blapuma commited on
Commit
18bc817
·
verified ·
1 Parent(s): 905823e

Upload MyTestPipeline

Browse files
Files changed (1) hide show
  1. new_task.py +5 -5
new_task.py CHANGED
@@ -2,10 +2,11 @@ from transformers import Text2TextGenerationPipeline, AutoModelForSeq2SeqLM, TFA
2
  import torch
3
  import tensorflow as tf
4
  import numpy as np
 
5
 
6
  class MyTestPipeline(TextGenerationPipeline):
7
  def preprocess(self, text, **kwargs):
8
- prompt = 'Answer the following question/statement without any explanation, do not abbreviate names.'
9
  txt = f"<|user|>\n{prompt} {text}\n<|end|>\n<|assistant|>"
10
  return self.tokenizer(txt, return_tensors=self.framework)
11
 
@@ -15,7 +16,7 @@ class MyTestPipeline(TextGenerationPipeline):
15
  elif self.framework == "tf":
16
  in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy()
17
 
18
- outputs = self.model.generate(**model_inputs, **generate_kwargs, return_dict_in_generate=True, output_scores=True, max_new_tokens=75)
19
 
20
  output_ids = outputs.sequences
21
  out_b = output_ids.shape[0]
@@ -35,8 +36,7 @@ class MyTestPipeline(TextGenerationPipeline):
35
  log_probs = np.round(np.exp(transition_scores.cpu().numpy()), 3)[0]
36
  guess_prob = np.product(log_probs)
37
 
38
- if guess_prob >= 0.8:
39
- guess_prob = 1.0
40
 
41
- return {'guess': guess_text, 'confidence': guess_prob}
42
 
 
2
  import torch
3
  import tensorflow as tf
4
  import numpy as np
5
+ import math
6
 
7
  class MyTestPipeline(TextGenerationPipeline):
8
  def preprocess(self, text, **kwargs):
9
+ prompt = 'Answer the following question/statement in English without any explanation, do not abbreviate names.'
10
  txt = f"<|user|>\n{prompt} {text}\n<|end|>\n<|assistant|>"
11
  return self.tokenizer(txt, return_tensors=self.framework)
12
 
 
16
  elif self.framework == "tf":
17
  in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy()
18
 
19
+ outputs = self.model.generate(**model_inputs, **generate_kwargs, return_dict_in_generate=True, output_scores=True)
20
 
21
  output_ids = outputs.sequences
22
  out_b = output_ids.shape[0]
 
36
  log_probs = np.round(np.exp(transition_scores.cpu().numpy()), 3)[0]
37
  guess_prob = np.product(log_probs)
38
 
39
+ confidence = (math.exp(12*(guess_prob - 0.5))) / (1 + math.exp(12 * (guess_prob - 0.5)))
 
40
 
41
+ return {'guess': guess_text, 'confidence': confidence}
42