Upload sd_token_similarity_calculator.ipynb
Browse files
sd_token_similarity_calculator.ipynb
CHANGED
|
@@ -55,10 +55,8 @@
|
|
| 55 |
"def absolute_value(x):\n",
|
| 56 |
" return max(x, -x)\n",
|
| 57 |
"\n",
|
| 58 |
-
"
|
| 59 |
-
"
|
| 60 |
-
" A = token[id_A]\n",
|
| 61 |
-
" B = token[id_B]\n",
|
| 62 |
" #Tensor vector length (2nd order, i.e (a^2 + b^2 + ....)^(1/2)\n",
|
| 63 |
" _A = LA.vector_norm(A, ord=2)\n",
|
| 64 |
" _B = LA.vector_norm(B, ord=2)\n",
|
|
@@ -69,6 +67,12 @@
|
|
| 69 |
" similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
|
| 70 |
" result = f'{similarity_pcnt_aprox} %'\n",
|
| 71 |
" return result\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
"#----#\n",
|
| 73 |
"\n",
|
| 74 |
"#print(vocab[8922]) #the vocab item for ID 8922\n",
|
|
@@ -86,7 +90,7 @@
|
|
| 86 |
{
|
| 87 |
"cell_type": "code",
|
| 88 |
"source": [
|
| 89 |
-
"# @title Tokenize prompt into IDs\n",
|
| 90 |
"from transformers import AutoTokenizer\n",
|
| 91 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 92 |
"\n",
|
|
@@ -95,6 +99,23 @@
|
|
| 95 |
"tokenizer_output = tokenizer(text = prompt)\n",
|
| 96 |
"input_ids = tokenizer_output['input_ids']\n",
|
| 97 |
"print(input_ids)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
"id_A = input_ids[1]\n",
|
| 99 |
"A = token[id_A]\n",
|
| 100 |
"_A = LA.vector_norm(A, ord=2)\n",
|
|
@@ -108,36 +129,20 @@
|
|
| 108 |
" A = R*(_A/_R)\n",
|
| 109 |
"\n",
|
| 110 |
"#Save a copy of the tensor A\n",
|
| 111 |
-
"id_P =
|
| 112 |
-
"P =
|
| 113 |
-
"_P = LA.vector_norm(A, ord=2)\n"
|
| 114 |
-
"\n",
|
| 115 |
-
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
| 116 |
-
"\n",
|
| 117 |
-
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID."
|
| 118 |
],
|
| 119 |
"metadata": {
|
| 120 |
-
"id": "
|
| 121 |
-
"colab": {
|
| 122 |
-
"base_uri": "https://localhost:8080/"
|
| 123 |
-
},
|
| 124 |
-
"outputId": "e335f5da-b26d-4eea-f854-fd646444ea14"
|
| 125 |
},
|
| 126 |
"execution_count": null,
|
| 127 |
-
"outputs": [
|
| 128 |
-
{
|
| 129 |
-
"output_type": "stream",
|
| 130 |
-
"name": "stdout",
|
| 131 |
-
"text": [
|
| 132 |
-
"[49406, 8922, 49407]\n"
|
| 133 |
-
]
|
| 134 |
-
}
|
| 135 |
-
]
|
| 136 |
},
|
| 137 |
{
|
| 138 |
"cell_type": "code",
|
| 139 |
"source": [
|
| 140 |
-
"# @title Take the ID at index 1 from above result and modify it (optional)\n",
|
| 141 |
"mix_with = \"\" # @param {type:'string'}\n",
|
| 142 |
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
| 143 |
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
|
@@ -193,7 +198,7 @@
|
|
| 193 |
"cell_type": "code",
|
| 194 |
"source": [
|
| 195 |
"\n",
|
| 196 |
-
"# @title Find Similiar Tokens to ID at index 1 from above result\n",
|
| 197 |
"dots = torch.zeros(NUM_TOKENS)\n",
|
| 198 |
"for index in range(NUM_TOKENS):\n",
|
| 199 |
" id_B = index\n",
|
|
@@ -233,7 +238,7 @@
|
|
| 233 |
{
|
| 234 |
"cell_type": "code",
|
| 235 |
"source": [
|
| 236 |
-
"# @title Print Result from the 'Similiar Tokens' list from above result\n",
|
| 237 |
"list_size = 100 # @param {type:'number'}\n",
|
| 238 |
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 239 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
|
@@ -264,7 +269,7 @@
|
|
| 264 |
"cell_type": "code",
|
| 265 |
"source": [
|
| 266 |
"\n",
|
| 267 |
-
"# @title Get similarity % of two token IDs\n",
|
| 268 |
"id_for_token_A = 4567 # @param {type:'number'}\n",
|
| 269 |
"id_for_token_B = 4343 # @param {type:'number'}\n",
|
| 270 |
"\n",
|
|
@@ -280,6 +285,45 @@
|
|
| 280 |
"execution_count": null,
|
| 281 |
"outputs": []
|
| 282 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
{
|
| 284 |
"cell_type": "markdown",
|
| 285 |
"source": [
|
|
@@ -316,7 +360,11 @@
|
|
| 316 |
"\n",
|
| 317 |
"Source: https://huggingface.co/docs/diffusers/main/en/using-diffusers/weighted_prompts*\n",
|
| 318 |
"\n",
|
| 319 |
-
"So TLDR; vector direction = “what to generate” , vector magnitude = “prompt weights
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
],
|
| 321 |
"metadata": {
|
| 322 |
"id": "njeJx_nSSA8H"
|
|
|
|
| 55 |
"def absolute_value(x):\n",
|
| 56 |
" return max(x, -x)\n",
|
| 57 |
"\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"def token_similarity(A, B):\n",
|
|
|
|
|
|
|
| 60 |
" #Tensor vector length (2nd order, i.e (a^2 + b^2 + ....)^(1/2)\n",
|
| 61 |
" _A = LA.vector_norm(A, ord=2)\n",
|
| 62 |
" _B = LA.vector_norm(B, ord=2)\n",
|
|
|
|
| 67 |
" similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
|
| 68 |
" result = f'{similarity_pcnt_aprox} %'\n",
|
| 69 |
" return result\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"def similarity(id_A , id_B):\n",
|
| 72 |
+
" #Tensors\n",
|
| 73 |
+
" A = token[id_A]\n",
|
| 74 |
+
" B = token[id_B]\n",
|
| 75 |
+
" return token_similarity(A, B)\n",
|
| 76 |
"#----#\n",
|
| 77 |
"\n",
|
| 78 |
"#print(vocab[8922]) #the vocab item for ID 8922\n",
|
|
|
|
| 90 |
{
|
| 91 |
"cell_type": "code",
|
| 92 |
"source": [
|
| 93 |
+
"# @title 📝 -> 🆔 Tokenize prompt into IDs\n",
|
| 94 |
"from transformers import AutoTokenizer\n",
|
| 95 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 96 |
"\n",
|
|
|
|
| 99 |
"tokenizer_output = tokenizer(text = prompt)\n",
|
| 100 |
"input_ids = tokenizer_output['input_ids']\n",
|
| 101 |
"print(input_ids)\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID."
|
| 107 |
+
],
|
| 108 |
+
"metadata": {
|
| 109 |
+
"id": "RPdkYzT2_X85"
|
| 110 |
+
},
|
| 111 |
+
"execution_count": null,
|
| 112 |
+
"outputs": []
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "code",
|
| 116 |
+
"source": [
|
| 117 |
+
"# @title 🆔->🥢 Take the ID at index 1 from above result and get its corresponding tensor value\n",
|
| 118 |
+
"\n",
|
| 119 |
"id_A = input_ids[1]\n",
|
| 120 |
"A = token[id_A]\n",
|
| 121 |
"_A = LA.vector_norm(A, ord=2)\n",
|
|
|
|
| 129 |
" A = R*(_A/_R)\n",
|
| 130 |
"\n",
|
| 131 |
"#Save a copy of the tensor A\n",
|
| 132 |
+
"id_P = id_A\n",
|
| 133 |
+
"P = A\n",
|
| 134 |
+
"_P = LA.vector_norm(A, ord=2)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
],
|
| 136 |
"metadata": {
|
| 137 |
+
"id": "YqdiF8DIz9Wu"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
},
|
| 139 |
"execution_count": null,
|
| 140 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
},
|
| 142 |
{
|
| 143 |
"cell_type": "code",
|
| 144 |
"source": [
|
| 145 |
+
"# @title 🥢 -> 🥢🔀 Take the ID at index 1 from above result and modify it (optional)\n",
|
| 146 |
"mix_with = \"\" # @param {type:'string'}\n",
|
| 147 |
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
| 148 |
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
|
|
|
| 198 |
"cell_type": "code",
|
| 199 |
"source": [
|
| 200 |
"\n",
|
| 201 |
+
"# @title 🥢->🧾🥢 Find Similiar Tokens to ID at index 1 from above result\n",
|
| 202 |
"dots = torch.zeros(NUM_TOKENS)\n",
|
| 203 |
"for index in range(NUM_TOKENS):\n",
|
| 204 |
" id_B = index\n",
|
|
|
|
| 238 |
{
|
| 239 |
"cell_type": "code",
|
| 240 |
"source": [
|
| 241 |
+
"# @title 🥢🧾 -> 🖨️ Print Result from the 'Similiar Tokens' list from above result\n",
|
| 242 |
"list_size = 100 # @param {type:'number'}\n",
|
| 243 |
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 244 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
|
|
|
| 269 |
"cell_type": "code",
|
| 270 |
"source": [
|
| 271 |
"\n",
|
| 272 |
+
"# @title 🆔 Get similarity % of two token IDs\n",
|
| 273 |
"id_for_token_A = 4567 # @param {type:'number'}\n",
|
| 274 |
"id_for_token_B = 4343 # @param {type:'number'}\n",
|
| 275 |
"\n",
|
|
|
|
| 285 |
"execution_count": null,
|
| 286 |
"outputs": []
|
| 287 |
},
|
| 288 |
+
{
|
| 289 |
+
"cell_type": "code",
|
| 290 |
+
"source": [
|
| 291 |
+
"# @title 💫 Compare Text encodings\n",
|
| 292 |
+
"\n",
|
| 293 |
+
"prompt_A = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 294 |
+
"prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 295 |
+
"use_token_padding = False # @param {type:\"boolean\"}\n",
|
| 296 |
+
"\n",
|
| 297 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"\n",
|
| 300 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 301 |
+
"\n",
|
| 302 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 303 |
+
"\n",
|
| 304 |
+
"ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 305 |
+
"text_encoding_A = model.get_text_features(**ids_A)\n",
|
| 306 |
+
"\n",
|
| 307 |
+
"ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 308 |
+
"text_encoding_B = model.get_text_features(**ids_B)\n",
|
| 309 |
+
"\n",
|
| 310 |
+
"similarity_str = 'The similarity between the text_encoding for A and B is ' + token_similarity(text_encoding_A[0] , text_encoding_B[0])\n",
|
| 311 |
+
"\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"print(similarity_str)\n",
|
| 314 |
+
"#outputs = model(**inputs)\n",
|
| 315 |
+
"#logits_per_image = outputs.logits_per_image # this is the image-text similarity score\n",
|
| 316 |
+
"#probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities\n",
|
| 317 |
+
"\n",
|
| 318 |
+
"\n",
|
| 319 |
+
"\n"
|
| 320 |
+
],
|
| 321 |
+
"metadata": {
|
| 322 |
+
"id": "QQOjh5BvnG8M"
|
| 323 |
+
},
|
| 324 |
+
"execution_count": null,
|
| 325 |
+
"outputs": []
|
| 326 |
+
},
|
| 327 |
{
|
| 328 |
"cell_type": "markdown",
|
| 329 |
"source": [
|
|
|
|
| 360 |
"\n",
|
| 361 |
"Source: https://huggingface.co/docs/diffusers/main/en/using-diffusers/weighted_prompts*\n",
|
| 362 |
"\n",
|
| 363 |
+
"So TLDR; vector direction = “what to generate” , vector magnitude = “prompt weights”\n",
|
| 364 |
+
"\n",
|
| 365 |
+
"/---/\n",
|
| 366 |
+
"\n",
|
| 367 |
+
"Read more about CLIP here: https://huggingface.co/docs/transformers/model_doc/clip"
|
| 368 |
],
|
| 369 |
"metadata": {
|
| 370 |
"id": "njeJx_nSSA8H"
|