Upload train.py with huggingface_hub
Browse files
train.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "datasets",
|
| 5 |
+
# "httpx",
|
| 6 |
+
# "huggingface-hub",
|
| 7 |
+
# "setuptools",
|
| 8 |
+
# "transformers",
|
| 9 |
+
# "torch",
|
| 10 |
+
# "accelerate",
|
| 11 |
+
# "trl",
|
| 12 |
+
# "peft",
|
| 13 |
+
# "wandb",
|
| 14 |
+
# "bitsandbytes",
|
| 15 |
+
# "torchvision",
|
| 16 |
+
# "torchaudio",
|
| 17 |
+
# ]
|
| 18 |
+
#
|
| 19 |
+
|
| 20 |
+
# ///
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
"""## Import libraries"""
|
| 24 |
+
|
| 25 |
+
import torch
|
| 26 |
+
from datasets import load_dataset
|
| 27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 28 |
+
from trl import SFTConfig, SFTTrainer, setup_chat_format
|
| 29 |
+
from peft import LoraConfig
|
| 30 |
+
|
| 31 |
+
"""# Load Dataset"""
|
| 32 |
+
|
| 33 |
+
dataset_name = "allenai/tulu-3-sft-personas-code" # Example dataset
|
| 34 |
+
|
| 35 |
+
# Load dataset
|
| 36 |
+
dataset = load_dataset(dataset_name, split="train")
|
| 37 |
+
print(f"Dataset loaded: {dataset}")
|
| 38 |
+
|
| 39 |
+
# Let's look at a sample
|
| 40 |
+
print("\nSample data:")
|
| 41 |
+
print(dataset[0])
|
| 42 |
+
|
| 43 |
+
dataset = dataset.remove_columns("prompt")
|
| 44 |
+
dataset = dataset.train_test_split(test_size=0.2)
|
| 45 |
+
|
| 46 |
+
print(
|
| 47 |
+
f"Train Samples: {len(dataset['train'])}\nTest Samples: {len(dataset['test'])}"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
"""## Configuration
|
| 51 |
+
|
| 52 |
+
Set up the configuration parameters for the fine-tuning process.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
# Model configuration
|
| 56 |
+
model_name = "Qwen/Qwen3-30B-A3B" # You can change this to any model you want to fine-tune
|
| 57 |
+
|
| 58 |
+
# # Other compatible Qwen3 models
|
| 59 |
+
# model_name = "Qwen/Qwen3-32B"
|
| 60 |
+
# model_name = "Qwen/Qwen3-14B"
|
| 61 |
+
# model_name = "Qwen/Qwen3-8B"
|
| 62 |
+
# model_name = "Qwen/Qwen3-4B"
|
| 63 |
+
# model_name = "Qwen/Qwen3-1.7B"
|
| 64 |
+
# model_name = "Qwen/Qwen3-0.6B"
|
| 65 |
+
|
| 66 |
+
# Training configuration
|
| 67 |
+
output_dir = "./output/sft-model"
|
| 68 |
+
num_train_epochs = 1
|
| 69 |
+
per_device_train_batch_size = 1
|
| 70 |
+
gradient_accumulation_steps = 1
|
| 71 |
+
learning_rate = 2e-4 if use_peft else 2e-5 # Higher learning rate for PEFT
|
| 72 |
+
|
| 73 |
+
"""## Load model and tokenizer"""
|
| 74 |
+
|
| 75 |
+
# specify how to quantize the model
|
| 76 |
+
quantization_config = BitsAndBytesConfig(
|
| 77 |
+
load_in_4bit=True,
|
| 78 |
+
bnb_4bit_quant_type="nf4",
|
| 79 |
+
bnb_4bit_use_double_quant=True,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Load model
|
| 83 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 84 |
+
model_name,
|
| 85 |
+
torch_dtype=torch.bfloat16,
|
| 86 |
+
use_cache=False, # Disable KV cache during training
|
| 87 |
+
device_map="auto",
|
| 88 |
+
quantization_config=quantization_config
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Load tokenizer
|
| 92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 93 |
+
|
| 94 |
+
# # Set up chat formatting (if the model doesn't have a chat template)
|
| 95 |
+
# if tokenizer.chat_template is None:
|
| 96 |
+
# model, tokenizer = setup_chat_format(model, tokenizer, format="chatml")
|
| 97 |
+
|
| 98 |
+
# # Set padding token
|
| 99 |
+
# if tokenizer.pad_token is None:
|
| 100 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
| 101 |
+
|
| 102 |
+
"""## Configure PEFT (if enabled)"""
|
| 103 |
+
|
| 104 |
+
# Set up PEFT configuration if enabled
|
| 105 |
+
peft_config = LoraConfig(
|
| 106 |
+
r=32, # Rank
|
| 107 |
+
lora_alpha=16, # Alpha parameter for LoRA scaling
|
| 108 |
+
lora_dropout=0.05,
|
| 109 |
+
bias="none",
|
| 110 |
+
task_type="CAUSAL_LM",
|
| 111 |
+
target_modules="all-linear",
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
"""## Configure SFT Trainer"""
|
| 115 |
+
|
| 116 |
+
# Training arguments
|
| 117 |
+
training_args = SFTConfig(
|
| 118 |
+
output_dir=output_dir,
|
| 119 |
+
num_train_epochs=num_train_epochs,
|
| 120 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
| 121 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 122 |
+
learning_rate=learning_rate,
|
| 123 |
+
gradient_checkpointing=True,
|
| 124 |
+
logging_steps=25,
|
| 125 |
+
save_strategy="epoch",
|
| 126 |
+
optim="adamw_torch",
|
| 127 |
+
lr_scheduler_type="cosine",
|
| 128 |
+
warmup_ratio=0.1,
|
| 129 |
+
max_length=1024,
|
| 130 |
+
packing=True, # Enable packing to increase training efficiency
|
| 131 |
+
eos_token=tokenizer.eos_token,
|
| 132 |
+
bf16=True,
|
| 133 |
+
fp16=False,
|
| 134 |
+
max_steps=1000,
|
| 135 |
+
report_to="wandb", # Disable reporting to avoid wandb prompts
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
"""## Initialize and run the SFT Trainer"""
|
| 139 |
+
|
| 140 |
+
# Create SFT Trainer
|
| 141 |
+
trainer = SFTTrainer(
|
| 142 |
+
model=model,
|
| 143 |
+
args=training_args,
|
| 144 |
+
train_dataset=dataset["train"],
|
| 145 |
+
eval_dataset=dataset["test"] if "test" in dataset else None,
|
| 146 |
+
peft_config=peft_config,
|
| 147 |
+
processing_class=tokenizer,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Train the model
|
| 151 |
+
trainer.train()
|
| 152 |
+
|
| 153 |
+
"""## Save the fine-tuned model"""
|
| 154 |
+
|
| 155 |
+
# Save the model
|
| 156 |
+
trainer.save_model(output_dir)
|
| 157 |
+
|
| 158 |
+
"""## Test the fine-tuned model"""
|
| 159 |
+
|
| 160 |
+
from peft import PeftModel, PeftConfig
|
| 161 |
+
|
| 162 |
+
# Load the base model
|
| 163 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 164 |
+
model_name, trust_remote_code=True, torch_dtype=torch.bfloat16
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Load the fine-tuned PEFT model
|
| 168 |
+
model = PeftModel.from_pretrained(base_model, output_dir)
|
| 169 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 170 |
+
# Test the model with an example
|
| 171 |
+
prompt = """Write a function called is_palindrome that takes a single string as input and returns True if the string is a palindrome, and False otherwise.
|
| 172 |
+
|
| 173 |
+
Palindrome Definition:
|
| 174 |
+
|
| 175 |
+
A palindrome is a word, phrase, number, or other sequence of characters that reads the same forward and backward, ignoring spaces, punctuation, and capitalization.
|
| 176 |
+
|
| 177 |
+
Example:
|
| 178 |
+
```
|
| 179 |
+
is_palindrome("racecar") # Returns True
|
| 180 |
+
is_palindrome("hello") # Returns False
|
| 181 |
+
is_palindrome("A man, a plan, a canal: Panama") # Returns True
|
| 182 |
+
```
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
# Format the chat prompt using the tokenizer's chat template
|
| 186 |
+
messages = [
|
| 187 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 188 |
+
{"role": "user", "content": prompt},
|
| 189 |
+
]
|
| 190 |
+
formatted_prompt = tokenizer.apply_chat_template(
|
| 191 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 192 |
+
)
|
| 193 |
+
print(f"Formatted prompt: {formatted_prompt}")
|
| 194 |
+
|
| 195 |
+
# Generate response
|
| 196 |
+
model.eval()
|
| 197 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
| 198 |
+
with torch.no_grad():
|
| 199 |
+
outputs = model.generate(
|
| 200 |
+
**inputs,
|
| 201 |
+
max_new_tokens=500,
|
| 202 |
+
temperature=0.7,
|
| 203 |
+
top_p=0.9,
|
| 204 |
+
do_sample=True,
|
| 205 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 206 |
+
)
|
| 207 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 208 |
+
print("\nGenerated Response:")
|
| 209 |
+
print(response)
|
| 210 |
+
|
| 211 |
+
model.push_to_hub("burtenshaw/Qwen3-30B-A3B-python-code")
|