Update example_inference.py
Browse files- example_inference.py +19 -32
example_inference.py
CHANGED
|
@@ -1,55 +1,42 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import numpy as np
|
| 3 |
from skimage import io
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import torch.nn.functional as F
|
| 7 |
-
from torchvision.transforms.functional import normalize
|
| 8 |
from briarmbg import BriaRMBG
|
| 9 |
-
|
| 10 |
|
| 11 |
def example_inference():
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
model_path = "./model.pth"
|
| 17 |
-
im_path = "./example_image.jpg"
|
| 18 |
-
result_path = "."
|
| 19 |
|
|
|
|
| 20 |
if torch.cuda.is_available():
|
| 21 |
-
net.load_state_dict(torch.load(model_path))
|
| 22 |
-
net=net.cuda()
|
| 23 |
else:
|
| 24 |
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
| 25 |
net.eval()
|
| 26 |
|
| 27 |
# prepare input
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
| 33 |
-
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=input_size, mode='bilinear').type(torch.uint8)
|
| 34 |
-
image = torch.divide(im_tensor,255.0)
|
| 35 |
-
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
| 36 |
|
| 37 |
if torch.cuda.is_available():
|
| 38 |
image=image.cuda()
|
| 39 |
-
|
| 40 |
-
#inference
|
| 41 |
result=net(image)
|
| 42 |
|
| 43 |
# post process
|
| 44 |
-
|
| 45 |
-
ma = torch.max(result)
|
| 46 |
-
mi = torch.min(result)
|
| 47 |
-
result = (result-mi)/(ma-mi)
|
| 48 |
|
| 49 |
# save result
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 1 |
from skimage import io
|
| 2 |
+
import torch, os
|
| 3 |
+
from PIL import Image
|
|
|
|
|
|
|
| 4 |
from briarmbg import BriaRMBG
|
| 5 |
+
from utilities import preprocess_image, postprocess_image
|
| 6 |
|
| 7 |
def example_inference():
|
| 8 |
|
| 9 |
+
model_path = f"{os.path.dirname(__file__)}/model.pth"
|
| 10 |
+
im_path = f"{os.path.dirname(__file__)}/example_input.jpg"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
net = BriaRMBG()
|
| 13 |
if torch.cuda.is_available():
|
| 14 |
+
net.load_state_dict(torch.load(model_path)).cuda()
|
|
|
|
| 15 |
else:
|
| 16 |
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
| 17 |
net.eval()
|
| 18 |
|
| 19 |
# prepare input
|
| 20 |
+
model_input_size = [1024,1024]
|
| 21 |
+
orig_im = io.imread(im_path)
|
| 22 |
+
orig_im_size = orig_im.shape[0:2]
|
| 23 |
+
image = preprocess_image(orig_im, model_input_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
if torch.cuda.is_available():
|
| 26 |
image=image.cuda()
|
| 27 |
+
|
| 28 |
+
# inference
|
| 29 |
result=net(image)
|
| 30 |
|
| 31 |
# post process
|
| 32 |
+
result_image = postprocess_image(result[0][0], orig_im_size)
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# save result
|
| 35 |
+
pil_im = Image.fromarray(result_image)
|
| 36 |
+
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
| 37 |
+
orig_image = Image.open(im_path)
|
| 38 |
+
no_bg_image.paste(orig_image, mask=pil_im)
|
| 39 |
+
no_bg_image.save("example_image_no_bg.png")
|
| 40 |
|
| 41 |
|
| 42 |
if __name__ == "__main__":
|