Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +179 -12
sd_token_similarity_calculator.ipynb
CHANGED
|
@@ -116,10 +116,23 @@
|
|
| 116 |
"metadata": {
|
| 117 |
"id": "Ch9puvwKH1s3",
|
| 118 |
"collapsed": true,
|
| 119 |
-
"cellView": "form"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
},
|
| 121 |
-
"execution_count":
|
| 122 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
},
|
| 124 |
{
|
| 125 |
"cell_type": "code",
|
|
@@ -128,7 +141,8 @@
|
|
| 128 |
"from transformers import AutoTokenizer\n",
|
| 129 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 130 |
"\n",
|
| 131 |
-
"
|
|
|
|
| 132 |
"\n",
|
| 133 |
"tokenizer_output = tokenizer(text = prompt)\n",
|
| 134 |
"input_ids = tokenizer_output['input_ids']\n",
|
|
@@ -152,11 +166,15 @@
|
|
| 152 |
" A = R*(_A/_R)\n",
|
| 153 |
" name_A = 'random_A'\n",
|
| 154 |
"\n",
|
| 155 |
-
"\n",
|
| 156 |
-
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"
|
| 157 |
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
| 158 |
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
| 159 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
"tokenizer_output = tokenizer(text = mix_with)\n",
|
| 161 |
"input_ids = tokenizer_output['input_ids']\n",
|
| 162 |
"id_C = input_ids[1]\n",
|
|
@@ -205,7 +223,7 @@
|
|
| 205 |
" A = (_A/_tmp)*tmp\n",
|
| 206 |
" #//---//\n",
|
| 207 |
" _A = LA.vector_norm(A, ord=2)\n",
|
| 208 |
-
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A
|
| 209 |
"\n",
|
| 210 |
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
| 211 |
"\n",
|
|
@@ -231,6 +249,7 @@
|
|
| 231 |
"\n",
|
| 232 |
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
|
| 233 |
"\n",
|
|
|
|
| 234 |
"list_size = 100 # @param {type:'number'}\n",
|
| 235 |
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 236 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
|
@@ -259,8 +278,7 @@
|
|
| 259 |
"#Print the sorted list from above result"
|
| 260 |
],
|
| 261 |
"metadata": {
|
| 262 |
-
"id": "iWeFnT1gAx6A"
|
| 263 |
-
"cellView": "form"
|
| 264 |
},
|
| 265 |
"execution_count": null,
|
| 266 |
"outputs": []
|
|
@@ -270,7 +288,7 @@
|
|
| 270 |
"source": [
|
| 271 |
"# @title 💫 Compare Text encodings\n",
|
| 272 |
"\n",
|
| 273 |
-
"prompt_A = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 274 |
"prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 275 |
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
| 276 |
"\n",
|
|
@@ -283,6 +301,7 @@
|
|
| 283 |
"ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 284 |
"text_encoding_A = model.get_text_features(**ids_A)\n",
|
| 285 |
"\n",
|
|
|
|
| 286 |
"ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 287 |
"text_encoding_B = model.get_text_features(**ids_B)\n",
|
| 288 |
"\n",
|
|
@@ -296,8 +315,156 @@
|
|
| 296 |
],
|
| 297 |
"metadata": {
|
| 298 |
"id": "QQOjh5BvnG8M",
|
| 299 |
-
"collapsed": true
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
},
|
| 302 |
"execution_count": null,
|
| 303 |
"outputs": []
|
|
|
|
| 116 |
"metadata": {
|
| 117 |
"id": "Ch9puvwKH1s3",
|
| 118 |
"collapsed": true,
|
| 119 |
+
"cellView": "form",
|
| 120 |
+
"outputId": "9a9d4274-a633-464b-e1fb-06a33f3dd873",
|
| 121 |
+
"colab": {
|
| 122 |
+
"base_uri": "https://localhost:8080/"
|
| 123 |
+
}
|
| 124 |
},
|
| 125 |
+
"execution_count": 59,
|
| 126 |
+
"outputs": [
|
| 127 |
+
{
|
| 128 |
+
"output_type": "stream",
|
| 129 |
+
"name": "stdout",
|
| 130 |
+
"text": [
|
| 131 |
+
"fatal: destination path 'sd_tokens' already exists and is not an empty directory.\n",
|
| 132 |
+
"/content/sd_tokens\n"
|
| 133 |
+
]
|
| 134 |
+
}
|
| 135 |
+
]
|
| 136 |
},
|
| 137 |
{
|
| 138 |
"cell_type": "code",
|
|
|
|
| 141 |
"from transformers import AutoTokenizer\n",
|
| 142 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 143 |
"\n",
|
| 144 |
+
"# @markdown Write name of token to match against\n",
|
| 145 |
+
"prompt= \"banana\" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
| 146 |
"\n",
|
| 147 |
"tokenizer_output = tokenizer(text = prompt)\n",
|
| 148 |
"input_ids = tokenizer_output['input_ids']\n",
|
|
|
|
| 166 |
" A = R*(_A/_R)\n",
|
| 167 |
" name_A = 'random_A'\n",
|
| 168 |
"\n",
|
| 169 |
+
"# @markdown (optional) Mix the token with something else\n",
|
| 170 |
+
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
| 171 |
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
| 172 |
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
| 173 |
"\n",
|
| 174 |
+
"# @markdown Limit char size of included token\n",
|
| 175 |
+
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 176 |
+
"char_range = 5 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 177 |
+
"\n",
|
| 178 |
"tokenizer_output = tokenizer(text = mix_with)\n",
|
| 179 |
"input_ids = tokenizer_output['input_ids']\n",
|
| 180 |
"id_C = input_ids[1]\n",
|
|
|
|
| 223 |
" A = (_A/_tmp)*tmp\n",
|
| 224 |
" #//---//\n",
|
| 225 |
" _A = LA.vector_norm(A, ord=2)\n",
|
| 226 |
+
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
| 227 |
"\n",
|
| 228 |
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
| 229 |
"\n",
|
|
|
|
| 249 |
"\n",
|
| 250 |
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
|
| 251 |
"\n",
|
| 252 |
+
"# @markdown Set print options\n",
|
| 253 |
"list_size = 100 # @param {type:'number'}\n",
|
| 254 |
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 255 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
|
|
|
| 278 |
"#Print the sorted list from above result"
|
| 279 |
],
|
| 280 |
"metadata": {
|
| 281 |
+
"id": "iWeFnT1gAx6A"
|
|
|
|
| 282 |
},
|
| 283 |
"execution_count": null,
|
| 284 |
"outputs": []
|
|
|
|
| 288 |
"source": [
|
| 289 |
"# @title 💫 Compare Text encodings\n",
|
| 290 |
"\n",
|
| 291 |
+
"prompt_A = \"banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 292 |
"prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 293 |
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
| 294 |
"\n",
|
|
|
|
| 301 |
"ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 302 |
"text_encoding_A = model.get_text_features(**ids_A)\n",
|
| 303 |
"\n",
|
| 304 |
+
"\n",
|
| 305 |
"ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 306 |
"text_encoding_B = model.get_text_features(**ids_B)\n",
|
| 307 |
"\n",
|
|
|
|
| 315 |
],
|
| 316 |
"metadata": {
|
| 317 |
"id": "QQOjh5BvnG8M",
|
| 318 |
+
"collapsed": true
|
| 319 |
+
},
|
| 320 |
+
"execution_count": null,
|
| 321 |
+
"outputs": []
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"cell_type": "code",
|
| 325 |
+
"source": [
|
| 326 |
+
"# @title 🪐 Find similiar prompt\n",
|
| 327 |
+
"# @markdown Prompt A to match against\n",
|
| 328 |
+
"prompt_A = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 329 |
+
"# @markdown Set conditions for the output\n",
|
| 330 |
+
"must_start_with = \"bendy \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 331 |
+
"must_contain = \"yellow\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 332 |
+
"must_end_with = \" on a table\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 333 |
+
"\n",
|
| 334 |
+
"token_B = must_contain\n",
|
| 335 |
+
"\n",
|
| 336 |
+
"# @markdown Limit the search\n",
|
| 337 |
+
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
| 338 |
+
"start_search_at_ID = 12500 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
| 339 |
+
"search_range = 500 # @param {type:\"slider\", min:0, max: 2000, step:100}\n",
|
| 340 |
+
"restrictions = 'Suffix only' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
| 341 |
+
"\n",
|
| 342 |
+
"# @markdown Limit char size of included token\n",
|
| 343 |
+
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 344 |
+
"char_range = 5 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 345 |
+
"\n",
|
| 346 |
+
"\n",
|
| 347 |
+
"#Tokenize input B\n",
|
| 348 |
+
"from transformers import AutoTokenizer\n",
|
| 349 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 350 |
+
"tokenizer_output = tokenizer(text = token_B)\n",
|
| 351 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
| 352 |
+
"#-----#\n",
|
| 353 |
+
"name_B = must_contain\n",
|
| 354 |
+
"#-----#\n",
|
| 355 |
+
"\n",
|
| 356 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 357 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 358 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 359 |
+
"#-------#\n",
|
| 360 |
+
"ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 361 |
+
"text_encoding_A = model.get_text_features(**ids_A)\n",
|
| 362 |
+
"A = text_encoding_A[0]\n",
|
| 363 |
+
"_A = LA.vector_norm(A, ord=2)\n",
|
| 364 |
+
"name_A = prompt_A\n",
|
| 365 |
+
"print(f'a text_encoding was created for the prompt \"{prompt_A}\" ')\n",
|
| 366 |
+
"print('')\n",
|
| 367 |
+
"#----#\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"START = start_search_at_ID\n",
|
| 370 |
+
"RANGE = min(search_range , 49407 - start_search_at_ID)\n",
|
| 371 |
+
"\n",
|
| 372 |
+
"dots = torch.zeros(RANGE)\n",
|
| 373 |
+
"is_BC = torch.zeros(RANGE)\n",
|
| 374 |
+
"for index in range(RANGE):\n",
|
| 375 |
+
" id_C = START + index\n",
|
| 376 |
+
" C = token[id_C]\n",
|
| 377 |
+
" _C = LA.vector_norm(C, ord=2)\n",
|
| 378 |
+
" name_C = vocab[id_C]\n",
|
| 379 |
+
"\n",
|
| 380 |
+
" # Decide if we should process prefix/suffix tokens\n",
|
| 381 |
+
" if name_C.find('</w>')<=-1:\n",
|
| 382 |
+
" if restrictions != \"Prefix only\":\n",
|
| 383 |
+
" continue\n",
|
| 384 |
+
" else:\n",
|
| 385 |
+
" if restrictions == \"Prefix only\":\n",
|
| 386 |
+
" continue\n",
|
| 387 |
+
" #-----#\n",
|
| 388 |
+
"\n",
|
| 389 |
+
" # Decide if char-size is within range\n",
|
| 390 |
+
" if len(name_C) < min_char_size:\n",
|
| 391 |
+
" continue\n",
|
| 392 |
+
" if len(name_C) > min_char_size + char_range:\n",
|
| 393 |
+
" continue\n",
|
| 394 |
+
" #-----#\n",
|
| 395 |
+
"\n",
|
| 396 |
+
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
| 397 |
+
" if restrictions == \"Prefix only\":\n",
|
| 398 |
+
" name_CB = must_start_with + name_C + '-' + name_B + must_end_with\n",
|
| 399 |
+
" #-----#\n",
|
| 400 |
+
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 401 |
+
" text_encoding_CB = model.get_text_features(**ids_CB)\n",
|
| 402 |
+
" CB = text_encoding_CB[0]\n",
|
| 403 |
+
" _CB = LA.vector_norm(CB, ord=2)\n",
|
| 404 |
+
" sim_CB = torch.dot(A,CB)/(_A*_CB)\n",
|
| 405 |
+
" #-----#\n",
|
| 406 |
+
" if restrictions == \"Prefix only\":\n",
|
| 407 |
+
" result = sim_CB\n",
|
| 408 |
+
" result = result.item()\n",
|
| 409 |
+
" dots[index] = result\n",
|
| 410 |
+
" continue\n",
|
| 411 |
+
" #-----#\n",
|
| 412 |
+
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
| 413 |
+
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 414 |
+
" text_encoding_BC = model.get_text_features(**ids_BC)\n",
|
| 415 |
+
" BC = text_encoding_BC[0]\n",
|
| 416 |
+
" _BC = LA.vector_norm(BC, ord=2)\n",
|
| 417 |
+
" sim_BC = torch.dot(A,BC)/(_A*_BC)\n",
|
| 418 |
+
" #-----#\n",
|
| 419 |
+
"\n",
|
| 420 |
+
" result = sim_CB\n",
|
| 421 |
+
" if(sim_BC > sim_CB):\n",
|
| 422 |
+
" is_BC[index] = 1\n",
|
| 423 |
+
" result = sim_BC\n",
|
| 424 |
+
"\n",
|
| 425 |
+
" #result = absolute_value(result.item())\n",
|
| 426 |
+
" result = result.item()\n",
|
| 427 |
+
" dots[index] = result\n",
|
| 428 |
+
"#----#\n",
|
| 429 |
+
"\n",
|
| 430 |
+
"\n",
|
| 431 |
+
"\n",
|
| 432 |
+
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 433 |
+
"\n",
|
| 434 |
+
"# @markdown Print options\n",
|
| 435 |
+
"list_size = 100 # @param {type:'number'}\n",
|
| 436 |
+
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 437 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 438 |
+
"print_Name = True # @param {type:\"boolean\"}\n",
|
| 439 |
+
"print_Divider = True # @param {type:\"boolean\"}\n",
|
| 440 |
+
"\n",
|
| 441 |
+
"\n",
|
| 442 |
+
"if (print_Divider):\n",
|
| 443 |
+
" print('//---//')\n",
|
| 444 |
+
"\n",
|
| 445 |
+
"print('')\n",
|
| 446 |
+
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for the prompt \"{prompt_A}\" : ')\n",
|
| 447 |
+
"print('')\n",
|
| 448 |
+
"\n",
|
| 449 |
+
"for index in range(min(list_size,RANGE)):\n",
|
| 450 |
+
" id = START + indices[index].item()\n",
|
| 451 |
+
" if (print_Name):\n",
|
| 452 |
+
" if(is_BC[index]>0):\n",
|
| 453 |
+
" print(must_start_with + name_B + vocab[id] + must_end_with)\n",
|
| 454 |
+
" else:\n",
|
| 455 |
+
" if restrictions == \"Prefix only\":\n",
|
| 456 |
+
" print(must_start_with + vocab[id] + '-' + name_B + must_end_with)\n",
|
| 457 |
+
" else:\n",
|
| 458 |
+
" print(must_start_with + vocab[id] + name_B + must_end_with)\n",
|
| 459 |
+
" if (print_ID):\n",
|
| 460 |
+
" print(f'ID = {id}') # IDs\n",
|
| 461 |
+
" if (print_Similarity):\n",
|
| 462 |
+
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
| 463 |
+
" if (print_Divider):\n",
|
| 464 |
+
" print('--------')"
|
| 465 |
+
],
|
| 466 |
+
"metadata": {
|
| 467 |
+
"id": "uDtcm-l8UCJk"
|
| 468 |
},
|
| 469 |
"execution_count": null,
|
| 470 |
"outputs": []
|