Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- biomedical
|
| 6 |
+
- bionlp
|
| 7 |
+
- entity linking
|
| 8 |
+
- embedding
|
| 9 |
+
- bert
|
| 10 |
+
---
|
| 11 |
+
The GEBERT model pre-trained with GAT graph encoder.
|
| 12 |
+
|
| 13 |
+
The model was published at [CLEF 2023 conference](https://clef2023.clef-initiative.eu/). The source code is available at [github](https://github.com/Andoree/GEBERT).
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
Pretraining data: biomedical concept graph and concept names from the UMLS (2020AB release).
|
| 17 |
+
|
| 18 |
+
Base model: [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext).
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
```bibtex
|
| 23 |
+
@inproceedings{sakhovskiy2023gebert,
|
| 24 |
+
author="Sakhovskiy, Andrey
|
| 25 |
+
and Semenova, Natalia
|
| 26 |
+
and Kadurin, Artur
|
| 27 |
+
and Tutubalina, Elena",
|
| 28 |
+
title="Graph-Enriched Biomedical Entity Representation Transformer",
|
| 29 |
+
booktitle="Experimental IR Meets Multilinguality, Multimodality, and Interaction",
|
| 30 |
+
year="2023",
|
| 31 |
+
publisher="Springer Nature Switzerland",
|
| 32 |
+
address="Cham",
|
| 33 |
+
pages="109--120",
|
| 34 |
+
isbn="978-3-031-42448-9"
|
| 35 |
+
}
|
| 36 |
+
```
|