Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +116 -19
sd_token_similarity_calculator.ipynb
CHANGED
|
@@ -14,6 +14,15 @@
|
|
| 14 |
}
|
| 15 |
},
|
| 16 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
{
|
| 18 |
"cell_type": "code",
|
| 19 |
"source": [
|
|
@@ -23,7 +32,42 @@
|
|
| 23 |
"from torch import linalg as LA\n",
|
| 24 |
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
| 25 |
"%cd /content/sd_tokens\n",
|
| 26 |
-
"token = torch.load('sd15_tensors.pt', map_location=device, weights_only=True)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
],
|
| 28 |
"metadata": {
|
| 29 |
"id": "Ch9puvwKH1s3"
|
|
@@ -34,7 +78,8 @@
|
|
| 34 |
{
|
| 35 |
"cell_type": "code",
|
| 36 |
"source": [
|
| 37 |
-
"print(
|
|
|
|
| 38 |
],
|
| 39 |
"metadata": {
|
| 40 |
"id": "S_Yh9gH_OUA1"
|
|
@@ -42,36 +87,88 @@
|
|
| 42 |
"execution_count": null,
|
| 43 |
"outputs": []
|
| 44 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
{
|
| 46 |
"cell_type": "code",
|
| 47 |
"source": [
|
| 48 |
-
"def absolute_value(x):\n",
|
| 49 |
-
" return max(x, -x)\n",
|
| 50 |
"\n",
|
| 51 |
-
"
|
| 52 |
-
"
|
| 53 |
-
"
|
| 54 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
"\n",
|
| 56 |
-
"
|
| 57 |
-
"
|
| 58 |
-
"
|
|
|
|
| 59 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
" result = torch.dot(A,B)/(_A*_B)\n",
|
| 61 |
-
"
|
| 62 |
-
"\n",
|
| 63 |
-
" similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
|
| 64 |
"\n",
|
| 65 |
-
"
|
| 66 |
-
"
|
| 67 |
-
"
|
|
|
|
| 68 |
],
|
| 69 |
"metadata": {
|
| 70 |
-
"id": "
|
| 71 |
},
|
| 72 |
-
"execution_count":
|
| 73 |
"outputs": []
|
| 74 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
{
|
| 76 |
"cell_type": "markdown",
|
| 77 |
"source": [
|
|
|
|
| 14 |
}
|
| 15 |
},
|
| 16 |
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "markdown",
|
| 19 |
+
"source": [
|
| 20 |
+
"This Notebook is a Stable-diffusion tool which allows you to find similiar tokens from the SD 1.5 vocab.json that you can use for text-to-image generation"
|
| 21 |
+
],
|
| 22 |
+
"metadata": {
|
| 23 |
+
"id": "L7JTcbOdBPfh"
|
| 24 |
+
}
|
| 25 |
+
},
|
| 26 |
{
|
| 27 |
"cell_type": "code",
|
| 28 |
"source": [
|
|
|
|
| 32 |
"from torch import linalg as LA\n",
|
| 33 |
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
| 34 |
"%cd /content/sd_tokens\n",
|
| 35 |
+
"token = torch.load('sd15_tensors.pt', map_location=device, weights_only=True)\n",
|
| 36 |
+
"#-----#\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"#Import the vocab.json\n",
|
| 39 |
+
"import json\n",
|
| 40 |
+
"import pandas as pd\n",
|
| 41 |
+
"with open('vocab.json', 'r') as f:\n",
|
| 42 |
+
" data = json.load(f)\n",
|
| 43 |
+
"\n",
|
| 44 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"vocab = {\n",
|
| 47 |
+
" value: key for key, value in _df.items()\n",
|
| 48 |
+
"}\n",
|
| 49 |
+
"#-----#\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"# Define functions/constants\n",
|
| 52 |
+
"NUM_TOKENS = 49407\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"def absolute_value(x):\n",
|
| 55 |
+
" return max(x, -x)\n",
|
| 56 |
+
"\n",
|
| 57 |
+
"def similarity(id_A , id_B):\n",
|
| 58 |
+
" #Tensors\n",
|
| 59 |
+
" A = token[id_A]\n",
|
| 60 |
+
" B = token[id_B]\n",
|
| 61 |
+
" #Tensor vector length (2nd order, i.e (a^2 + b^2 + ....)^(1/2)\n",
|
| 62 |
+
" _A = LA.vector_norm(A, ord=2)\n",
|
| 63 |
+
" _B = LA.vector_norm(B, ord=2)\n",
|
| 64 |
+
" #----#\n",
|
| 65 |
+
" result = torch.dot(A,B)/(_A*_B)\n",
|
| 66 |
+
" similarity_pcnt = absolute_value(result.item()*100)\n",
|
| 67 |
+
" similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
|
| 68 |
+
" result = f'{similarity_pcnt_aprox} %'\n",
|
| 69 |
+
" return result\n",
|
| 70 |
+
"#----#"
|
| 71 |
],
|
| 72 |
"metadata": {
|
| 73 |
"id": "Ch9puvwKH1s3"
|
|
|
|
| 78 |
{
|
| 79 |
"cell_type": "code",
|
| 80 |
"source": [
|
| 81 |
+
"print(vocab[12432]) #the vocab item for ID 12432\n",
|
| 82 |
+
"print(token[12432].shape) #dimension of the token"
|
| 83 |
],
|
| 84 |
"metadata": {
|
| 85 |
"id": "S_Yh9gH_OUA1"
|
|
|
|
| 87 |
"execution_count": null,
|
| 88 |
"outputs": []
|
| 89 |
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "markdown",
|
| 92 |
+
"source": [
|
| 93 |
+
"Get the IDs from a prompt text.\n",
|
| 94 |
+
"\n",
|
| 95 |
+
"The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens"
|
| 96 |
+
],
|
| 97 |
+
"metadata": {
|
| 98 |
+
"id": "f1-jS7YJApiO"
|
| 99 |
+
}
|
| 100 |
+
},
|
| 101 |
{
|
| 102 |
"cell_type": "code",
|
| 103 |
"source": [
|
|
|
|
|
|
|
| 104 |
"\n",
|
| 105 |
+
"from transformers import AutoTokenizer\n",
|
| 106 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 107 |
+
"prompt= \"blah\" # @param {type:'string'}\n",
|
| 108 |
+
"tokenizer_output = tokenizer(text = prompt)\n",
|
| 109 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
| 110 |
+
"print(input_ids)"
|
| 111 |
+
],
|
| 112 |
+
"metadata": {
|
| 113 |
+
"id": "RPdkYzT2_X85"
|
| 114 |
+
},
|
| 115 |
+
"execution_count": null,
|
| 116 |
+
"outputs": []
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"cell_type": "code",
|
| 120 |
+
"source": [
|
| 121 |
+
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1\n",
|
| 122 |
"\n",
|
| 123 |
+
"id_A = input_ids[1]\n",
|
| 124 |
+
"A = token[id_A]\n",
|
| 125 |
+
"_A = LA.vector_norm(A, ord=2)\n",
|
| 126 |
+
"dots = torch.zeros(NUM_TOKENS)\n",
|
| 127 |
"\n",
|
| 128 |
+
"for index in range(NUM_TOKENS):\n",
|
| 129 |
+
" id_B = index\n",
|
| 130 |
+
" B = token[id_B]\n",
|
| 131 |
+
" _B = LA.vector_norm(B, ord=2)\n",
|
| 132 |
" result = torch.dot(A,B)/(_A*_B)\n",
|
| 133 |
+
" result = absolute_value(result.item())\n",
|
| 134 |
+
" dots[index] = result\n",
|
|
|
|
| 135 |
"\n",
|
| 136 |
+
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 137 |
+
"#----#\n",
|
| 138 |
+
"print(f'Calculated all cosine-similarities between ID = {id_A} the rest of the IDs as a 1x{sorted.shape[0]} tensor')\n",
|
| 139 |
+
"print(f'Calculated indices as a 1x{indices.shape[0]} tensor')"
|
| 140 |
],
|
| 141 |
"metadata": {
|
| 142 |
+
"id": "juxsvco9B0iV"
|
| 143 |
},
|
| 144 |
+
"execution_count": null,
|
| 145 |
"outputs": []
|
| 146 |
},
|
| 147 |
+
{
|
| 148 |
+
"cell_type": "code",
|
| 149 |
+
"source": [
|
| 150 |
+
"list_size = 10 # @param {type:'number'}\n",
|
| 151 |
+
"for index in range(list_size):\n",
|
| 152 |
+
" print(f'{vocab[indices[index]]}') # vocab item\n",
|
| 153 |
+
" print(f'ID = {indices[index]}') # IDs\n",
|
| 154 |
+
" print(f'similiarity = {round(sorted[index].item()*100,2)} %') # % value\n",
|
| 155 |
+
" print('--------')\n"
|
| 156 |
+
],
|
| 157 |
+
"metadata": {
|
| 158 |
+
"id": "YIEmLAzbHeuo"
|
| 159 |
+
},
|
| 160 |
+
"execution_count": null,
|
| 161 |
+
"outputs": []
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"cell_type": "markdown",
|
| 165 |
+
"source": [
|
| 166 |
+
"Find the most similiar Tokens for given input"
|
| 167 |
+
],
|
| 168 |
+
"metadata": {
|
| 169 |
+
"id": "qqZ5DvfLBJnw"
|
| 170 |
+
}
|
| 171 |
+
},
|
| 172 |
{
|
| 173 |
"cell_type": "markdown",
|
| 174 |
"source": [
|