| 
							 | 
						from typing import Mapping | 
					
					
						
						| 
							 | 
						from transformers.configuration_utils import PretrainedConfig | 
					
					
						
						| 
							 | 
						from transformers.onnx import OnnxSeq2SeqConfigWithPast | 
					
					
						
						| 
							 | 
						from transformers.utils import logging | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class T5MIMOconvConfig(PretrainedConfig): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to | 
					
					
						
						| 
							 | 
						    instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a | 
					
					
						
						| 
							 | 
						    configuration with the defaults will yield a similar configuration to that of the T5 | 
					
					
						
						| 
							 | 
						    [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
					
						
						| 
							 | 
						    documentation from [`PretrainedConfig`] for more information. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Arguments: | 
					
					
						
						| 
							 | 
						        vocab_size (`int`, *optional*, defaults to 32128): | 
					
					
						
						| 
							 | 
						            Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the | 
					
					
						
						| 
							 | 
						            `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. | 
					
					
						
						| 
							 | 
						        d_model (`int`, *optional*, defaults to 512): | 
					
					
						
						| 
							 | 
						            Size of the encoder layers and the pooler layer. | 
					
					
						
						| 
							 | 
						        d_kv (`int`, *optional*, defaults to 64): | 
					
					
						
						| 
							 | 
						            Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will | 
					
					
						
						| 
							 | 
						            be defined as `num_heads * d_kv`. | 
					
					
						
						| 
							 | 
						        d_ff (`int`, *optional*, defaults to 2048): | 
					
					
						
						| 
							 | 
						            Size of the intermediate feed forward layer in each `T5Block`. | 
					
					
						
						| 
							 | 
						        num_layers (`int`, *optional*, defaults to 6): | 
					
					
						
						| 
							 | 
						            Number of hidden layers in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        num_decoder_layers (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. | 
					
					
						
						| 
							 | 
						        num_heads (`int`, *optional*, defaults to 8): | 
					
					
						
						| 
							 | 
						            Number of attention heads for each attention layer in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        relative_attention_num_buckets (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            The number of buckets to use for each attention layer. | 
					
					
						
						| 
							 | 
						        relative_attention_max_distance (`int`, *optional*, defaults to 128): | 
					
					
						
						| 
							 | 
						            The maximum distance of the longer sequences for the bucket separation. | 
					
					
						
						| 
							 | 
						        dropout_rate (`float`, *optional*, defaults to 0.1): | 
					
					
						
						| 
							 | 
						            The ratio for all dropout layers. | 
					
					
						
						| 
							 | 
						        classifier_dropout (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						            The dropout ratio for classifier. | 
					
					
						
						| 
							 | 
						        layer_norm_eps (`float`, *optional*, defaults to 1e-6): | 
					
					
						
						| 
							 | 
						            The epsilon used by the layer normalization layers. | 
					
					
						
						| 
							 | 
						        initializer_factor (`float`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | 
					
					
						
						| 
							 | 
						            testing). | 
					
					
						
						| 
							 | 
						        feed_forward_proj (`string`, *optional*, defaults to `"relu"`): | 
					
					
						
						| 
							 | 
						            Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the | 
					
					
						
						| 
							 | 
						            `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether or not the model should return the last key/values attentions (not used by all models). | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_type = "t5mimoconv" | 
					
					
						
						| 
							 | 
						    keys_to_ignore_at_inference = ["past_key_values"] | 
					
					
						
						| 
							 | 
						    attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vocab_size=32128, | 
					
					
						
						| 
							 | 
						        d_model=512, | 
					
					
						
						| 
							 | 
						        d_kv=64, | 
					
					
						
						| 
							 | 
						        d_ff=2048, | 
					
					
						
						| 
							 | 
						        num_layers=6, | 
					
					
						
						| 
							 | 
						        num_decoder_layers=None, | 
					
					
						
						| 
							 | 
						        num_heads=8, | 
					
					
						
						| 
							 | 
						        relative_attention_num_buckets=32, | 
					
					
						
						| 
							 | 
						        relative_attention_max_distance=128, | 
					
					
						
						| 
							 | 
						        dropout_rate=0.1, | 
					
					
						
						| 
							 | 
						        layer_norm_epsilon=1e-6, | 
					
					
						
						| 
							 | 
						        initializer_factor=1.0, | 
					
					
						
						| 
							 | 
						        feed_forward_proj="relu", | 
					
					
						
						| 
							 | 
						        is_encoder_decoder=True, | 
					
					
						
						| 
							 | 
						        use_cache=True, | 
					
					
						
						| 
							 | 
						        pad_token_id=0, | 
					
					
						
						| 
							 | 
						        eos_token_id=1, | 
					
					
						
						| 
							 | 
						        decoder_start_token_id = 0, | 
					
					
						
						| 
							 | 
						        classifier_dropout=0.0, | 
					
					
						
						| 
							 | 
						        num_seqs=3, | 
					
					
						
						| 
							 | 
						        num_filters=64, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.vocab_size = vocab_size | 
					
					
						
						| 
							 | 
						        self.d_model = d_model | 
					
					
						
						| 
							 | 
						        self.d_kv = d_kv | 
					
					
						
						| 
							 | 
						        self.d_ff = d_ff | 
					
					
						
						| 
							 | 
						        self.num_layers = num_layers | 
					
					
						
						| 
							 | 
						        self.num_decoder_layers = ( | 
					
					
						
						| 
							 | 
						            num_decoder_layers if num_decoder_layers is not None else self.num_layers | 
					
					
						
						| 
							 | 
						        )   | 
					
					
						
						| 
							 | 
						        self.num_heads = num_heads | 
					
					
						
						| 
							 | 
						        self.relative_attention_num_buckets = relative_attention_num_buckets | 
					
					
						
						| 
							 | 
						        self.relative_attention_max_distance = relative_attention_max_distance | 
					
					
						
						| 
							 | 
						        self.dropout_rate = dropout_rate | 
					
					
						
						| 
							 | 
						        self.classifier_dropout = classifier_dropout | 
					
					
						
						| 
							 | 
						        self.layer_norm_epsilon = layer_norm_epsilon | 
					
					
						
						| 
							 | 
						        self.initializer_factor = initializer_factor | 
					
					
						
						| 
							 | 
						        self.feed_forward_proj = feed_forward_proj | 
					
					
						
						| 
							 | 
						        self.use_cache = use_cache | 
					
					
						
						| 
							 | 
						        self.num_seqs = num_seqs | 
					
					
						
						| 
							 | 
						        self.num_filters = num_filters | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        act_info = self.feed_forward_proj.split("-") | 
					
					
						
						| 
							 | 
						        self.dense_act_fn = act_info[-1] | 
					
					
						
						| 
							 | 
						        self.is_gated_act = act_info[0] == "gated" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " | 
					
					
						
						| 
							 | 
						                "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " | 
					
					
						
						| 
							 | 
						                "'gated-gelu' or 'relu'" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if feed_forward_proj == "gated-gelu": | 
					
					
						
						| 
							 | 
						            self.dense_act_fn = "gelu_new" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        super().__init__( | 
					
					
						
						| 
							 | 
						            pad_token_id=pad_token_id, | 
					
					
						
						| 
							 | 
						            eos_token_id=eos_token_id, | 
					
					
						
						| 
							 | 
						            decoder_start_token_id=decoder_start_token_id, | 
					
					
						
						| 
							 | 
						            is_encoder_decoder=is_encoder_decoder, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class T5MIMOOnnxConfig(OnnxSeq2SeqConfigWithPast): | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def inputs(self) -> Mapping[str, Mapping[int, str]]: | 
					
					
						
						| 
							 | 
						        common_inputs = { | 
					
					
						
						| 
							 | 
						            "input_ids": {0: "batch", 1: "encoder_sequence"}, | 
					
					
						
						| 
							 | 
						            "attention_mask": {0: "batch", 1: "encoder_sequence"}, | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        if self.use_past: | 
					
					
						
						| 
							 | 
						            common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence" | 
					
					
						
						| 
							 | 
						            common_inputs["decoder_input_ids"] = {0: "batch"} | 
					
					
						
						| 
							 | 
						            common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} | 
					
					
						
						| 
							 | 
						            common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.use_past: | 
					
					
						
						| 
							 | 
						            self.fill_with_past_key_values_(common_inputs, direction="inputs") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return common_inputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def default_onnx_opset(self) -> int: | 
					
					
						
						| 
							 | 
						        return 13 |