|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch BTLM model.""" | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import os | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from torch import Tensor, nn | 
					
						
						|  | from torch.cuda.amp import autocast | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPastAndCrossAttentions, | 
					
						
						|  | CausalLMOutputWithCrossAttentions, | 
					
						
						|  | QuestionAnsweringModelOutput, | 
					
						
						|  | SequenceClassifierOutputWithPast, | 
					
						
						|  | TokenClassifierOutput, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_code_sample_docstrings, | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | logging, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | 
					
						
						|  | from .configuration_btlm import BTLMConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CHECKPOINT_FOR_DOC = "cerebras/btlm-3b-8k-base" | 
					
						
						|  | _CONFIG_FOR_DOC = "BTLMConfig" | 
					
						
						|  |  | 
					
						
						|  | BTLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ | 
					
						
						|  | "cerebras/btlm-3b-8k-base", | 
					
						
						|  |  | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SwiGLUActivation(nn.Module): | 
					
						
						|  | def forward(self, x1: Tensor, x2: Tensor) -> Tensor: | 
					
						
						|  | return x1 * nn.functional.silu(x2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AlibiPositionEmbeddingLayer(nn.Module): | 
					
						
						|  | def __init__(self, num_heads, alibi_scaling=None): | 
					
						
						|  | super(AlibiPositionEmbeddingLayer, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.alibi_scaling = alibi_scaling | 
					
						
						|  | slopes = torch.tensor(AlibiPositionEmbeddingLayer._get_alibi_slopes(num_heads)).unsqueeze(-1) | 
					
						
						|  | self.slopes = nn.parameter.Parameter(slopes, requires_grad=False) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | seq_length, | 
					
						
						|  | key_length, | 
					
						
						|  | cached_qk_len, | 
					
						
						|  | ): | 
					
						
						|  | context_position = torch.arange( | 
					
						
						|  | cached_qk_len, cached_qk_len + seq_length, device=self.slopes.device | 
					
						
						|  | )[:, None] | 
					
						
						|  | memory_position = torch.arange( | 
					
						
						|  | key_length + cached_qk_len, device=self.slopes.device | 
					
						
						|  | )[None, :] | 
					
						
						|  | relative_position = memory_position - context_position | 
					
						
						|  | relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.num_heads, -1, -1) | 
					
						
						|  |  | 
					
						
						|  | if self.alibi_scaling is None: | 
					
						
						|  | scale = 1.0 | 
					
						
						|  | elif self.alibi_scaling.get("factor") is not None: | 
					
						
						|  | scale = self.alibi_scaling["factor"] | 
					
						
						|  | elif relative_position.shape[-1] > self.alibi_scaling["train_seq_len"]: | 
					
						
						|  | scale = relative_position.shape[-1] / self.alibi_scaling["train_seq_len"] | 
					
						
						|  | else: | 
					
						
						|  | scale = 1.0 | 
					
						
						|  |  | 
					
						
						|  | alibi = (self.slopes / -scale).unsqueeze(1) * relative_position | 
					
						
						|  | return alibi | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _get_alibi_slopes(n): | 
					
						
						|  | def get_slopes_power_of_2(n): | 
					
						
						|  | start = 2 ** (-(2 ** -(math.log2(n) - 3))) | 
					
						
						|  | ratio = start | 
					
						
						|  | return [start * ratio**i for i in range(n)] | 
					
						
						|  |  | 
					
						
						|  | if math.log2(n).is_integer(): | 
					
						
						|  | return get_slopes_power_of_2( | 
					
						
						|  | n | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | closest_power_of_2 = 2 ** math.floor( | 
					
						
						|  | math.log2(n) | 
					
						
						|  | ) | 
					
						
						|  | return ( | 
					
						
						|  | get_slopes_power_of_2(closest_power_of_2) | 
					
						
						|  | + AlibiPositionEmbeddingLayer._get_alibi_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_tf_weights_in_btlm(model, config, btlm_checkpoint_path): | 
					
						
						|  | """Load tf checkpoints in a pytorch model""" | 
					
						
						|  | try: | 
					
						
						|  | import re | 
					
						
						|  |  | 
					
						
						|  | import tensorflow as tf | 
					
						
						|  | except ImportError: | 
					
						
						|  | logger.error( | 
					
						
						|  | "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | 
					
						
						|  | "https://www.tensorflow.org/install/ for installation instructions." | 
					
						
						|  | ) | 
					
						
						|  | raise | 
					
						
						|  | tf_path = os.path.abspath(btlm_checkpoint_path) | 
					
						
						|  | logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | 
					
						
						|  |  | 
					
						
						|  | init_vars = tf.train.list_variables(tf_path) | 
					
						
						|  | names = [] | 
					
						
						|  | arrays = [] | 
					
						
						|  | for name, shape in init_vars: | 
					
						
						|  | logger.info(f"Loading TF weight {name} with shape {shape}") | 
					
						
						|  | array = tf.train.load_variable(tf_path, name) | 
					
						
						|  | names.append(name) | 
					
						
						|  | arrays.append(array.squeeze()) | 
					
						
						|  |  | 
					
						
						|  | for name, array in zip(names, arrays): | 
					
						
						|  | name = name[6:] | 
					
						
						|  | name = name.split("/") | 
					
						
						|  | pointer = model | 
					
						
						|  | for m_name in name: | 
					
						
						|  | if re.fullmatch(r"[A-Za-z]+\d+", m_name): | 
					
						
						|  | scope_names = re.split(r"(\d+)", m_name) | 
					
						
						|  | else: | 
					
						
						|  | scope_names = [m_name] | 
					
						
						|  | if scope_names[0] == "w" or scope_names[0] == "g": | 
					
						
						|  | pointer = getattr(pointer, "weight") | 
					
						
						|  | elif scope_names[0] == "b": | 
					
						
						|  | pointer = getattr(pointer, "bias") | 
					
						
						|  | elif scope_names[0] == "wpe" or scope_names[0] == "wte": | 
					
						
						|  | pointer = getattr(pointer, scope_names[0]) | 
					
						
						|  | pointer = getattr(pointer, "weight") | 
					
						
						|  | else: | 
					
						
						|  | pointer = getattr(pointer, scope_names[0]) | 
					
						
						|  | if len(scope_names) >= 2: | 
					
						
						|  | num = int(scope_names[1]) | 
					
						
						|  | pointer = pointer[num] | 
					
						
						|  | try: | 
					
						
						|  | assert ( | 
					
						
						|  | pointer.shape == array.shape | 
					
						
						|  | ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | 
					
						
						|  | except AssertionError as e: | 
					
						
						|  | e.args += (pointer.shape, array.shape) | 
					
						
						|  | raise | 
					
						
						|  | logger.info(f"Initialize PyTorch weight {name}") | 
					
						
						|  | pointer.data = torch.from_numpy(array) | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BTLMAttention(nn.Module): | 
					
						
						|  | def __init__(self, config, is_cross_attention=False, layer_idx=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | max_positions = config.max_position_embeddings | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | "bias", | 
					
						
						|  | torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( | 
					
						
						|  | 1, 1, max_positions, max_positions | 
					
						
						|  | ), | 
					
						
						|  | persistent=False, | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False) | 
					
						
						|  |  | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.embed_dim // self.num_heads | 
					
						
						|  | self.split_size = self.embed_dim | 
					
						
						|  | if self.head_dim * self.num_heads != self.embed_dim: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | 
					
						
						|  | f" {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.scale_attn_weights = config.scale_attn_weights | 
					
						
						|  | self.is_cross_attention = is_cross_attention | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | self.reorder_and_upcast_attn = config.reorder_and_upcast_attn | 
					
						
						|  |  | 
					
						
						|  | if self.is_cross_attention: | 
					
						
						|  | self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim) | 
					
						
						|  | self.q_attn = Conv1D(self.embed_dim, self.embed_dim) | 
					
						
						|  | else: | 
					
						
						|  | self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) | 
					
						
						|  | self.c_proj = Conv1D(self.embed_dim, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | self.attn_dropout = nn.Dropout(config.attn_pdrop) | 
					
						
						|  | self.resid_dropout = nn.Dropout(config.resid_pdrop) | 
					
						
						|  |  | 
					
						
						|  | self.pruned_heads = set() | 
					
						
						|  |  | 
					
						
						|  | self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5 | 
					
						
						|  |  | 
					
						
						|  | def prune_heads(self, heads): | 
					
						
						|  | if len(heads) == 0: | 
					
						
						|  | return | 
					
						
						|  | heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads) | 
					
						
						|  | index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) | 
					
						
						|  | self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads)) | 
					
						
						|  | self.num_heads = self.num_heads - len(heads) | 
					
						
						|  | self.pruned_heads = self.pruned_heads.union(heads) | 
					
						
						|  |  | 
					
						
						|  | def _attn(self, query, key, value, attention_mask=None, head_mask=None, position_bias=None): | 
					
						
						|  | attn_weights = torch.matmul(query, key.transpose(-1, -2)) | 
					
						
						|  |  | 
					
						
						|  | if self.scale_attn_weights: | 
					
						
						|  | attn_weights = attn_weights / torch.full( | 
					
						
						|  | [], value.size(-1) ** self.attn_scale_power, dtype=attn_weights.dtype, device=attn_weights.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.scale_attn_by_inverse_layer_idx: | 
					
						
						|  | attn_weights = attn_weights / float(self.layer_idx + 1) | 
					
						
						|  |  | 
					
						
						|  | if not self.is_cross_attention: | 
					
						
						|  |  | 
					
						
						|  | query_length, key_length = query.size(-2), key.size(-2) | 
					
						
						|  | causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] | 
					
						
						|  | mask_value = torch.finfo(attn_weights.dtype).min | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device) | 
					
						
						|  | attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  | if position_bias is not None: | 
					
						
						|  | attn_weights += position_bias.type_as(attn_weights).unsqueeze(0) | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = attn_weights.type(value.dtype) | 
					
						
						|  | attn_weights = self.attn_dropout(attn_weights) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None: | 
					
						
						|  | attn_weights = attn_weights * head_mask | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  | def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None, position_bias=None): | 
					
						
						|  |  | 
					
						
						|  | bsz, num_heads, q_seq_len, dk = query.size() | 
					
						
						|  | _, _, k_seq_len, _ = key.size() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scale_factor = 1.0 | 
					
						
						|  | if self.scale_attn_weights: | 
					
						
						|  | scale_factor /= float(value.size(-1)) ** self.attn_scale_power | 
					
						
						|  |  | 
					
						
						|  | if self.scale_attn_by_inverse_layer_idx: | 
					
						
						|  | scale_factor /= float(self.layer_idx + 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with autocast(enabled=False): | 
					
						
						|  | q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len) | 
					
						
						|  | attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor) | 
					
						
						|  | attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) | 
					
						
						|  |  | 
					
						
						|  | if not self.is_cross_attention: | 
					
						
						|  |  | 
					
						
						|  | query_length, key_length = query.size(-2), key.size(-2) | 
					
						
						|  | causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] | 
					
						
						|  | mask_value = torch.finfo(attn_weights.dtype).min | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) | 
					
						
						|  | attn_weights = torch.where(causal_mask, attn_weights, mask_value) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  | if position_bias is not None: | 
					
						
						|  | attn_weights += position_bias.type_as(attn_weights).unsqueeze(0) | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.dtype != torch.float32: | 
					
						
						|  | raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32") | 
					
						
						|  | attn_weights = attn_weights.type(value.dtype) | 
					
						
						|  | attn_weights = self.attn_dropout(attn_weights) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None: | 
					
						
						|  | attn_weights = attn_weights * head_mask | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  | def _split_heads(self, tensor, num_heads, attn_head_size): | 
					
						
						|  | """ | 
					
						
						|  | Splits hidden_size dim into attn_head_size and num_heads | 
					
						
						|  | """ | 
					
						
						|  | new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) | 
					
						
						|  | tensor = tensor.view(new_shape) | 
					
						
						|  | return tensor.permute(0, 2, 1, 3) | 
					
						
						|  |  | 
					
						
						|  | def _merge_heads(self, tensor, num_heads, attn_head_size): | 
					
						
						|  | """ | 
					
						
						|  | Merges attn_head_size dim and num_attn_heads dim into hidden_size | 
					
						
						|  | """ | 
					
						
						|  | tensor = tensor.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) | 
					
						
						|  | return tensor.view(new_shape) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]], | 
					
						
						|  | layer_past: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | position_bias: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: | 
					
						
						|  | if encoder_hidden_states is not None: | 
					
						
						|  | if not hasattr(self, "q_attn"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If class is used as cross attention, the weights `q_attn` have to be defined. " | 
					
						
						|  | "Please make sure to instantiate class with `BTLMAttention(..., is_cross_attention=True)`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query = self.q_attn(hidden_states) | 
					
						
						|  | key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) | 
					
						
						|  | attention_mask = encoder_attention_mask | 
					
						
						|  | else: | 
					
						
						|  | query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) | 
					
						
						|  |  | 
					
						
						|  | query = self._split_heads(query, self.num_heads, self.head_dim) | 
					
						
						|  | key = self._split_heads(key, self.num_heads, self.head_dim) | 
					
						
						|  | value = self._split_heads(value, self.num_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if layer_past is not None: | 
					
						
						|  | past_key, past_value = layer_past | 
					
						
						|  | key = torch.cat((past_key, key), dim=-2) | 
					
						
						|  | value = torch.cat((past_value, value), dim=-2) | 
					
						
						|  |  | 
					
						
						|  | if use_cache is True: | 
					
						
						|  | present = (key, value) | 
					
						
						|  | else: | 
					
						
						|  | present = None | 
					
						
						|  |  | 
					
						
						|  | if self.reorder_and_upcast_attn: | 
					
						
						|  | attn_output, attn_weights = self._upcast_and_reordered_attn( | 
					
						
						|  | query, key, value, attention_mask, head_mask, position_bias | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask, position_bias) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) | 
					
						
						|  | attn_output = self.c_proj(attn_output) | 
					
						
						|  | attn_output = self.resid_dropout(attn_output) | 
					
						
						|  |  | 
					
						
						|  | outputs = (attn_output, present) | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BTLMMLP(nn.Module): | 
					
						
						|  | def __init__(self, intermediate_size, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | embed_dim = config.hidden_size | 
					
						
						|  | self.swiglu = config.activation_function == "swiglu" | 
					
						
						|  | self.c_fc = Conv1D(intermediate_size, embed_dim) | 
					
						
						|  | self.c_fc2 = Conv1D(intermediate_size, embed_dim) if self.swiglu else None | 
					
						
						|  | self.c_proj = Conv1D(embed_dim, intermediate_size) | 
					
						
						|  | self.act = SwiGLUActivation() if self.swiglu else ACT2FN[config.activation_function] | 
					
						
						|  | self.dropout = nn.Dropout(config.resid_pdrop) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: | 
					
						
						|  | if self.swiglu: | 
					
						
						|  | hidden_states2 = self.c_fc2(hidden_states) | 
					
						
						|  | hidden_states = self.c_fc(hidden_states) | 
					
						
						|  | hidden_states = self.act(hidden_states, hidden_states2) if self.swiglu else self.act(hidden_states) | 
					
						
						|  | hidden_states = self.c_proj(hidden_states) | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BTLMBlock(nn.Module): | 
					
						
						|  | def __init__(self, config, layer_idx=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | hidden_size = config.hidden_size | 
					
						
						|  | inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | 
					
						
						|  | self.attn = BTLMAttention(config, layer_idx=layer_idx) | 
					
						
						|  | self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | 
					
						
						|  |  | 
					
						
						|  | if config.add_cross_attention: | 
					
						
						|  | self.crossattention = BTLMAttention(config, is_cross_attention=True, layer_idx=layer_idx) | 
					
						
						|  | self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = BTLMMLP(inner_dim, config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]], | 
					
						
						|  | layer_past: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | position_bias: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.ln_1(hidden_states) | 
					
						
						|  | attn_outputs = self.attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | layer_past=layer_past, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | position_bias=position_bias, | 
					
						
						|  | ) | 
					
						
						|  | attn_output = attn_outputs[0] | 
					
						
						|  | outputs = attn_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn_output + residual | 
					
						
						|  |  | 
					
						
						|  | if encoder_hidden_states is not None: | 
					
						
						|  |  | 
					
						
						|  | if not hasattr(self, "crossattention"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " | 
					
						
						|  | "cross-attention layers by setting `config.add_cross_attention=True`" | 
					
						
						|  | ) | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.ln_cross_attn(hidden_states) | 
					
						
						|  | cross_attn_outputs = self.crossattention( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | position_bias=position_bias, | 
					
						
						|  | ) | 
					
						
						|  | attn_output = cross_attn_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | hidden_states = residual + attn_output | 
					
						
						|  | outputs = outputs + cross_attn_outputs[2:] | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.ln_2(hidden_states) | 
					
						
						|  | feed_forward_hidden_states = self.mlp(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = residual + feed_forward_hidden_states | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs = (hidden_states,) + outputs | 
					
						
						|  | else: | 
					
						
						|  | outputs = (hidden_states,) + outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BTLMPreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | 
					
						
						|  | models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_class = BTLMConfig | 
					
						
						|  | load_tf_weights = load_tf_weights_in_btlm | 
					
						
						|  | base_model_prefix = "transformer" | 
					
						
						|  | is_parallelizable = True | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["BTLMBlock"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *inputs, **kwargs): | 
					
						
						|  | super().__init__(*inputs, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | """Initialize the weights.""" | 
					
						
						|  | mup_init_scale = math.sqrt(self.config.mup_width_scale) | 
					
						
						|  | if isinstance(module, (nn.Linear, Conv1D)): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=(self.config.initializer_range * mup_init_scale)) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  | elif isinstance(module, nn.LayerNorm): | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for name, p in module.named_parameters(): | 
					
						
						|  | if name == "c_proj.weight": | 
					
						
						|  |  | 
					
						
						|  | stddev = self.config.initializer_range * mup_init_scale / math.sqrt(2 * self.config.n_layer) | 
					
						
						|  | p.data.normal_(mean=0.0, std=stddev) | 
					
						
						|  |  | 
					
						
						|  | def _set_gradient_checkpointing(self, module, value=False): | 
					
						
						|  | if isinstance(module, BTLMModel): | 
					
						
						|  | module.gradient_checkpointing = value | 
					
						
						|  |  | 
					
						
						|  | def get_mup_param_groups(self, lr, weight_decay=0.0, decoupled_wd=True): | 
					
						
						|  | """ | 
					
						
						|  | Returns list of dicts defining parameter groups for muP: | 
					
						
						|  | group 0: most model params get scaled learning rate and weight decay. | 
					
						
						|  | group 1: embedding layer gets non-scaled learning rate and weight decay. | 
					
						
						|  | group 2: normalization layers and biases get non-scaled learning rate only. | 
					
						
						|  |  | 
					
						
						|  | The output can be passed to Adam-base optimizers | 
					
						
						|  | e.g. | 
					
						
						|  | param_groups = model.get_mup_param_groups(lr=1e-3, weight_decay=0.1) | 
					
						
						|  | torch.optim.AdamW(param_groups, betas=(0.9, 0.95), eps=1e-8) | 
					
						
						|  | """ | 
					
						
						|  | norm_modules = ( | 
					
						
						|  | torch.nn.LayerNorm, | 
					
						
						|  | torch.nn.BatchNorm1d, | 
					
						
						|  | torch.nn.BatchNorm2d, | 
					
						
						|  | torch.nn.BatchNorm3d, | 
					
						
						|  | torch.nn.InstanceNorm1d, | 
					
						
						|  | torch.nn.InstanceNorm2d, | 
					
						
						|  | torch.nn.InstanceNorm3d, | 
					
						
						|  | torch.nn.GroupNorm, | 
					
						
						|  | torch.nn.SyncBatchNorm, | 
					
						
						|  | torch.nn.LocalResponseNorm, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def get_group_index(param_name): | 
					
						
						|  | for name, module in self.named_modules(): | 
					
						
						|  | if name in param_name: | 
					
						
						|  | if isinstance(module, norm_modules): | 
					
						
						|  | return 2 | 
					
						
						|  | elif isinstance(module, torch.nn.Embedding): | 
					
						
						|  | return 1 | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | width_scale = self.config.mup_width_scale | 
					
						
						|  | new_param_groups = [] | 
					
						
						|  | new_param_groups.append({"params": [], "lr": lr * width_scale, "weight_decay": weight_decay}) | 
					
						
						|  | if not decoupled_wd: | 
					
						
						|  | new_param_groups[0]["weight_decay"] /= width_scale | 
					
						
						|  | new_param_groups.append({"params": [], "lr": lr, "weight_decay": weight_decay}) | 
					
						
						|  | new_param_groups.append({"params": [], "lr": lr, "weight_decay": 0.0}) | 
					
						
						|  |  | 
					
						
						|  | for name, param in self.named_parameters(): | 
					
						
						|  | if not param.requires_grad: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | if name.endswith("bias"): | 
					
						
						|  | new_param_groups[2]["params"].append(param) | 
					
						
						|  | else: | 
					
						
						|  | new_param_groups[get_group_index(name)]["params"].append(param) | 
					
						
						|  |  | 
					
						
						|  | for idx, param_group in enumerate(new_param_groups): | 
					
						
						|  | if len(param_group["params"]) == 0: | 
					
						
						|  | del new_param_groups[idx] | 
					
						
						|  |  | 
					
						
						|  | return new_param_groups | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BTLM_START_DOCSTRING = r""" | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`BTLMConfig`]): Model configuration class with all the parameters of the model. | 
					
						
						|  | Initializing with a config file does not load the weights associated with the model, only the | 
					
						
						|  | configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | BTLM_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | 
					
						
						|  | `input_ids_length` = `sequence_length` if `past_key_values` is `None` else | 
					
						
						|  | `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input | 
					
						
						|  | sequence tokens in the vocabulary. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | 
					
						
						|  | `input_ids`. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): | 
					
						
						|  | Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | 
					
						
						|  | `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | 
					
						
						|  | their past given to this model should not be passed as `input_ids` as they have already been computed. | 
					
						
						|  | attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for | 
					
						
						|  | `past_key_values`. In other words, the `attention_mask` always has to have the length: | 
					
						
						|  | `len(past_key_values) + len(input_ids)` | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): | 
					
						
						|  | Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | 
					
						
						|  | 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 0 corresponds to a *sentence A* token, | 
					
						
						|  | - 1 corresponds to a *sentence B* token. | 
					
						
						|  |  | 
					
						
						|  | [What are token type IDs?](../glossary#token-type-ids) | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.max_position_embeddings - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | 
					
						
						|  | Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  |  | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  | PARALLELIZE_DOCSTRING = r""" | 
					
						
						|  | This is an experimental feature and is a subject to change at a moment's notice. | 
					
						
						|  |  | 
					
						
						|  | Uses a device map to distribute attention modules of the model across several devices. If no device map is given, | 
					
						
						|  | it will evenly distribute blocks across all devices. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | device_map (`Dict[int, list]`, optional, defaults to None): | 
					
						
						|  | A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | 
					
						
						|  | automatically mapped to the first device (for esoteric reasons). That means that the first device should | 
					
						
						|  | have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the | 
					
						
						|  | following number of attention modules: | 
					
						
						|  |  | 
					
						
						|  | - gpt2: 12 | 
					
						
						|  | - gpt2-medium: 24 | 
					
						
						|  | - gpt2-large: 36 | 
					
						
						|  | - gpt2-xl: 48 | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules: | 
					
						
						|  | model = GPT2LMHeadModel.from_pretrained("gpt2-xl") | 
					
						
						|  | device_map = { | 
					
						
						|  | 0: [0, 1, 2, 3, 4, 5, 6, 7, 8], | 
					
						
						|  | 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], | 
					
						
						|  | 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], | 
					
						
						|  | 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], | 
					
						
						|  | } | 
					
						
						|  | model.parallelize(device_map) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | DEPARALLELIZE_DOCSTRING = r""" | 
					
						
						|  | Moves the model to cpu from a model parallel state. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | # On a 4 GPU machine with gpt2-large: | 
					
						
						|  | model = GPT2LMHeadModel.from_pretrained("gpt2-large") | 
					
						
						|  | device_map = { | 
					
						
						|  | 0: [0, 1, 2, 3, 4, 5, 6, 7], | 
					
						
						|  | 1: [8, 9, 10, 11, 12, 13, 14, 15], | 
					
						
						|  | 2: [16, 17, 18, 19, 20, 21, 22, 23], | 
					
						
						|  | 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], | 
					
						
						|  | } | 
					
						
						|  | model.parallelize(device_map)  # Splits the model across several devices | 
					
						
						|  | model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare BTLM Model transformer outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | BTLM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class BTLMModel(BTLMPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.wte = nn.Embedding(config.vocab_size, self.embed_dim) | 
					
						
						|  | self.wpe = ( | 
					
						
						|  | nn.Embedding(config.max_position_embeddings, self.embed_dim) | 
					
						
						|  | if config.position_embedding_type != "alibi" | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  | self.embeddings_scale = config.mup_embeddings_scale | 
					
						
						|  |  | 
					
						
						|  | self.drop = nn.Dropout(config.embd_pdrop) | 
					
						
						|  | self.h = nn.ModuleList([BTLMBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)]) | 
					
						
						|  | self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | 
					
						
						|  |  | 
					
						
						|  | self.relative_pe = ( | 
					
						
						|  | AlibiPositionEmbeddingLayer(config.num_attention_heads, config.alibi_scaling) | 
					
						
						|  | if config.position_embedding_type == "alibi" | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(PARALLELIZE_DOCSTRING) | 
					
						
						|  | def parallelize(self, device_map=None): | 
					
						
						|  |  | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "`BTLMModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your" | 
					
						
						|  | " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | 
					
						
						|  | " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1," | 
					
						
						|  | " ...}", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.device_map = ( | 
					
						
						|  | get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map | 
					
						
						|  | ) | 
					
						
						|  | assert_device_map(self.device_map, len(self.h)) | 
					
						
						|  | self.model_parallel = True | 
					
						
						|  | self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) | 
					
						
						|  | self.last_device = "cuda:" + str(max(self.device_map.keys())) | 
					
						
						|  | self.wte = self.wte.to(self.first_device) | 
					
						
						|  | if self.wpe is not None: | 
					
						
						|  | self.wpe = self.wpe.to(self.first_device) | 
					
						
						|  |  | 
					
						
						|  | for k, v in self.device_map.items(): | 
					
						
						|  | for block in v: | 
					
						
						|  | cuda_device = "cuda:" + str(k) | 
					
						
						|  | self.h[block] = self.h[block].to(cuda_device) | 
					
						
						|  |  | 
					
						
						|  | self.ln_f = self.ln_f.to(self.last_device) | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(DEPARALLELIZE_DOCSTRING) | 
					
						
						|  | def deparallelize(self): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  | self.first_device = "cpu" | 
					
						
						|  | self.last_device = "cpu" | 
					
						
						|  | self.wte = self.wte.to("cpu") | 
					
						
						|  | if self.wpe is not None: | 
					
						
						|  | self.wpe = self.wpe.to("cpu") | 
					
						
						|  | for index in range(len(self.h)): | 
					
						
						|  | self.h[index] = self.h[index].to("cpu") | 
					
						
						|  | self.ln_f = self.ln_f.to("cpu") | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.wte | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, new_embeddings): | 
					
						
						|  | self.wte = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def _prune_heads(self, heads_to_prune): | 
					
						
						|  | """ | 
					
						
						|  | Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | 
					
						
						|  | """ | 
					
						
						|  | for layer, heads in heads_to_prune.items(): | 
					
						
						|  | self.h[layer].attn.prune_heads(heads) | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(BTLM_INPUTS_DOCSTRING) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=BaseModelOutputWithPastAndCrossAttentions, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | input_ids = input_ids.view(-1, input_shape[-1]) | 
					
						
						|  | batch_size = input_ids.shape[0] | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  | batch_size = inputs_embeds.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
						
						|  |  | 
					
						
						|  | if token_type_ids is not None: | 
					
						
						|  | token_type_ids = token_type_ids.view(-1, input_shape[-1]) | 
					
						
						|  | if position_ids is not None: | 
					
						
						|  | position_ids = position_ids.view(-1, input_shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is None: | 
					
						
						|  | past_length = 0 | 
					
						
						|  | past_key_values = tuple([None] * len(self.h)) | 
					
						
						|  | else: | 
					
						
						|  | past_length = past_key_values[0][0].size(-2) | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if batch_size <= 0: | 
					
						
						|  | raise ValueError("batch_size has to be defined and > 0") | 
					
						
						|  | attention_mask = attention_mask.view(batch_size, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, None, None, :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask.to(dtype=self.dtype) | 
					
						
						|  | attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.add_cross_attention and encoder_hidden_states is not None: | 
					
						
						|  | encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | 
					
						
						|  | encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | 
					
						
						|  | if encoder_attention_mask is None: | 
					
						
						|  | encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | 
					
						
						|  | encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | encoder_attention_mask = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | head_mask = self.get_head_mask(head_mask, self.config.n_layer) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.wte(input_ids) | 
					
						
						|  | if self.wpe is not None: | 
					
						
						|  | position_embeds = self.wpe(position_ids) | 
					
						
						|  | hidden_states = inputs_embeds + position_embeds | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  | hidden_states *= torch.tensor( | 
					
						
						|  | float(self.embeddings_scale), dtype=hidden_states.dtype, device=hidden_states.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if token_type_ids is not None: | 
					
						
						|  | token_type_embeds = self.wte(token_type_ids) | 
					
						
						|  | hidden_states = hidden_states + token_type_embeds | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.drop(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if self.relative_pe is not None: | 
					
						
						|  | length = input_ids.shape[1] | 
					
						
						|  | cached_kv_length = 0 | 
					
						
						|  | cached_kv = past_key_values[0] | 
					
						
						|  | if cached_kv is not None: | 
					
						
						|  | cached_kv_length = cached_kv[0].shape[-2] | 
					
						
						|  | position_bias = self.relative_pe(length, length, cached_kv_length) | 
					
						
						|  | else: | 
					
						
						|  | position_bias = None | 
					
						
						|  |  | 
					
						
						|  | output_shape = input_shape + (hidden_states.size(-1),) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | presents = () if use_cache else None | 
					
						
						|  | all_self_attentions = () if output_attentions else None | 
					
						
						|  | all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | torch.cuda.set_device(hidden_states.device) | 
					
						
						|  |  | 
					
						
						|  | if layer_past is not None: | 
					
						
						|  | layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attention_mask.to(hidden_states.device) | 
					
						
						|  | if isinstance(head_mask, torch.Tensor): | 
					
						
						|  | head_mask = head_mask.to(hidden_states.device) | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  |  | 
					
						
						|  | return module(*inputs, use_cache, output_attentions) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | outputs = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(block), | 
					
						
						|  | hidden_states, | 
					
						
						|  | None, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask[i], | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | outputs = block( | 
					
						
						|  | hidden_states, | 
					
						
						|  | layer_past=layer_past, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | head_mask=head_mask[i], | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | position_bias=position_bias, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | if use_cache is True: | 
					
						
						|  | presents = presents + (outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | 
					
						
						|  | if self.config.add_cross_attention: | 
					
						
						|  | all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | for k, v in self.device_map.items(): | 
					
						
						|  | if i == v[-1] and "cuda:" + str(k) != self.last_device: | 
					
						
						|  | hidden_states = hidden_states.to("cuda:" + str(k + 1)) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.ln_f(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states.view(output_shape) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPastAndCrossAttentions( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=presents, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attentions, | 
					
						
						|  | cross_attentions=all_cross_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The BTLM Model transformer with a language modeling head on top (linear layer with weights tied to the input | 
					
						
						|  | embeddings). | 
					
						
						|  | """, | 
					
						
						|  | BTLM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class BTLMLMHeadModel(BTLMPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"lm_head.weight"] | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.transformer = BTLMModel(config) | 
					
						
						|  | self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | 
					
						
						|  | self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(PARALLELIZE_DOCSTRING) | 
					
						
						|  | def parallelize(self, device_map=None): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "`BTLMLMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" | 
					
						
						|  | " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | 
					
						
						|  | " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':" | 
					
						
						|  | " 0, 'transformer.h.1': 1, ...}", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.device_map = ( | 
					
						
						|  | get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) | 
					
						
						|  | if device_map is None | 
					
						
						|  | else device_map | 
					
						
						|  | ) | 
					
						
						|  | assert_device_map(self.device_map, len(self.transformer.h)) | 
					
						
						|  | self.transformer.parallelize(self.device_map) | 
					
						
						|  | self.lm_head = self.lm_head.to(self.transformer.first_device) | 
					
						
						|  | self.model_parallel = True | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(DEPARALLELIZE_DOCSTRING) | 
					
						
						|  | def deparallelize(self): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.transformer.deparallelize() | 
					
						
						|  | self.transformer = self.transformer.to("cpu") | 
					
						
						|  | self.lm_head = self.lm_head.to("cpu") | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | 
					
						
						|  | token_type_ids = kwargs.get("token_type_ids", None) | 
					
						
						|  |  | 
					
						
						|  | if past_key_values: | 
					
						
						|  | input_ids = input_ids[:, -1].unsqueeze(-1) | 
					
						
						|  | if token_type_ids is not None: | 
					
						
						|  | token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | attention_mask = kwargs.get("attention_mask", None) | 
					
						
						|  | position_ids = kwargs.get("position_ids", None) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -1].unsqueeze(-1) | 
					
						
						|  | else: | 
					
						
						|  | position_ids = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and past_key_values is None: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  | model_inputs = {"input_ids": input_ids} | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": kwargs.get("use_cache"), | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "token_type_ids": token_type_ids, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(BTLM_INPUTS_DOCSTRING) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=CausalLMOutputWithCrossAttentions, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | 
					
						
						|  | `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | 
					
						
						|  | are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | torch.cuda.set_device(self.transformer.first_device) | 
					
						
						|  | hidden_states = hidden_states.to(self.lm_head.weight.device) | 
					
						
						|  |  | 
					
						
						|  | lm_logits = self.lm_head(hidden_states) | 
					
						
						|  | lm_logits *= torch.tensor(float(self.output_logits_scale), dtype=lm_logits.dtype, device=lm_logits.device) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | labels = labels.to(lm_logits.device) | 
					
						
						|  |  | 
					
						
						|  | shift_logits = lm_logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (lm_logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithCrossAttentions( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=lm_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | cross_attentions=transformer_outputs.cross_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache( | 
					
						
						|  | past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | 
					
						
						|  | ) -> Tuple[Tuple[torch.Tensor]]: | 
					
						
						|  | """ | 
					
						
						|  | This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | 
					
						
						|  | [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | 
					
						
						|  | beam_idx at every generation step. | 
					
						
						|  | """ | 
					
						
						|  | return tuple( | 
					
						
						|  | tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) | 
					
						
						|  | for layer_past in past_key_values | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The BTLM Model transformer with a sequence classification head on top (linear layer). | 
					
						
						|  |  | 
					
						
						|  | [`BTLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
						
						|  | (e.g. GPT-1) do. | 
					
						
						|  |  | 
					
						
						|  | Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
						
						|  | `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
						
						|  | no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
						
						|  | padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
						
						|  | each row of the batch). | 
					
						
						|  | """, | 
					
						
						|  | BTLM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class BTLMForSequenceClassification(BTLMPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.transformer = BTLMModel(config) | 
					
						
						|  | self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) | 
					
						
						|  | self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(BTLM_INPUTS_DOCSTRING) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | checkpoint="microsoft/DialogRPT-updown", | 
					
						
						|  | output_type=SequenceClassifierOutputWithPast, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | logits = self.score(hidden_states) | 
					
						
						|  | logits *= torch.tensor(float(self.output_logits_scale), dtype=logits.dtype, device=logits.device) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | batch_size, sequence_length = input_ids.shape[:2] | 
					
						
						|  | else: | 
					
						
						|  | batch_size, sequence_length = inputs_embeds.shape[:2] | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | self.config.pad_token_id is not None or batch_size == 1 | 
					
						
						|  | ), "Cannot handle batch sizes > 1 if no padding token is defined." | 
					
						
						|  | if self.config.pad_token_id is None: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  | else: | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) | 
					
						
						|  | else: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | 
					
						
						|  | "unexpected if using padding tokens in conjunction with `inputs_embeds.`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (pooled_logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=pooled_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | BTLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for | 
					
						
						|  | Named-Entity-Recognition (NER) tasks. | 
					
						
						|  | """, | 
					
						
						|  | BTLM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class BTLMForTokenClassification(BTLMPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  |  | 
					
						
						|  | self.transformer = BTLMModel(config) | 
					
						
						|  | if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | 
					
						
						|  | classifier_dropout = config.classifier_dropout | 
					
						
						|  | elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | 
					
						
						|  | classifier_dropout = config.hidden_dropout | 
					
						
						|  | else: | 
					
						
						|  | classifier_dropout = 0.1 | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  | self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(BTLM_INPUTS_DOCSTRING) | 
					
						
						|  |  | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | checkpoint="brad1141/gpt2-finetuned-comp2", | 
					
						
						|  | output_type=TokenClassifierOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | expected_loss=0.25, | 
					
						
						|  | expected_output=["Lead", "Lead", "Lead", "Position", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead"], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, TokenClassifierOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | logits = self.classifier(hidden_states) | 
					
						
						|  | logits *= torch.tensor(float(self.output_logits_scale), dtype=logits.dtype, device=logits.device) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + transformer_outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return TokenClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The BTLM Model transformer with a span classification head on top for extractive question-answering tasks like | 
					
						
						|  | SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). | 
					
						
						|  | """, | 
					
						
						|  | BTLM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class BTLMForQuestionAnswering(BTLMPreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.transformer = BTLMModel(config) | 
					
						
						|  | self.qa_outputs = nn.Linear(config.hidden_size, 2) | 
					
						
						|  | self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(BTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=QuestionAnsweringModelOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | real_checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | start_positions: Optional[torch.LongTensor] = None, | 
					
						
						|  | end_positions: Optional[torch.LongTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, QuestionAnsweringModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the start of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the end of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | logits = self.qa_outputs(sequence_output) | 
					
						
						|  | logits *= torch.tensor(float(self.output_logits_scale), dtype=logits.dtype, device=logits.device) | 
					
						
						|  | start_logits, end_logits = logits.split(1, dim=-1) | 
					
						
						|  | start_logits = start_logits.squeeze(-1).contiguous() | 
					
						
						|  | end_logits = end_logits.squeeze(-1).contiguous() | 
					
						
						|  |  | 
					
						
						|  | total_loss = None | 
					
						
						|  | if start_positions is not None and end_positions is not None: | 
					
						
						|  |  | 
					
						
						|  | if len(start_positions.size()) > 1: | 
					
						
						|  | start_positions = start_positions.squeeze(-1).to(start_logits.device) | 
					
						
						|  | if len(end_positions.size()) > 1: | 
					
						
						|  | end_positions = end_positions.squeeze(-1).to(end_logits.device) | 
					
						
						|  |  | 
					
						
						|  | ignored_index = start_logits.size(1) | 
					
						
						|  | start_positions = start_positions.clamp(0, ignored_index) | 
					
						
						|  | end_positions = end_positions.clamp(0, ignored_index) | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | 
					
						
						|  | start_loss = loss_fct(start_logits, start_positions) | 
					
						
						|  | end_loss = loss_fct(end_logits, end_positions) | 
					
						
						|  | total_loss = (start_loss + end_loss) / 2 | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (start_logits, end_logits) + outputs[2:] | 
					
						
						|  | return ((total_loss,) + output) if total_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return QuestionAnsweringModelOutput( | 
					
						
						|  | loss=total_loss, | 
					
						
						|  | start_logits=start_logits, | 
					
						
						|  | end_logits=end_logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |