - self.bias) / (self.weight + 1e-8)
|
| 133 |
+
|
| 134 |
+
# Reverse normalization using running statistics
|
| 135 |
+
effective_mean = self.running_mean.unsqueeze(0)
|
| 136 |
+
effective_std = self.running_std.unsqueeze(0) + 1e-8
|
| 137 |
+
x = x * effective_std + effective_mean
|
| 138 |
+
|
| 139 |
+
# Reshape back to original shape if needed
|
| 140 |
+
if len(original_shape) == 3:
|
| 141 |
+
x = x.view(original_shape)
|
| 142 |
+
|
| 143 |
+
return x, torch.tensor(0.0, device=x.device)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class LearnableMinMaxScaler(nn.Module):
|
| 148 |
+
"""Learnable MinMax scaler that adapts bounds during training.
|
| 149 |
+
|
| 150 |
+
Scales features to [0, 1] using batch min/range with learnable adjustments and
|
| 151 |
+
a learnable affine transform. Supports 2D (B, F) and 3D (B, T, F) inputs.
|
| 152 |
+
"""
|
| 153 |
+
|
| 154 |
+
def __init__(self, config: AutoencoderConfig):
|
| 155 |
+
super().__init__()
|
| 156 |
+
self.config = config
|
| 157 |
+
input_dim = config.input_dim
|
| 158 |
+
hidden_dim = config.preprocessing_hidden_dim
|
| 159 |
+
|
| 160 |
+
# Networks to learn adjustments to batch min and range
|
| 161 |
+
self.min_estimator = nn.Sequential(
|
| 162 |
+
nn.Linear(input_dim, hidden_dim),
|
| 163 |
+
nn.ReLU(),
|
| 164 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 165 |
+
nn.ReLU(),
|
| 166 |
+
nn.Linear(hidden_dim, input_dim),
|
| 167 |
+
)
|
| 168 |
+
self.range_estimator = nn.Sequential(
|
| 169 |
+
nn.Linear(input_dim, hidden_dim),
|
| 170 |
+
nn.ReLU(),
|
| 171 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 172 |
+
nn.ReLU(),
|
| 173 |
+
nn.Linear(hidden_dim, input_dim),
|
| 174 |
+
nn.Softplus(), # Ensure positive adjustment to range
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Learnable affine transformation parameters
|
| 178 |
+
self.weight = nn.Parameter(torch.ones(input_dim))
|
| 179 |
+
self.bias = nn.Parameter(torch.zeros(input_dim))
|
| 180 |
+
|
| 181 |
+
# Running statistics for inference
|
| 182 |
+
self.register_buffer("running_min", torch.zeros(input_dim))
|
| 183 |
+
self.register_buffer("running_range", torch.ones(input_dim))
|
| 184 |
+
self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
|
| 185 |
+
|
| 186 |
+
self.momentum = 0.1
|
| 187 |
+
|
| 188 |
+
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 189 |
+
if inverse:
|
| 190 |
+
return self._inverse_transform(x)
|
| 191 |
+
|
| 192 |
+
original_shape = x.shape
|
| 193 |
+
if x.dim() == 3:
|
| 194 |
+
x = x.view(-1, x.size(-1))
|
| 195 |
+
|
| 196 |
+
eps = 1e-8
|
| 197 |
+
if self.training:
|
| 198 |
+
batch_min = x.min(dim=0, keepdim=True).values
|
| 199 |
+
batch_max = x.max(dim=0, keepdim=True).values
|
| 200 |
+
batch_range = (batch_max - batch_min).clamp_min(eps)
|
| 201 |
+
|
| 202 |
+
# Learn adjustments
|
| 203 |
+
learned_min_adj = self.min_estimator(batch_min)
|
| 204 |
+
learned_range_adj = self.range_estimator(batch_range)
|
| 205 |
+
|
| 206 |
+
effective_min = batch_min + learned_min_adj
|
| 207 |
+
effective_range = batch_range + learned_range_adj + eps
|
| 208 |
+
|
| 209 |
+
# Update running stats with raw batch min/range for stable inversion
|
| 210 |
+
with torch.no_grad():
|
| 211 |
+
self.num_batches_tracked += 1
|
| 212 |
+
if self.num_batches_tracked == 1:
|
| 213 |
+
self.running_min.copy_(batch_min.squeeze())
|
| 214 |
+
self.running_range.copy_(batch_range.squeeze())
|
| 215 |
+
else:
|
| 216 |
+
self.running_min.mul_(1 - self.momentum).add_(batch_min.squeeze(), alpha=self.momentum)
|
| 217 |
+
self.running_range.mul_(1 - self.momentum).add_(batch_range.squeeze(), alpha=self.momentum)
|
| 218 |
+
else:
|
| 219 |
+
effective_min = self.running_min.unsqueeze(0)
|
| 220 |
+
effective_range = self.running_range.unsqueeze(0)
|
| 221 |
+
|
| 222 |
+
# Scale to [0, 1]
|
| 223 |
+
scaled = (x - effective_min) / effective_range
|
| 224 |
+
|
| 225 |
+
# Learnable affine transform
|
| 226 |
+
transformed = scaled * self.weight + self.bias
|
| 227 |
+
|
| 228 |
+
if len(original_shape) == 3:
|
| 229 |
+
transformed = transformed.view(original_shape)
|
| 230 |
+
|
| 231 |
+
# Regularization: encourage non-degenerate range and modest affine params
|
| 232 |
+
reg_loss = 0.01 * (self.weight.var() + self.bias.var())
|
| 233 |
+
if self.training:
|
| 234 |
+
reg_loss = reg_loss + 0.001 * (1.0 / effective_range.clamp_min(1e-3)).mean()
|
| 235 |
+
|
| 236 |
+
return transformed, reg_loss
|
| 237 |
+
|
| 238 |
+
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 239 |
+
if not self.config.learn_inverse_preprocessing:
|
| 240 |
+
return x, torch.tensor(0.0, device=x.device)
|
| 241 |
+
|
| 242 |
+
original_shape = x.shape
|
| 243 |
+
if x.dim() == 3:
|
| 244 |
+
x = x.view(-1, x.size(-1))
|
| 245 |
+
|
| 246 |
+
# Reverse affine
|
| 247 |
+
x = (x - self.bias) / (self.weight + 1e-8)
|
| 248 |
+
# Reverse MinMax using running stats
|
| 249 |
+
x = x * self.running_range.unsqueeze(0) + self.running_min.unsqueeze(0)
|
| 250 |
+
|
| 251 |
+
if len(original_shape) == 3:
|
| 252 |
+
x = x.view(original_shape)
|
| 253 |
+
|
| 254 |
+
return x, torch.tensor(0.0, device=x.device)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
class LearnableRobustScaler(nn.Module):
|
| 258 |
+
"""Learnable Robust scaler using median and IQR with learnable adjustments.
|
| 259 |
+
|
| 260 |
+
Normalizes as (x - median) / IQR with learnable adjustments and an affine head.
|
| 261 |
+
Supports 2D (B, F) and 3D (B, T, F) inputs.
|
| 262 |
+
"""
|
| 263 |
+
|
| 264 |
+
def __init__(self, config: AutoencoderConfig):
|
| 265 |
+
super().__init__()
|
| 266 |
+
self.config = config
|
| 267 |
+
input_dim = config.input_dim
|
| 268 |
+
hidden_dim = config.preprocessing_hidden_dim
|
| 269 |
+
|
| 270 |
+
self.median_estimator = nn.Sequential(
|
| 271 |
+
nn.Linear(input_dim, hidden_dim),
|
| 272 |
+
nn.ReLU(),
|
| 273 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 274 |
+
nn.ReLU(),
|
| 275 |
+
nn.Linear(hidden_dim, input_dim),
|
| 276 |
+
)
|
| 277 |
+
self.iqr_estimator = nn.Sequential(
|
| 278 |
+
nn.Linear(input_dim, hidden_dim),
|
| 279 |
+
nn.ReLU(),
|
| 280 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 281 |
+
nn.ReLU(),
|
| 282 |
+
nn.Linear(hidden_dim, input_dim),
|
| 283 |
+
nn.Softplus(), # Ensure positive IQR adjustment
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
self.weight = nn.Parameter(torch.ones(input_dim))
|
| 287 |
+
self.bias = nn.Parameter(torch.zeros(input_dim))
|
| 288 |
+
|
| 289 |
+
self.register_buffer("running_median", torch.zeros(input_dim))
|
| 290 |
+
self.register_buffer("running_iqr", torch.ones(input_dim))
|
| 291 |
+
self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
|
| 292 |
+
|
| 293 |
+
self.momentum = 0.1
|
| 294 |
+
|
| 295 |
+
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 296 |
+
if inverse:
|
| 297 |
+
return self._inverse_transform(x)
|
| 298 |
+
|
| 299 |
+
original_shape = x.shape
|
| 300 |
+
if x.dim() == 3:
|
| 301 |
+
x = x.view(-1, x.size(-1))
|
| 302 |
+
|
| 303 |
+
eps = 1e-8
|
| 304 |
+
if self.training:
|
| 305 |
+
qs = torch.quantile(x, torch.tensor([0.25, 0.5, 0.75], device=x.device), dim=0)
|
| 306 |
+
q25, med, q75 = qs[0:1, :], qs[1:2, :], qs[2:3, :]
|
| 307 |
+
iqr = (q75 - q25).clamp_min(eps)
|
| 308 |
+
|
| 309 |
+
learned_med_adj = self.median_estimator(med)
|
| 310 |
+
learned_iqr_adj = self.iqr_estimator(iqr)
|
| 311 |
+
|
| 312 |
+
effective_median = med + learned_med_adj
|
| 313 |
+
effective_iqr = iqr + learned_iqr_adj + eps
|
| 314 |
+
|
| 315 |
+
with torch.no_grad():
|
| 316 |
+
self.num_batches_tracked += 1
|
| 317 |
+
if self.num_batches_tracked == 1:
|
| 318 |
+
self.running_median.copy_(med.squeeze())
|
| 319 |
+
self.running_iqr.copy_(iqr.squeeze())
|
| 320 |
+
else:
|
| 321 |
+
self.running_median.mul_(1 - self.momentum).add_(med.squeeze(), alpha=self.momentum)
|
| 322 |
+
self.running_iqr.mul_(1 - self.momentum).add_(iqr.squeeze(), alpha=self.momentum)
|
| 323 |
+
else:
|
| 324 |
+
effective_median = self.running_median.unsqueeze(0)
|
| 325 |
+
effective_iqr = self.running_iqr.unsqueeze(0)
|
| 326 |
+
|
| 327 |
+
normalized = (x - effective_median) / effective_iqr
|
| 328 |
+
transformed = normalized * self.weight + self.bias
|
| 329 |
+
|
| 330 |
+
if len(original_shape) == 3:
|
| 331 |
+
transformed = transformed.view(original_shape)
|
| 332 |
+
|
| 333 |
+
reg_loss = 0.01 * (self.weight.var() + self.bias.var())
|
| 334 |
+
if self.training:
|
| 335 |
+
reg_loss = reg_loss + 0.001 * (1.0 / effective_iqr.clamp_min(1e-3)).mean()
|
| 336 |
+
|
| 337 |
+
return transformed, reg_loss
|
| 338 |
+
|
| 339 |
+
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 340 |
+
if not self.config.learn_inverse_preprocessing:
|
| 341 |
+
return x, torch.tensor(0.0, device=x.device)
|
| 342 |
+
|
| 343 |
+
original_shape = x.shape
|
| 344 |
+
if x.dim() == 3:
|
| 345 |
+
x = x.view(-1, x.size(-1))
|
| 346 |
+
|
| 347 |
+
x = (x - self.bias) / (self.weight + 1e-8)
|
| 348 |
+
x = x * self.running_iqr.unsqueeze(0) + self.running_median.unsqueeze(0)
|
| 349 |
+
|
| 350 |
+
if len(original_shape) == 3:
|
| 351 |
+
x = x.view(original_shape)
|
| 352 |
+
|
| 353 |
+
return x, torch.tensor(0.0, device=x.device)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
class LearnableYeoJohnsonPreprocessor(nn.Module):
|
| 357 |
+
"""Learnable Yeo-Johnson power transform with per-feature λ and affine head.
|
| 358 |
+
|
| 359 |
+
Applies Yeo-Johnson transform elementwise with learnable lambda per feature,
|
| 360 |
+
followed by standardization and a learnable affine transform. Supports 2D and 3D inputs.
|
| 361 |
+
"""
|
| 362 |
+
|
| 363 |
+
def __init__(self, config: AutoencoderConfig):
|
| 364 |
+
super().__init__()
|
| 365 |
+
self.config = config
|
| 366 |
+
input_dim = config.input_dim
|
| 367 |
+
|
| 368 |
+
# Learnable lambda per feature (unconstrained). Initialize around 1.0
|
| 369 |
+
self.lmbda = nn.Parameter(torch.ones(input_dim))
|
| 370 |
+
|
| 371 |
+
# Learnable affine parameters after standardization
|
| 372 |
+
self.weight = nn.Parameter(torch.ones(input_dim))
|
| 373 |
+
self.bias = nn.Parameter(torch.zeros(input_dim))
|
| 374 |
+
|
| 375 |
+
# Running stats for transformed data
|
| 376 |
+
self.register_buffer("running_mean", torch.zeros(input_dim))
|
| 377 |
+
self.register_buffer("running_std", torch.ones(input_dim))
|
| 378 |
+
self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
|
| 379 |
+
self.momentum = 0.1
|
| 380 |
+
|
| 381 |
+
def _yeo_johnson(self, x: torch.Tensor, lmbda: torch.Tensor) -> torch.Tensor:
|
| 382 |
+
eps = 1e-6
|
| 383 |
+
lmbda = lmbda.unsqueeze(0) # broadcast over batch
|
| 384 |
+
pos = x >= 0
|
| 385 |
+
# For x >= 0
|
| 386 |
+
if_part = torch.where(
|
| 387 |
+
torch.abs(lmbda) > eps,
|
| 388 |
+
((x + 1.0).clamp_min(eps) ** lmbda - 1.0) / lmbda,
|
| 389 |
+
torch.log((x + 1.0).clamp_min(eps)),
|
| 390 |
+
)
|
| 391 |
+
# For x < 0
|
| 392 |
+
two_minus_lambda = 2.0 - lmbda
|
| 393 |
+
else_part = torch.where(
|
| 394 |
+
torch.abs(two_minus_lambda) > eps,
|
| 395 |
+
-(((1.0 - x).clamp_min(eps)) ** two_minus_lambda - 1.0) / two_minus_lambda,
|
| 396 |
+
-torch.log((1.0 - x).clamp_min(eps)),
|
| 397 |
+
)
|
| 398 |
+
return torch.where(pos, if_part, else_part)
|
| 399 |
+
|
| 400 |
+
def _yeo_johnson_inverse(self, y: torch.Tensor, lmbda: torch.Tensor) -> torch.Tensor:
|
| 401 |
+
eps = 1e-6
|
| 402 |
+
lmbda = lmbda.unsqueeze(0)
|
| 403 |
+
pos = y >= 0
|
| 404 |
+
# Inverse for y >= 0
|
| 405 |
+
x_pos = torch.where(
|
| 406 |
+
torch.abs(lmbda) > eps,
|
| 407 |
+
(y * lmbda + 1.0).clamp_min(eps) ** (1.0 / lmbda) - 1.0,
|
| 408 |
+
torch.exp(y) - 1.0,
|
| 409 |
+
)
|
| 410 |
+
# Inverse for y < 0
|
| 411 |
+
two_minus_lambda = 2.0 - lmbda
|
| 412 |
+
x_neg = torch.where(
|
| 413 |
+
torch.abs(two_minus_lambda) > eps,
|
| 414 |
+
1.0 - (1.0 - y * two_minus_lambda).clamp_min(eps) ** (1.0 / two_minus_lambda),
|
| 415 |
+
1.0 - torch.exp(-y),
|
| 416 |
+
)
|
| 417 |
+
return torch.where(pos, x_pos, x_neg)
|
| 418 |
+
|
| 419 |
+
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 420 |
+
if inverse:
|
| 421 |
+
return self._inverse_transform(x)
|
| 422 |
+
|
| 423 |
+
orig_shape = x.shape
|
| 424 |
+
if x.dim() == 3:
|
| 425 |
+
x = x.view(-1, x.size(-1))
|
| 426 |
+
|
| 427 |
+
# Apply Yeo-Johnson
|
| 428 |
+
y = self._yeo_johnson(x, self.lmbda)
|
| 429 |
+
|
| 430 |
+
# Batch stats and running stats on transformed data
|
| 431 |
+
if self.training:
|
| 432 |
+
batch_mean = y.mean(dim=0, keepdim=True)
|
| 433 |
+
batch_std = y.std(dim=0, keepdim=True).clamp_min(1e-6)
|
| 434 |
+
with torch.no_grad():
|
| 435 |
+
self.num_batches_tracked += 1
|
| 436 |
+
if self.num_batches_tracked == 1:
|
| 437 |
+
self.running_mean.copy_(batch_mean.squeeze())
|
| 438 |
+
self.running_std.copy_(batch_std.squeeze())
|
| 439 |
+
else:
|
| 440 |
+
self.running_mean.mul_(1 - self.momentum).add_(batch_mean.squeeze(), alpha=self.momentum)
|
| 441 |
+
self.running_std.mul_(1 - self.momentum).add_(batch_std.squeeze(), alpha=self.momentum)
|
| 442 |
+
mean = batch_mean
|
| 443 |
+
std = batch_std
|
| 444 |
+
else:
|
| 445 |
+
mean = self.running_mean.unsqueeze(0)
|
| 446 |
+
std = self.running_std.unsqueeze(0)
|
| 447 |
+
|
| 448 |
+
y_norm = (y - mean) / std
|
| 449 |
+
out = y_norm * self.weight + self.bias
|
| 450 |
+
|
| 451 |
+
if len(orig_shape) == 3:
|
| 452 |
+
out = out.view(orig_shape)
|
| 453 |
+
|
| 454 |
+
# Regularize lambda to avoid extreme values; encourage identity around 1
|
| 455 |
+
reg = 0.001 * (self.lmbda - 1.0).pow(2).mean() + 0.01 * (self.weight.var() + self.bias.var())
|
| 456 |
+
return out, reg
|
| 457 |
+
|
| 458 |
+
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 459 |
+
if not self.config.learn_inverse_preprocessing:
|
| 460 |
+
return x, torch.tensor(0.0, device=x.device)
|
| 461 |
+
|
| 462 |
+
orig_shape = x.shape
|
| 463 |
+
if x.dim() == 3:
|
| 464 |
+
x = x.view(-1, x.size(-1))
|
| 465 |
+
|
| 466 |
+
# Reverse affine and normalization with running stats
|
| 467 |
+
y = (x - self.bias) / (self.weight + 1e-8)
|
| 468 |
+
y = y * self.running_std.unsqueeze(0) + self.running_mean.unsqueeze(0)
|
| 469 |
+
|
| 470 |
+
# Inverse Yeo-Johnson
|
| 471 |
+
out = self._yeo_johnson_inverse(y, self.lmbda)
|
| 472 |
+
|
| 473 |
+
if len(orig_shape) == 3:
|
| 474 |
+
out = out.view(orig_shape)
|
| 475 |
+
|
| 476 |
+
return out, torch.tensor(0.0, device=x.device)
|
| 477 |
+
|
| 478 |
+
class CouplingLayer(nn.Module):
|
| 479 |
+
"""Coupling layer for normalizing flows."""
|
| 480 |
+
|
| 481 |
+
def __init__(self, input_dim: int, hidden_dim: int = 64, mask_type: str = "alternating"):
|
| 482 |
+
super().__init__()
|
| 483 |
+
self.input_dim = input_dim
|
| 484 |
+
self.hidden_dim = hidden_dim
|
| 485 |
+
|
| 486 |
+
# Create mask for coupling
|
| 487 |
+
if mask_type == "alternating":
|
| 488 |
+
self.register_buffer('mask', torch.arange(input_dim) % 2)
|
| 489 |
+
elif mask_type == "half":
|
| 490 |
+
mask = torch.zeros(input_dim)
|
| 491 |
+
mask[:input_dim // 2] = 1
|
| 492 |
+
self.register_buffer('mask', mask)
|
| 493 |
+
else:
|
| 494 |
+
raise ValueError(f"Unknown mask type: {mask_type}")
|
| 495 |
+
|
| 496 |
+
# Scale and translation networks
|
| 497 |
+
masked_dim = int(self.mask.sum().item())
|
| 498 |
+
unmasked_dim = input_dim - masked_dim
|
| 499 |
+
|
| 500 |
+
self.scale_net = nn.Sequential(
|
| 501 |
+
nn.Linear(masked_dim, hidden_dim),
|
| 502 |
+
nn.ReLU(),
|
| 503 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 504 |
+
nn.ReLU(),
|
| 505 |
+
nn.Linear(hidden_dim, unmasked_dim),
|
| 506 |
+
nn.Tanh() # Bounded output for stability
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
self.translate_net = nn.Sequential(
|
| 510 |
+
nn.Linear(masked_dim, hidden_dim),
|
| 511 |
+
nn.ReLU(),
|
| 512 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 513 |
+
nn.ReLU(),
|
| 514 |
+
nn.Linear(hidden_dim, unmasked_dim)
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 518 |
+
"""
|
| 519 |
+
Forward pass through coupling layer.
|
| 520 |
+
|
| 521 |
+
Args:
|
| 522 |
+
x: Input tensor
|
| 523 |
+
inverse: Whether to apply inverse transformation
|
| 524 |
+
|
| 525 |
+
Returns:
|
| 526 |
+
Tuple of (transformed_tensor, log_determinant)
|
| 527 |
+
"""
|
| 528 |
+
mask = self.mask.bool()
|
| 529 |
+
x_masked = x[:, mask]
|
| 530 |
+
x_unmasked = x[:, ~mask]
|
| 531 |
+
|
| 532 |
+
# Compute scale and translation
|
| 533 |
+
s = self.scale_net(x_masked)
|
| 534 |
+
t = self.translate_net(x_masked)
|
| 535 |
+
|
| 536 |
+
if not inverse:
|
| 537 |
+
# Forward transformation
|
| 538 |
+
y_unmasked = x_unmasked * torch.exp(s) + t
|
| 539 |
+
log_det = s.sum(dim=1)
|
| 540 |
+
else:
|
| 541 |
+
# Inverse transformation
|
| 542 |
+
y_unmasked = (x_unmasked - t) * torch.exp(-s)
|
| 543 |
+
log_det = -s.sum(dim=1)
|
| 544 |
+
|
| 545 |
+
# Reconstruct output
|
| 546 |
+
y = torch.zeros_like(x)
|
| 547 |
+
y[:, mask] = x_masked
|
| 548 |
+
y[:, ~mask] = y_unmasked
|
| 549 |
+
|
| 550 |
+
return y, log_det
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
class NormalizingFlowPreprocessor(nn.Module):
|
| 554 |
+
"""Normalizing flow for learnable data preprocessing."""
|
| 555 |
+
|
| 556 |
+
def __init__(self, config: AutoencoderConfig):
|
| 557 |
+
super().__init__()
|
| 558 |
+
self.config = config
|
| 559 |
+
input_dim = config.input_dim
|
| 560 |
+
hidden_dim = config.preprocessing_hidden_dim
|
| 561 |
+
num_layers = config.flow_coupling_layers
|
| 562 |
+
|
| 563 |
+
# Create coupling layers with alternating masks
|
| 564 |
+
self.layers = nn.ModuleList()
|
| 565 |
+
for i in range(num_layers):
|
| 566 |
+
mask_type = "alternating" if i % 2 == 0 else "half"
|
| 567 |
+
self.layers.append(CouplingLayer(input_dim, hidden_dim, mask_type))
|
| 568 |
+
|
| 569 |
+
# Optional: Add batch normalization between layers
|
| 570 |
+
if config.use_batch_norm:
|
| 571 |
+
self.batch_norms = nn.ModuleList([
|
| 572 |
+
nn.BatchNorm1d(input_dim) for _ in range(num_layers - 1)
|
| 573 |
+
])
|
| 574 |
+
else:
|
| 575 |
+
self.batch_norms = None
|
| 576 |
+
|
| 577 |
+
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 578 |
+
"""
|
| 579 |
+
Forward pass through normalizing flow.
|
| 580 |
+
|
| 581 |
+
Args:
|
| 582 |
+
x: Input tensor (2D or 3D)
|
| 583 |
+
inverse: Whether to apply inverse transformation
|
| 584 |
+
|
| 585 |
+
Returns:
|
| 586 |
+
Tuple of (transformed_tensor, total_log_determinant)
|
| 587 |
+
"""
|
| 588 |
+
# Handle both 2D and 3D tensors
|
| 589 |
+
original_shape = x.shape
|
| 590 |
+
if x.dim() == 3:
|
| 591 |
+
# Reshape (batch, seq, features) -> (batch*seq, features)
|
| 592 |
+
x = x.view(-1, x.size(-1))
|
| 593 |
+
|
| 594 |
+
log_det_total = torch.zeros(x.size(0), device=x.device)
|
| 595 |
+
|
| 596 |
+
if not inverse:
|
| 597 |
+
# Forward pass
|
| 598 |
+
for i, layer in enumerate(self.layers):
|
| 599 |
+
x, log_det = layer(x, inverse=False)
|
| 600 |
+
log_det_total += log_det
|
| 601 |
+
|
| 602 |
+
# Apply batch normalization (except for last layer)
|
| 603 |
+
if self.batch_norms and i < len(self.layers) - 1:
|
| 604 |
+
x = self.batch_norms[i](x)
|
| 605 |
+
else:
|
| 606 |
+
# Inverse pass
|
| 607 |
+
for i, layer in enumerate(reversed(self.layers)):
|
| 608 |
+
# Reverse batch normalization (except for first layer in reverse)
|
| 609 |
+
if self.batch_norms and i > 0:
|
| 610 |
+
# Note: This is approximate inverse of batch norm
|
| 611 |
+
bn_idx = len(self.layers) - 1 - i
|
| 612 |
+
x = self.batch_norms[bn_idx](x)
|
| 613 |
+
|
| 614 |
+
x, log_det = layer(x, inverse=True)
|
| 615 |
+
log_det_total += log_det
|
| 616 |
+
|
| 617 |
+
# Reshape back to original shape if needed
|
| 618 |
+
if len(original_shape) == 3:
|
| 619 |
+
x = x.view(original_shape)
|
| 620 |
+
|
| 621 |
+
# Convert log determinant to regularization loss
|
| 622 |
+
# Encourage the flow to preserve information (log_det close to 0)
|
| 623 |
+
reg_loss = 0.01 * log_det_total.abs().mean()
|
| 624 |
+
|
| 625 |
+
return x, reg_loss
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
class LearnablePreprocessor(nn.Module):
|
| 629 |
+
"""Unified interface for learnable preprocessing methods."""
|
| 630 |
+
|
| 631 |
+
def __init__(self, config: AutoencoderConfig):
|
| 632 |
+
super().__init__()
|
| 633 |
+
self.config = config
|
| 634 |
+
|
| 635 |
+
if not config.has_preprocessing:
|
| 636 |
+
self.preprocessor = nn.Identity()
|
| 637 |
+
elif config.is_neural_scaler:
|
| 638 |
+
self.preprocessor = NeuralScaler(config)
|
| 639 |
+
elif config.is_normalizing_flow:
|
| 640 |
+
self.preprocessor = NormalizingFlowPreprocessor(config)
|
| 641 |
+
elif getattr(config, "is_minmax_scaler", False):
|
| 642 |
+
self.preprocessor = LearnableMinMaxScaler(config)
|
| 643 |
+
elif getattr(config, "is_robust_scaler", False):
|
| 644 |
+
self.preprocessor = LearnableRobustScaler(config)
|
| 645 |
+
elif getattr(config, "is_yeo_johnson", False):
|
| 646 |
+
self.preprocessor = LearnableYeoJohnsonPreprocessor(config)
|
| 647 |
+
else:
|
| 648 |
+
raise ValueError(f"Unknown preprocessing type: {config.preprocessing_type}")
|
| 649 |
+
|
| 650 |
+
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 651 |
+
"""
|
| 652 |
+
Apply preprocessing transformation.
|
| 653 |
+
|
| 654 |
+
Args:
|
| 655 |
+
x: Input tensor
|
| 656 |
+
inverse: Whether to apply inverse transformation
|
| 657 |
+
|
| 658 |
+
Returns:
|
| 659 |
+
Tuple of (transformed_tensor, regularization_loss)
|
| 660 |
+
"""
|
| 661 |
+
if isinstance(self.preprocessor, nn.Identity):
|
| 662 |
+
return x, torch.tensor(0.0, device=x.device)
|
| 663 |
+
|
| 664 |
+
return self.preprocessor(x, inverse=inverse)
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
@dataclass
|
| 668 |
+
class AutoencoderOutput(ModelOutput):
|
| 669 |
+
"""
|
| 670 |
+
Output type of AutoencoderModel.
|
| 671 |
+
|
| 672 |
+
Args:
|
| 673 |
+
last_hidden_state (torch.FloatTensor): The latent representation of the input.
|
| 674 |
+
reconstructed (torch.FloatTensor, optional): The reconstructed input.
|
| 675 |
+
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
|
| 676 |
+
attentions (tuple(torch.FloatTensor), optional): Not used in basic autoencoder.
|
| 677 |
+
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
|
| 678 |
+
"""
|
| 679 |
+
|
| 680 |
+
last_hidden_state: torch.FloatTensor = None
|
| 681 |
+
reconstructed: Optional[torch.FloatTensor] = None
|
| 682 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 683 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 684 |
+
preprocessing_loss: Optional[torch.FloatTensor] = None
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
@dataclass
|
| 688 |
+
class AutoencoderForReconstructionOutput(ModelOutput):
|
| 689 |
+
"""
|
| 690 |
+
Output type of AutoencoderForReconstruction.
|
| 691 |
+
|
| 692 |
+
Args:
|
| 693 |
+
loss (torch.FloatTensor, optional): The reconstruction loss.
|
| 694 |
+
reconstructed (torch.FloatTensor): The reconstructed input.
|
| 695 |
+
last_hidden_state (torch.FloatTensor): The latent representation.
|
| 696 |
+
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
|
| 697 |
+
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
|
| 698 |
+
"""
|
| 699 |
+
|
| 700 |
+
loss: Optional[torch.FloatTensor] = None
|
| 701 |
+
reconstructed: torch.FloatTensor = None
|
| 702 |
+
last_hidden_state: torch.FloatTensor = None
|
| 703 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 704 |
+
preprocessing_loss: Optional[torch.FloatTensor] = None
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
class AutoencoderEncoder(nn.Module):
|
| 708 |
+
"""Encoder part of the autoencoder."""
|
| 709 |
+
|
| 710 |
+
def __init__(self, config: AutoencoderConfig):
|
| 711 |
+
super().__init__()
|
| 712 |
+
self.config = config
|
| 713 |
+
|
| 714 |
+
# Build encoder layers
|
| 715 |
+
layers = []
|
| 716 |
+
input_dim = config.input_dim
|
| 717 |
+
|
| 718 |
+
for hidden_dim in config.hidden_dims:
|
| 719 |
+
layers.append(nn.Linear(input_dim, hidden_dim))
|
| 720 |
+
|
| 721 |
+
if config.use_batch_norm:
|
| 722 |
+
layers.append(nn.BatchNorm1d(hidden_dim))
|
| 723 |
+
|
| 724 |
+
layers.append(self._get_activation(config.activation))
|
| 725 |
+
|
| 726 |
+
if config.dropout_rate > 0:
|
| 727 |
+
layers.append(nn.Dropout(config.dropout_rate))
|
| 728 |
+
|
| 729 |
+
input_dim = hidden_dim
|
| 730 |
+
|
| 731 |
+
self.encoder = nn.Sequential(*layers)
|
| 732 |
+
|
| 733 |
+
# For variational autoencoders, we need separate layers for mean and log variance
|
| 734 |
+
if config.is_variational:
|
| 735 |
+
self.fc_mu = nn.Linear(input_dim, config.latent_dim)
|
| 736 |
+
self.fc_logvar = nn.Linear(input_dim, config.latent_dim)
|
| 737 |
+
else:
|
| 738 |
+
# Standard encoder output
|
| 739 |
+
self.fc_out = nn.Linear(input_dim, config.latent_dim)
|
| 740 |
+
|
| 741 |
+
def _get_activation(self, activation: str) -> nn.Module:
|
| 742 |
+
"""Get activation function by name."""
|
| 743 |
+
activations = {
|
| 744 |
+
"relu": nn.ReLU(),
|
| 745 |
+
"tanh": nn.Tanh(),
|
| 746 |
+
"sigmoid": nn.Sigmoid(),
|
| 747 |
+
"leaky_relu": nn.LeakyReLU(),
|
| 748 |
+
"gelu": nn.GELU(),
|
| 749 |
+
"swish": nn.SiLU(),
|
| 750 |
+
"silu": nn.SiLU(),
|
| 751 |
+
"elu": nn.ELU(),
|
| 752 |
+
"prelu": nn.PReLU(),
|
| 753 |
+
"relu6": nn.ReLU6(),
|
| 754 |
+
"hardtanh": nn.Hardtanh(),
|
| 755 |
+
"hardsigmoid": nn.Hardsigmoid(),
|
| 756 |
+
"hardswish": nn.Hardswish(),
|
| 757 |
+
"mish": nn.Mish(),
|
| 758 |
+
"softplus": nn.Softplus(),
|
| 759 |
+
"softsign": nn.Softsign(),
|
| 760 |
+
"tanhshrink": nn.Tanhshrink(),
|
| 761 |
+
"threshold": nn.Threshold(threshold=0.1, value=0),
|
| 762 |
+
}
|
| 763 |
+
return activations[activation]
|
| 764 |
+
|
| 765 |
+
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
|
| 766 |
+
"""Forward pass through encoder."""
|
| 767 |
+
# Add noise for denoising autoencoders
|
| 768 |
+
if self.config.is_denoising and self.training:
|
| 769 |
+
noise = torch.randn_like(x) * self.config.noise_factor
|
| 770 |
+
x = x + noise
|
| 771 |
+
|
| 772 |
+
encoded = self.encoder(x)
|
| 773 |
+
|
| 774 |
+
if self.config.is_variational:
|
| 775 |
+
# Variational autoencoder: return mean, log variance, and sampled latent
|
| 776 |
+
mu = self.fc_mu(encoded)
|
| 777 |
+
logvar = self.fc_logvar(encoded)
|
| 778 |
+
|
| 779 |
+
# Reparameterization trick
|
| 780 |
+
if self.training:
|
| 781 |
+
std = torch.exp(0.5 * logvar)
|
| 782 |
+
eps = torch.randn_like(std)
|
| 783 |
+
z = mu + eps * std
|
| 784 |
+
else:
|
| 785 |
+
z = mu # Use mean during inference
|
| 786 |
+
|
| 787 |
+
return z, mu, logvar
|
| 788 |
+
else:
|
| 789 |
+
# Standard autoencoder
|
| 790 |
+
latent = self.fc_out(encoded)
|
| 791 |
+
|
| 792 |
+
# Add sparsity constraint for sparse autoencoders
|
| 793 |
+
if self.config.is_sparse and self.training:
|
| 794 |
+
# Apply L1 regularization to encourage sparsity
|
| 795 |
+
latent = F.relu(latent) # Ensure non-negative activations
|
| 796 |
+
|
| 797 |
+
return latent
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
class AutoencoderDecoder(nn.Module):
|
| 801 |
+
"""Decoder part of the autoencoder."""
|
| 802 |
+
|
| 803 |
+
def __init__(self, config: AutoencoderConfig):
|
| 804 |
+
super().__init__()
|
| 805 |
+
self.config = config
|
| 806 |
+
|
| 807 |
+
# Build decoder layers (reverse of encoder)
|
| 808 |
+
layers = []
|
| 809 |
+
input_dim = config.latent_dim
|
| 810 |
+
decoder_dims = config.decoder_dims + [config.input_dim]
|
| 811 |
+
|
| 812 |
+
for i, hidden_dim in enumerate(decoder_dims):
|
| 813 |
+
layers.append(nn.Linear(input_dim, hidden_dim))
|
| 814 |
+
|
| 815 |
+
# Don't add batch norm, activation, or dropout to the final layer
|
| 816 |
+
if i < len(decoder_dims) - 1:
|
| 817 |
+
if config.use_batch_norm:
|
| 818 |
+
layers.append(nn.BatchNorm1d(hidden_dim))
|
| 819 |
+
|
| 820 |
+
layers.append(self._get_activation(config.activation))
|
| 821 |
+
|
| 822 |
+
if config.dropout_rate > 0:
|
| 823 |
+
layers.append(nn.Dropout(config.dropout_rate))
|
| 824 |
+
else:
|
| 825 |
+
# Final layer - add appropriate activation based on reconstruction loss
|
| 826 |
+
if config.reconstruction_loss == "bce":
|
| 827 |
+
layers.append(nn.Sigmoid())
|
| 828 |
+
|
| 829 |
+
input_dim = hidden_dim
|
| 830 |
+
|
| 831 |
+
self.decoder = nn.Sequential(*layers)
|
| 832 |
+
|
| 833 |
+
def _get_activation(self, activation: str) -> nn.Module:
|
| 834 |
+
"""Get activation function by name."""
|
| 835 |
+
activations = {
|
| 836 |
+
"relu": nn.ReLU(),
|
| 837 |
+
"tanh": nn.Tanh(),
|
| 838 |
+
"sigmoid": nn.Sigmoid(),
|
| 839 |
+
"leaky_relu": nn.LeakyReLU(),
|
| 840 |
+
"gelu": nn.GELU(),
|
| 841 |
+
"swish": nn.SiLU(),
|
| 842 |
+
"silu": nn.SiLU(),
|
| 843 |
+
"elu": nn.ELU(),
|
| 844 |
+
"prelu": nn.PReLU(),
|
| 845 |
+
"relu6": nn.ReLU6(),
|
| 846 |
+
"hardtanh": nn.Hardtanh(),
|
| 847 |
+
"hardsigmoid": nn.Hardsigmoid(),
|
| 848 |
+
"hardswish": nn.Hardswish(),
|
| 849 |
+
"mish": nn.Mish(),
|
| 850 |
+
"softplus": nn.Softplus(),
|
| 851 |
+
"softsign": nn.Softsign(),
|
| 852 |
+
"tanhshrink": nn.Tanhshrink(),
|
| 853 |
+
"threshold": nn.Threshold(threshold=0.1, value=0),
|
| 854 |
+
}
|
| 855 |
+
return activations[activation]
|
| 856 |
+
|
| 857 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 858 |
+
"""Forward pass through decoder."""
|
| 859 |
+
return self.decoder(x)
|
| 860 |
+
|
| 861 |
+
|
| 862 |
+
class RecurrentEncoder(nn.Module):
|
| 863 |
+
"""Recurrent encoder for sequence data."""
|
| 864 |
+
|
| 865 |
+
def __init__(self, config: AutoencoderConfig):
|
| 866 |
+
super().__init__()
|
| 867 |
+
self.config = config
|
| 868 |
+
|
| 869 |
+
# Get RNN class
|
| 870 |
+
if config.rnn_type == "lstm":
|
| 871 |
+
rnn_class = nn.LSTM
|
| 872 |
+
elif config.rnn_type == "gru":
|
| 873 |
+
rnn_class = nn.GRU
|
| 874 |
+
elif config.rnn_type == "rnn":
|
| 875 |
+
rnn_class = nn.RNN
|
| 876 |
+
else:
|
| 877 |
+
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
|
| 878 |
+
|
| 879 |
+
# Create RNN layers
|
| 880 |
+
self.rnn = rnn_class(
|
| 881 |
+
input_size=config.input_dim,
|
| 882 |
+
hidden_size=config.latent_dim,
|
| 883 |
+
num_layers=config.num_layers,
|
| 884 |
+
batch_first=True,
|
| 885 |
+
dropout=config.dropout_rate if config.num_layers > 1 else 0,
|
| 886 |
+
bidirectional=config.bidirectional
|
| 887 |
+
)
|
| 888 |
+
|
| 889 |
+
# Projection layer for bidirectional RNN
|
| 890 |
+
if config.bidirectional:
|
| 891 |
+
self.projection = nn.Linear(config.latent_dim * 2, config.latent_dim)
|
| 892 |
+
else:
|
| 893 |
+
self.projection = None
|
| 894 |
+
|
| 895 |
+
# Batch normalization
|
| 896 |
+
if config.use_batch_norm:
|
| 897 |
+
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
|
| 898 |
+
else:
|
| 899 |
+
self.batch_norm = None
|
| 900 |
+
|
| 901 |
+
# Dropout
|
| 902 |
+
if config.dropout_rate > 0:
|
| 903 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
| 904 |
+
else:
|
| 905 |
+
self.dropout = None
|
| 906 |
+
|
| 907 |
+
def forward(self, x: torch.Tensor, lengths: Optional[torch.Tensor] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
|
| 908 |
+
"""
|
| 909 |
+
Forward pass through recurrent encoder.
|
| 910 |
+
|
| 911 |
+
Args:
|
| 912 |
+
x: Input tensor of shape (batch_size, seq_len, input_dim)
|
| 913 |
+
lengths: Sequence lengths for packed sequences (optional)
|
| 914 |
+
|
| 915 |
+
Returns:
|
| 916 |
+
Encoded representation or tuple for VAE
|
| 917 |
+
"""
|
| 918 |
+
batch_size, seq_len, _ = x.shape
|
| 919 |
+
|
| 920 |
+
# Add noise for denoising autoencoders
|
| 921 |
+
if self.config.is_denoising and self.training:
|
| 922 |
+
noise = torch.randn_like(x) * self.config.noise_factor
|
| 923 |
+
x = x + noise
|
| 924 |
+
|
| 925 |
+
# Pack sequences if lengths provided
|
| 926 |
+
if lengths is not None:
|
| 927 |
+
x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
|
| 928 |
+
|
| 929 |
+
# RNN forward pass
|
| 930 |
+
if self.config.rnn_type == "lstm":
|
| 931 |
+
output, (hidden, cell) = self.rnn(x)
|
| 932 |
+
else:
|
| 933 |
+
output, hidden = self.rnn(x)
|
| 934 |
+
cell = None
|
| 935 |
+
|
| 936 |
+
# Unpack if necessary
|
| 937 |
+
if lengths is not None:
|
| 938 |
+
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
|
| 939 |
+
|
| 940 |
+
# Use last hidden state as encoding
|
| 941 |
+
if self.config.bidirectional:
|
| 942 |
+
# Concatenate forward and backward hidden states
|
| 943 |
+
hidden = hidden.view(self.config.num_layers, 2, batch_size, self.config.latent_dim)
|
| 944 |
+
hidden = hidden[-1] # Take last layer
|
| 945 |
+
hidden = hidden.transpose(0, 1).contiguous().view(batch_size, -1) # Concatenate directions
|
| 946 |
+
|
| 947 |
+
# Project to latent dimension
|
| 948 |
+
if self.projection:
|
| 949 |
+
hidden = self.projection(hidden)
|
| 950 |
+
else:
|
| 951 |
+
hidden = hidden[-1] # Take last layer
|
| 952 |
+
|
| 953 |
+
# Apply batch normalization
|
| 954 |
+
if self.batch_norm:
|
| 955 |
+
hidden = self.batch_norm(hidden)
|
| 956 |
+
|
| 957 |
+
# Apply dropout
|
| 958 |
+
if self.dropout and self.training:
|
| 959 |
+
hidden = self.dropout(hidden)
|
| 960 |
+
|
| 961 |
+
# Handle variational encoding
|
| 962 |
+
if self.config.is_variational:
|
| 963 |
+
# Split hidden into mean and log variance
|
| 964 |
+
mu = hidden[:, :self.config.latent_dim // 2]
|
| 965 |
+
logvar = hidden[:, self.config.latent_dim // 2:]
|
| 966 |
+
|
| 967 |
+
# Reparameterization trick
|
| 968 |
+
if self.training:
|
| 969 |
+
std = torch.exp(0.5 * logvar)
|
| 970 |
+
eps = torch.randn_like(std)
|
| 971 |
+
z = mu + eps * std
|
| 972 |
+
else:
|
| 973 |
+
z = mu
|
| 974 |
+
|
| 975 |
+
return z, mu, logvar
|
| 976 |
+
else:
|
| 977 |
+
return hidden
|
| 978 |
+
|
| 979 |
+
|
| 980 |
+
class RecurrentDecoder(nn.Module):
|
| 981 |
+
"""Recurrent decoder for sequence data."""
|
| 982 |
+
|
| 983 |
+
def __init__(self, config: AutoencoderConfig):
|
| 984 |
+
super().__init__()
|
| 985 |
+
self.config = config
|
| 986 |
+
|
| 987 |
+
# Get RNN class
|
| 988 |
+
if config.rnn_type == "lstm":
|
| 989 |
+
rnn_class = nn.LSTM
|
| 990 |
+
elif config.rnn_type == "gru":
|
| 991 |
+
rnn_class = nn.GRU
|
| 992 |
+
elif config.rnn_type == "rnn":
|
| 993 |
+
rnn_class = nn.RNN
|
| 994 |
+
else:
|
| 995 |
+
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
|
| 996 |
+
|
| 997 |
+
# Create RNN layers
|
| 998 |
+
self.rnn = rnn_class(
|
| 999 |
+
input_size=config.latent_dim,
|
| 1000 |
+
hidden_size=config.latent_dim,
|
| 1001 |
+
num_layers=config.num_layers,
|
| 1002 |
+
batch_first=True,
|
| 1003 |
+
dropout=config.dropout_rate if config.num_layers > 1 else 0,
|
| 1004 |
+
bidirectional=False # Decoder is always unidirectional
|
| 1005 |
+
)
|
| 1006 |
+
|
| 1007 |
+
# Output projection
|
| 1008 |
+
self.output_projection = nn.Linear(config.latent_dim, config.input_dim)
|
| 1009 |
+
|
| 1010 |
+
# Batch normalization
|
| 1011 |
+
if config.use_batch_norm:
|
| 1012 |
+
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
|
| 1013 |
+
else:
|
| 1014 |
+
self.batch_norm = None
|
| 1015 |
+
|
| 1016 |
+
# Dropout
|
| 1017 |
+
if config.dropout_rate > 0:
|
| 1018 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
| 1019 |
+
else:
|
| 1020 |
+
self.dropout = None
|
| 1021 |
+
|
| 1022 |
+
def forward(self, z: torch.Tensor, target_length: int, target_sequence: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 1023 |
+
"""
|
| 1024 |
+
Forward pass through recurrent decoder.
|
| 1025 |
+
|
| 1026 |
+
Args:
|
| 1027 |
+
z: Latent representation of shape (batch_size, latent_dim)
|
| 1028 |
+
target_length: Length of sequence to generate
|
| 1029 |
+
target_sequence: Target sequence for teacher forcing (optional)
|
| 1030 |
+
|
| 1031 |
+
Returns:
|
| 1032 |
+
Decoded sequence of shape (batch_size, seq_len, input_dim)
|
| 1033 |
+
"""
|
| 1034 |
+
batch_size = z.size(0)
|
| 1035 |
+
device = z.device
|
| 1036 |
+
|
| 1037 |
+
# Initialize hidden state with latent representation
|
| 1038 |
+
if self.config.rnn_type == "lstm":
|
| 1039 |
+
h_0 = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
|
| 1040 |
+
c_0 = torch.zeros_like(h_0)
|
| 1041 |
+
hidden = (h_0, c_0)
|
| 1042 |
+
else:
|
| 1043 |
+
hidden = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
|
| 1044 |
+
|
| 1045 |
+
outputs = []
|
| 1046 |
+
|
| 1047 |
+
# Initialize input (can be learned or zero)
|
| 1048 |
+
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
|
| 1049 |
+
|
| 1050 |
+
for t in range(target_length):
|
| 1051 |
+
# Teacher forcing decision
|
| 1052 |
+
use_teacher_forcing = (target_sequence is not None and
|
| 1053 |
+
self.training and
|
| 1054 |
+
random.random() < self.config.teacher_forcing_ratio)
|
| 1055 |
+
|
| 1056 |
+
if use_teacher_forcing and t > 0:
|
| 1057 |
+
# Use previous target as input
|
| 1058 |
+
current_input = target_sequence[:, t-1:t, :]
|
| 1059 |
+
# Project to latent dimension if needed
|
| 1060 |
+
if current_input.size(-1) != self.config.latent_dim:
|
| 1061 |
+
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
|
| 1062 |
+
|
| 1063 |
+
# RNN forward step
|
| 1064 |
+
if self.config.rnn_type == "lstm":
|
| 1065 |
+
output, hidden = self.rnn(current_input, hidden)
|
| 1066 |
+
else:
|
| 1067 |
+
output, hidden = self.rnn(current_input, hidden)
|
| 1068 |
+
|
| 1069 |
+
# Apply batch normalization and dropout
|
| 1070 |
+
output_flat = output.squeeze(1) # Remove sequence dimension
|
| 1071 |
+
|
| 1072 |
+
if self.batch_norm:
|
| 1073 |
+
output_flat = self.batch_norm(output_flat)
|
| 1074 |
+
|
| 1075 |
+
if self.dropout and self.training:
|
| 1076 |
+
output_flat = self.dropout(output_flat)
|
| 1077 |
+
|
| 1078 |
+
# Project to output dimension
|
| 1079 |
+
step_output = self.output_projection(output_flat)
|
| 1080 |
+
outputs.append(step_output.unsqueeze(1))
|
| 1081 |
+
|
| 1082 |
+
# Use output as next input (for non-teacher forcing)
|
| 1083 |
+
if not use_teacher_forcing:
|
| 1084 |
+
# Project output back to latent dimension for next step
|
| 1085 |
+
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
|
| 1086 |
+
|
| 1087 |
+
# Concatenate all outputs
|
| 1088 |
+
return torch.cat(outputs, dim=1)
|
| 1089 |
+
|
| 1090 |
+
|
| 1091 |
+
class AutoencoderModel(PreTrainedModel):
|
| 1092 |
+
"""
|
| 1093 |
+
The bare Autoencoder Model transformer outputting raw hidden-states without any specific head on top.
|
| 1094 |
+
|
| 1095 |
+
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the
|
| 1096 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1097 |
+
etc.)
|
| 1098 |
+
|
| 1099 |
+
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the
|
| 1100 |
+
PyTorch documentation for all matter related to general usage and behavior.
|
| 1101 |
+
"""
|
| 1102 |
+
|
| 1103 |
+
config_class = AutoencoderConfig
|
| 1104 |
+
base_model_prefix = "autoencoder"
|
| 1105 |
+
supports_gradient_checkpointing = False
|
| 1106 |
+
|
| 1107 |
+
def __init__(self, config: AutoencoderConfig):
|
| 1108 |
+
super().__init__(config)
|
| 1109 |
+
self.config = config
|
| 1110 |
+
|
| 1111 |
+
# Initialize learnable preprocessing
|
| 1112 |
+
if config.has_preprocessing:
|
| 1113 |
+
self.preprocessor = LearnablePreprocessor(config)
|
| 1114 |
+
else:
|
| 1115 |
+
self.preprocessor = None
|
| 1116 |
+
|
| 1117 |
+
# Initialize encoder and decoder based on type
|
| 1118 |
+
if config.is_recurrent:
|
| 1119 |
+
self.encoder = RecurrentEncoder(config)
|
| 1120 |
+
self.decoder = RecurrentDecoder(config)
|
| 1121 |
+
else:
|
| 1122 |
+
self.encoder = AutoencoderEncoder(config)
|
| 1123 |
+
self.decoder = AutoencoderDecoder(config)
|
| 1124 |
+
|
| 1125 |
+
# Tie weights if specified
|
| 1126 |
+
if config.tie_weights:
|
| 1127 |
+
self._tie_weights()
|
| 1128 |
+
|
| 1129 |
+
# Initialize weights
|
| 1130 |
+
self.post_init()
|
| 1131 |
+
|
| 1132 |
+
def _tie_weights(self):
|
| 1133 |
+
"""Tie encoder and decoder weights (transpose relationship)."""
|
| 1134 |
+
# This is a simplified weight tying - in practice, you might want more sophisticated tying
|
| 1135 |
+
pass
|
| 1136 |
+
|
| 1137 |
+
def get_input_embeddings(self):
|
| 1138 |
+
"""Get input embeddings (not applicable for basic autoencoder)."""
|
| 1139 |
+
return None
|
| 1140 |
+
|
| 1141 |
+
def set_input_embeddings(self, value):
|
| 1142 |
+
"""Set input embeddings (not applicable for basic autoencoder)."""
|
| 1143 |
+
pass
|
| 1144 |
+
|
| 1145 |
+
def forward(
|
| 1146 |
+
self,
|
| 1147 |
+
input_values: torch.Tensor,
|
| 1148 |
+
sequence_lengths: Optional[torch.Tensor] = None,
|
| 1149 |
+
target_length: Optional[int] = None,
|
| 1150 |
+
output_hidden_states: Optional[bool] = None,
|
| 1151 |
+
return_dict: Optional[bool] = None,
|
| 1152 |
+
) -> Union[Tuple[torch.Tensor], AutoencoderOutput]:
|
| 1153 |
+
"""
|
| 1154 |
+
Forward pass through the autoencoder.
|
| 1155 |
+
|
| 1156 |
+
Args:
|
| 1157 |
+
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
|
| 1158 |
+
- Standard: (batch_size, input_dim)
|
| 1159 |
+
- Recurrent: (batch_size, seq_len, input_dim)
|
| 1160 |
+
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
|
| 1161 |
+
target_length (int, optional): Target sequence length for recurrent decoder.
|
| 1162 |
+
output_hidden_states (bool, optional): Whether to return hidden states.
|
| 1163 |
+
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
|
| 1164 |
+
|
| 1165 |
+
Returns:
|
| 1166 |
+
AutoencoderOutput or tuple: The model outputs.
|
| 1167 |
+
"""
|
| 1168 |
+
output_hidden_states = (
|
| 1169 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1170 |
+
)
|
| 1171 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1172 |
+
|
| 1173 |
+
# Apply learnable preprocessing
|
| 1174 |
+
preprocessing_loss = torch.tensor(0.0, device=input_values.device)
|
| 1175 |
+
if self.preprocessor is not None:
|
| 1176 |
+
input_values, preprocessing_loss = self.preprocessor(input_values, inverse=False)
|
| 1177 |
+
|
| 1178 |
+
# Handle different autoencoder types
|
| 1179 |
+
if self.config.is_recurrent:
|
| 1180 |
+
# Recurrent autoencoder
|
| 1181 |
+
if sequence_lengths is not None:
|
| 1182 |
+
encoder_output = self.encoder(input_values, sequence_lengths)
|
| 1183 |
+
else:
|
| 1184 |
+
encoder_output = self.encoder(input_values)
|
| 1185 |
+
|
| 1186 |
+
if self.config.is_variational:
|
| 1187 |
+
latent, mu, logvar = encoder_output
|
| 1188 |
+
self._mu = mu
|
| 1189 |
+
self._logvar = logvar
|
| 1190 |
+
else:
|
| 1191 |
+
latent = encoder_output
|
| 1192 |
+
self._mu = None
|
| 1193 |
+
self._logvar = None
|
| 1194 |
+
|
| 1195 |
+
# Determine target length for decoder
|
| 1196 |
+
if target_length is None:
|
| 1197 |
+
if self.config.sequence_length is not None:
|
| 1198 |
+
target_length = self.config.sequence_length
|
| 1199 |
+
else:
|
| 1200 |
+
target_length = input_values.size(1) # Use input sequence length
|
| 1201 |
+
|
| 1202 |
+
# Decode latent back to sequence space
|
| 1203 |
+
reconstructed = self.decoder(latent, target_length, input_values if self.training else None)
|
| 1204 |
+
else:
|
| 1205 |
+
# Standard autoencoder
|
| 1206 |
+
encoder_output = self.encoder(input_values)
|
| 1207 |
+
|
| 1208 |
+
if self.config.is_variational:
|
| 1209 |
+
latent, mu, logvar = encoder_output
|
| 1210 |
+
self._mu = mu
|
| 1211 |
+
self._logvar = logvar
|
| 1212 |
+
else:
|
| 1213 |
+
latent = encoder_output
|
| 1214 |
+
self._mu = None
|
| 1215 |
+
self._logvar = None
|
| 1216 |
+
|
| 1217 |
+
# Decode latent back to input space
|
| 1218 |
+
reconstructed = self.decoder(latent)
|
| 1219 |
+
|
| 1220 |
+
# Apply inverse preprocessing to reconstruction
|
| 1221 |
+
if self.preprocessor is not None and self.config.learn_inverse_preprocessing:
|
| 1222 |
+
reconstructed, inverse_loss = self.preprocessor(reconstructed, inverse=True)
|
| 1223 |
+
preprocessing_loss += inverse_loss
|
| 1224 |
+
|
| 1225 |
+
hidden_states = None
|
| 1226 |
+
if output_hidden_states:
|
| 1227 |
+
if self.config.is_variational:
|
| 1228 |
+
hidden_states = (latent, mu, logvar)
|
| 1229 |
+
else:
|
| 1230 |
+
hidden_states = (latent,)
|
| 1231 |
+
|
| 1232 |
+
if not return_dict:
|
| 1233 |
+
return tuple(v for v in [latent, reconstructed, hidden_states] if v is not None)
|
| 1234 |
+
|
| 1235 |
+
return AutoencoderOutput(
|
| 1236 |
+
last_hidden_state=latent,
|
| 1237 |
+
reconstructed=reconstructed,
|
| 1238 |
+
hidden_states=hidden_states,
|
| 1239 |
+
preprocessing_loss=preprocessing_loss,
|
| 1240 |
+
)
|
| 1241 |
+
|
| 1242 |
+
|
| 1243 |
+
class AutoencoderForReconstruction(PreTrainedModel):
|
| 1244 |
+
"""
|
| 1245 |
+
Autoencoder Model with a reconstruction head on top for reconstruction tasks.
|
| 1246 |
+
|
| 1247 |
+
This model inherits from PreTrainedModel and adds a reconstruction loss calculation.
|
| 1248 |
+
"""
|
| 1249 |
+
|
| 1250 |
+
config_class = AutoencoderConfig
|
| 1251 |
+
base_model_prefix = "autoencoder"
|
| 1252 |
+
|
| 1253 |
+
def __init__(self, config: AutoencoderConfig):
|
| 1254 |
+
super().__init__(config)
|
| 1255 |
+
self.config = config
|
| 1256 |
+
|
| 1257 |
+
# Initialize the base autoencoder model
|
| 1258 |
+
self.autoencoder = AutoencoderModel(config)
|
| 1259 |
+
|
| 1260 |
+
# Initialize weights
|
| 1261 |
+
self.post_init()
|
| 1262 |
+
|
| 1263 |
+
def get_input_embeddings(self):
|
| 1264 |
+
"""Get input embeddings."""
|
| 1265 |
+
return self.autoencoder.get_input_embeddings()
|
| 1266 |
+
|
| 1267 |
+
def set_input_embeddings(self, value):
|
| 1268 |
+
"""Set input embeddings."""
|
| 1269 |
+
self.autoencoder.set_input_embeddings(value)
|
| 1270 |
+
|
| 1271 |
+
def _compute_reconstruction_loss(
|
| 1272 |
+
self,
|
| 1273 |
+
reconstructed: torch.Tensor,
|
| 1274 |
+
target: torch.Tensor
|
| 1275 |
+
) -> torch.Tensor:
|
| 1276 |
+
"""Compute reconstruction loss based on the configured loss type."""
|
| 1277 |
+
if self.config.reconstruction_loss == "mse":
|
| 1278 |
+
return F.mse_loss(reconstructed, target, reduction="mean")
|
| 1279 |
+
elif self.config.reconstruction_loss == "bce":
|
| 1280 |
+
return F.binary_cross_entropy_with_logits(reconstructed, target, reduction="mean")
|
| 1281 |
+
elif self.config.reconstruction_loss == "l1":
|
| 1282 |
+
return F.l1_loss(reconstructed, target, reduction="mean")
|
| 1283 |
+
elif self.config.reconstruction_loss == "huber":
|
| 1284 |
+
return F.huber_loss(reconstructed, target, reduction="mean")
|
| 1285 |
+
elif self.config.reconstruction_loss == "smooth_l1":
|
| 1286 |
+
return F.smooth_l1_loss(reconstructed, target, reduction="mean")
|
| 1287 |
+
elif self.config.reconstruction_loss == "kl_div":
|
| 1288 |
+
return F.kl_div(F.log_softmax(reconstructed, dim=-1), F.softmax(target, dim=-1), reduction="mean")
|
| 1289 |
+
elif self.config.reconstruction_loss == "cosine":
|
| 1290 |
+
return 1 - F.cosine_similarity(reconstructed, target, dim=-1).mean()
|
| 1291 |
+
elif self.config.reconstruction_loss == "focal":
|
| 1292 |
+
return self._focal_loss(reconstructed, target)
|
| 1293 |
+
elif self.config.reconstruction_loss == "dice":
|
| 1294 |
+
return self._dice_loss(reconstructed, target)
|
| 1295 |
+
elif self.config.reconstruction_loss == "tversky":
|
| 1296 |
+
return self._tversky_loss(reconstructed, target)
|
| 1297 |
+
elif self.config.reconstruction_loss == "ssim":
|
| 1298 |
+
return self._ssim_loss(reconstructed, target)
|
| 1299 |
+
elif self.config.reconstruction_loss == "perceptual":
|
| 1300 |
+
return self._perceptual_loss(reconstructed, target)
|
| 1301 |
+
else:
|
| 1302 |
+
raise ValueError(f"Unknown reconstruction loss: {self.config.reconstruction_loss}")
|
| 1303 |
+
|
| 1304 |
+
def _focal_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 1.0, gamma: float = 2.0) -> torch.Tensor:
|
| 1305 |
+
"""Compute focal loss for handling class imbalance."""
|
| 1306 |
+
ce_loss = F.mse_loss(pred, target, reduction="none")
|
| 1307 |
+
pt = torch.exp(-ce_loss)
|
| 1308 |
+
focal_loss = alpha * (1 - pt) ** gamma * ce_loss
|
| 1309 |
+
return focal_loss.mean()
|
| 1310 |
+
|
| 1311 |
+
def _dice_loss(self, pred: torch.Tensor, target: torch.Tensor, smooth: float = 1e-6) -> torch.Tensor:
|
| 1312 |
+
"""Compute Dice loss for segmentation-like tasks."""
|
| 1313 |
+
pred_flat = pred.view(-1)
|
| 1314 |
+
target_flat = target.view(-1)
|
| 1315 |
+
intersection = (pred_flat * target_flat).sum()
|
| 1316 |
+
dice = (2.0 * intersection + smooth) / (pred_flat.sum() + target_flat.sum() + smooth)
|
| 1317 |
+
return 1 - dice
|
| 1318 |
+
|
| 1319 |
+
def _tversky_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 0.7, beta: float = 0.3, smooth: float = 1e-6) -> torch.Tensor:
|
| 1320 |
+
"""Compute Tversky loss, a generalization of Dice loss."""
|
| 1321 |
+
pred_flat = pred.view(-1)
|
| 1322 |
+
target_flat = target.view(-1)
|
| 1323 |
+
true_pos = (pred_flat * target_flat).sum()
|
| 1324 |
+
false_neg = (target_flat * (1 - pred_flat)).sum()
|
| 1325 |
+
false_pos = ((1 - target_flat) * pred_flat).sum()
|
| 1326 |
+
tversky = (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
|
| 1327 |
+
return 1 - tversky
|
| 1328 |
+
|
| 1329 |
+
def _ssim_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
| 1330 |
+
"""Compute SSIM-based loss (simplified version)."""
|
| 1331 |
+
# Simplified SSIM for 1D data
|
| 1332 |
+
mu1 = pred.mean(dim=-1, keepdim=True)
|
| 1333 |
+
mu2 = target.mean(dim=-1, keepdim=True)
|
| 1334 |
+
sigma1_sq = ((pred - mu1) ** 2).mean(dim=-1, keepdim=True)
|
| 1335 |
+
sigma2_sq = ((target - mu2) ** 2).mean(dim=-1, keepdim=True)
|
| 1336 |
+
sigma12 = ((pred - mu1) * (target - mu2)).mean(dim=-1, keepdim=True)
|
| 1337 |
+
|
| 1338 |
+
c1, c2 = 0.01, 0.03
|
| 1339 |
+
ssim = ((2 * mu1 * mu2 + c1) * (2 * sigma12 + c2)) / ((mu1**2 + mu2**2 + c1) * (sigma1_sq + sigma2_sq + c2))
|
| 1340 |
+
return 1 - ssim.mean()
|
| 1341 |
+
|
| 1342 |
+
def _perceptual_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
| 1343 |
+
"""Compute perceptual loss (simplified version using feature differences)."""
|
| 1344 |
+
# For simplicity, use L2 loss on normalized features
|
| 1345 |
+
pred_norm = F.normalize(pred, p=2, dim=-1)
|
| 1346 |
+
target_norm = F.normalize(target, p=2, dim=-1)
|
| 1347 |
+
return F.mse_loss(pred_norm, target_norm)
|
| 1348 |
+
|
| 1349 |
+
def forward(
|
| 1350 |
+
self,
|
| 1351 |
+
input_values: torch.Tensor,
|
| 1352 |
+
labels: Optional[torch.Tensor] = None,
|
| 1353 |
+
sequence_lengths: Optional[torch.Tensor] = None,
|
| 1354 |
+
target_length: Optional[int] = None,
|
| 1355 |
+
output_hidden_states: Optional[bool] = None,
|
| 1356 |
+
return_dict: Optional[bool] = None,
|
| 1357 |
+
) -> Union[Tuple[torch.Tensor], AutoencoderForReconstructionOutput]:
|
| 1358 |
+
"""
|
| 1359 |
+
Forward pass with reconstruction loss calculation.
|
| 1360 |
+
|
| 1361 |
+
Args:
|
| 1362 |
+
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
|
| 1363 |
+
- Standard: (batch_size, input_dim)
|
| 1364 |
+
- Recurrent: (batch_size, seq_len, input_dim)
|
| 1365 |
+
labels (torch.Tensor, optional): Target tensor for reconstruction. If None, uses input_values.
|
| 1366 |
+
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
|
| 1367 |
+
target_length (int, optional): Target sequence length for recurrent decoder.
|
| 1368 |
+
output_hidden_states (bool, optional): Whether to return hidden states.
|
| 1369 |
+
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
|
| 1370 |
+
|
| 1371 |
+
Returns:
|
| 1372 |
+
AutoencoderForReconstructionOutput or tuple: The model outputs including loss.
|
| 1373 |
+
"""
|
| 1374 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1375 |
+
|
| 1376 |
+
# If no labels provided, use input as target (standard autoencoder)
|
| 1377 |
+
if labels is None:
|
| 1378 |
+
labels = input_values
|
| 1379 |
+
|
| 1380 |
+
# Forward pass through autoencoder
|
| 1381 |
+
outputs = self.autoencoder(
|
| 1382 |
+
input_values=input_values,
|
| 1383 |
+
sequence_lengths=sequence_lengths,
|
| 1384 |
+
target_length=target_length,
|
| 1385 |
+
output_hidden_states=output_hidden_states,
|
| 1386 |
+
return_dict=True,
|
| 1387 |
+
)
|
| 1388 |
+
|
| 1389 |
+
reconstructed = outputs.reconstructed
|
| 1390 |
+
latent = outputs.last_hidden_state
|
| 1391 |
+
hidden_states = outputs.hidden_states
|
| 1392 |
+
|
| 1393 |
+
# Compute reconstruction loss
|
| 1394 |
+
recon_loss = self._compute_reconstruction_loss(reconstructed, labels)
|
| 1395 |
+
|
| 1396 |
+
# Add regularization losses based on autoencoder type
|
| 1397 |
+
total_loss = recon_loss
|
| 1398 |
+
|
| 1399 |
+
# Add preprocessing loss if available
|
| 1400 |
+
if hasattr(outputs, 'preprocessing_loss') and outputs.preprocessing_loss is not None:
|
| 1401 |
+
total_loss += outputs.preprocessing_loss
|
| 1402 |
+
|
| 1403 |
+
if self.config.is_variational and hasattr(self.autoencoder, '_mu') and self.autoencoder._mu is not None:
|
| 1404 |
+
# KL divergence loss for variational autoencoders
|
| 1405 |
+
kl_loss = -0.5 * torch.sum(1 + self.autoencoder._logvar - self.autoencoder._mu.pow(2) - self.autoencoder._logvar.exp())
|
| 1406 |
+
kl_loss = kl_loss / (self.autoencoder._mu.size(0) * self.autoencoder._mu.size(1)) # Normalize by batch size and latent dim
|
| 1407 |
+
total_loss = recon_loss + self.config.beta * kl_loss
|
| 1408 |
+
|
| 1409 |
+
elif self.config.is_sparse:
|
| 1410 |
+
# Sparsity loss for sparse autoencoders
|
| 1411 |
+
latent = outputs.last_hidden_state
|
| 1412 |
+
sparsity_loss = torch.mean(torch.abs(latent)) # L1 sparsity
|
| 1413 |
+
total_loss = recon_loss + 0.1 * sparsity_loss # Sparsity weight
|
| 1414 |
+
|
| 1415 |
+
elif self.config.is_contractive:
|
| 1416 |
+
# Contractive loss - penalize large gradients of hidden representation w.r.t. input
|
| 1417 |
+
latent = outputs.last_hidden_state
|
| 1418 |
+
latent.retain_grad()
|
| 1419 |
+
if latent.grad is not None:
|
| 1420 |
+
contractive_loss = torch.sum(latent.grad ** 2)
|
| 1421 |
+
total_loss = recon_loss + 0.1 * contractive_loss
|
| 1422 |
+
|
| 1423 |
+
loss = total_loss
|
| 1424 |
+
|
| 1425 |
+
if not return_dict:
|
| 1426 |
+
output = (reconstructed, latent)
|
| 1427 |
+
if hidden_states is not None:
|
| 1428 |
+
output = output + (hidden_states,)
|
| 1429 |
+
return ((loss,) + output) if loss is not None else output
|
| 1430 |
+
|
| 1431 |
+
return AutoencoderForReconstructionOutput(
|
| 1432 |
+
loss=loss,
|
| 1433 |
+
reconstructed=reconstructed,
|
| 1434 |
+
last_hidden_state=latent,
|
| 1435 |
+
hidden_states=hidden_states,
|
| 1436 |
+
preprocessing_loss=outputs.preprocessing_loss if hasattr(outputs, 'preprocessing_loss') else None,
|
| 1437 |
+
)
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14e56e5ad0c4b49490b81fd03efb444c425ac02e5b4a9dc8cb26ecb1764b2c3d
|
| 3 |
+
size 5777
|