Upload sd_token_similarity_calculator.ipynb
Browse files
sd_token_similarity_calculator.ipynb
CHANGED
|
@@ -274,19 +274,42 @@
|
|
| 274 |
"id": "IUCuV9RtQpBn"
|
| 275 |
}
|
| 276 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
{
|
| 278 |
"cell_type": "code",
|
| 279 |
"source": [
|
| 280 |
"# @title 🪐🖼️ -> 📝 Token-Sampling Image interrogator\n",
|
| 281 |
-
"\n",
|
|
|
|
|
|
|
|
|
|
| 282 |
"# @markdown # What do you want to to mimic?\n",
|
| 283 |
-
"use = '
|
| 284 |
"# @markdown --------------------------\n",
|
| 285 |
"use_token_padding = True # param {type:\"boolean\"} <---- Enabled by default\n",
|
| 286 |
"prompt = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 287 |
-
"
|
| 288 |
"prompt_A = prompt\n",
|
| 289 |
-
"
|
| 290 |
"from google.colab import files\n",
|
| 291 |
"def upload_files():\n",
|
| 292 |
" from google.colab import files\n",
|
|
@@ -297,17 +320,12 @@
|
|
| 297 |
"#Get image\n",
|
| 298 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
| 299 |
"image_url = \"http://images.cocodataset.org/val2017/000000039769.jpg\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n",
|
| 300 |
-
"\n",
|
| 301 |
-
"\n",
|
| 302 |
"colab_image_path = \"\" # @param {\"type\":\"string\",\"placeholder\": \"eval. as '/content/sd_tokens/' + **your input**\"}\n",
|
| 303 |
-
"\n",
|
| 304 |
"# @markdown --------------------------\n",
|
| 305 |
"from PIL import Image\n",
|
| 306 |
"import requests\n",
|
| 307 |
"image_A = \"\"\n",
|
| 308 |
-
"\n",
|
| 309 |
"#----#\n",
|
| 310 |
-
"\n",
|
| 311 |
"if(use == '🖼️image_encoding from image'):\n",
|
| 312 |
" if image_url == \"\":\n",
|
| 313 |
" import cv2\n",
|
|
@@ -323,14 +341,12 @@
|
|
| 323 |
" else:\n",
|
| 324 |
" image_A = Image.open(requests.get(image_url, stream=True).raw)\n",
|
| 325 |
"#------#\n",
|
| 326 |
-
"\n",
|
| 327 |
"from transformers import AutoTokenizer\n",
|
| 328 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 329 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 330 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 331 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 332 |
-
"
|
| 333 |
-
"\n",
|
| 334 |
"if(use == '🖼️image_encoding from image'):\n",
|
| 335 |
" # Get image features\n",
|
| 336 |
" inputs = processor(images=image_A, return_tensors=\"pt\")\n",
|
|
@@ -338,34 +354,27 @@
|
|
| 338 |
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 339 |
" name_A = \"the image\"\n",
|
| 340 |
"#-----#\n",
|
| 341 |
-
"\n",
|
| 342 |
-
"\n",
|
| 343 |
"if(use == '📝text_encoding from prompt'):\n",
|
| 344 |
" # Get text features\n",
|
| 345 |
" inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
| 346 |
" text_features_A = model.get_text_features(**inputs)\n",
|
| 347 |
" name_A = prompt\n",
|
| 348 |
"#-----#\n",
|
| 349 |
-
"\n",
|
| 350 |
-
"\n",
|
| 351 |
"# @markdown # The output...\n",
|
| 352 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 353 |
"must_contain = \"banana \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 354 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 355 |
"token_B = must_contain\n",
|
| 356 |
-
"\n",
|
| 357 |
"# @markdown -----\n",
|
| 358 |
-
"\n",
|
| 359 |
"# @markdown # Use a range of tokens from the vocab.json (slow method)\n",
|
| 360 |
-
"
|
|
|
|
|
|
|
| 361 |
"search_range = 100 # @param {type:\"slider\", min:100, max: 2000, step:0}\n",
|
| 362 |
"restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
| 363 |
-
"\n",
|
| 364 |
"#markdown Limit char size of included token <----- Disabled\n",
|
| 365 |
"min_char_size = 0 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
| 366 |
"char_range = 50 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
| 367 |
-
"\n",
|
| 368 |
-
"\n",
|
| 369 |
"# markdown # ...or paste prompt items\n",
|
| 370 |
"# markdown Format must be {item1|item2|...}. You can aquire prompt items using the Randomizer in the fusion gen: https://perchance.org/fusion-ai-image-generator\n",
|
| 371 |
"_enable = False # param {\"type\":\"boolean\"}\n",
|
|
@@ -373,26 +382,21 @@
|
|
| 373 |
"#-----#\n",
|
| 374 |
"name_B = must_contain\n",
|
| 375 |
"#-----#\n",
|
| 376 |
-
"\n",
|
| 377 |
"START = start_search_at_ID\n",
|
| 378 |
"RANGE = min(search_range , 49407 - start_search_at_ID)\n",
|
| 379 |
-
"
|
| 380 |
"dots = torch.zeros(RANGE)\n",
|
| 381 |
"is_BC = torch.zeros(RANGE)\n",
|
| 382 |
-
"\n",
|
| 383 |
"import re\n",
|
| 384 |
-
"
|
| 385 |
"for index in range(RANGE):\n",
|
| 386 |
" id_C = START + index\n",
|
| 387 |
-
" name_C =
|
| 388 |
" is_Prefix = 0\n",
|
| 389 |
-
"\n",
|
| 390 |
-
"\n",
|
| 391 |
" #Skip if non-AZ characters are found\n",
|
| 392 |
" if re.search(\"\\W/g\" , name_C.replace('</w>', '')):\n",
|
| 393 |
" continue\n",
|
| 394 |
-
"
|
| 395 |
-
"\n",
|
| 396 |
" # Decide if we should process prefix/suffix tokens\n",
|
| 397 |
" if name_C.find('</w>')<=-1:\n",
|
| 398 |
" is_Prefix = 1\n",
|
|
@@ -402,7 +406,6 @@
|
|
| 402 |
" if restrictions == \"Prefix only\":\n",
|
| 403 |
" continue\n",
|
| 404 |
" #-----#\n",
|
| 405 |
-
"\n",
|
| 406 |
" # Decide if char-size is within range\n",
|
| 407 |
" if len(name_C) < min_char_size:\n",
|
| 408 |
" continue\n",
|
|
@@ -413,7 +416,6 @@
|
|
| 413 |
" if is_Prefix>0:\n",
|
| 414 |
" name_CB = must_start_with + ' ' + name_C.strip() + '-' + name_B.strip() + ' ' + must_end_with\n",
|
| 415 |
" #-----#\n",
|
| 416 |
-
"\n",
|
| 417 |
" if(use == '🖼️image_encoding from image'):\n",
|
| 418 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 419 |
" text_features = model.get_text_features(**ids_CB)\n",
|
|
@@ -422,16 +424,12 @@
|
|
| 422 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
| 423 |
" sim_CB = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
| 424 |
" #-----#\n",
|
| 425 |
-
"\n",
|
| 426 |
" if(use == '📝text_encoding from prompt'):\n",
|
| 427 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 428 |
" text_features = model.get_text_features(**ids_CB)\n",
|
| 429 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 430 |
" sim_CB = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
| 431 |
" #-----#\n",
|
| 432 |
-
"\n",
|
| 433 |
-
"\n",
|
| 434 |
-
"\n",
|
| 435 |
" #-----#\n",
|
| 436 |
" if restrictions == \"Prefix only\":\n",
|
| 437 |
" result = sim_CB\n",
|
|
@@ -439,7 +437,6 @@
|
|
| 439 |
" dots[index] = result\n",
|
| 440 |
" continue\n",
|
| 441 |
" #-----#\n",
|
| 442 |
-
"\n",
|
| 443 |
" if(use == '🖼️image_encoding from image'):\n",
|
| 444 |
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
| 445 |
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
|
@@ -449,7 +446,6 @@
|
|
| 449 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
| 450 |
" sim_BC = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
| 451 |
" #-----#\n",
|
| 452 |
-
"\n",
|
| 453 |
" if(use == '📝text_encoding from prompt'):\n",
|
| 454 |
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
| 455 |
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
|
@@ -457,20 +453,16 @@
|
|
| 457 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 458 |
" sim_BC = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
| 459 |
" #-----#\n",
|
| 460 |
-
"\n",
|
| 461 |
" result = sim_CB\n",
|
| 462 |
" if(sim_BC > sim_CB):\n",
|
| 463 |
" is_BC[index] = 1\n",
|
| 464 |
" result = sim_BC\n",
|
| 465 |
-
"
|
| 466 |
" #result = absolute_value(result.item())\n",
|
| 467 |
" result = result.item()\n",
|
| 468 |
" dots[index] = result\n",
|
| 469 |
"#----#\n",
|
| 470 |
-
"\n",
|
| 471 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 472 |
-
"\n",
|
| 473 |
-
"\n",
|
| 474 |
"# @markdown ----------\n",
|
| 475 |
"# @markdown # Print options\n",
|
| 476 |
"list_size = 100 # @param {type:'number'}\n",
|
|
@@ -478,11 +470,10 @@
|
|
| 478 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 479 |
"print_Name = True # @param {type:\"boolean\"}\n",
|
| 480 |
"print_Divider = True # @param {type:\"boolean\"}\n",
|
| 481 |
-
"
|
| 482 |
-
"\n",
|
| 483 |
"if (print_Divider):\n",
|
| 484 |
" print('//---//')\n",
|
| 485 |
-
"
|
| 486 |
"print('')\n",
|
| 487 |
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for {prompt_A} : ')\n",
|
| 488 |
"print('')\n",
|
|
@@ -499,7 +490,7 @@
|
|
| 499 |
"#----#\n",
|
| 500 |
"for index in range(min(list_size,RANGE)):\n",
|
| 501 |
" id = START + indices[index].item()\n",
|
| 502 |
-
" name =
|
| 503 |
" #-----#\n",
|
| 504 |
" if (name.find('</w>')<=-1):\n",
|
| 505 |
" name = name + '-'\n",
|
|
@@ -511,7 +502,7 @@
|
|
| 511 |
" aheads = aheads + name + \"|\"\n",
|
| 512 |
" #----#\n",
|
| 513 |
" sim = sorted[index].item()\n",
|
| 514 |
-
"
|
| 515 |
" if(is_BC[index]>0):\n",
|
| 516 |
" if sim>max_sim_ahead:\n",
|
| 517 |
" max_sim_ahead = sim\n",
|
|
@@ -520,7 +511,6 @@
|
|
| 520 |
" if sim>max_sim_trail:\n",
|
| 521 |
" max_sim_trail = sim\n",
|
| 522 |
" max_name_trail = name\n",
|
| 523 |
-
"\n",
|
| 524 |
"#------#\n",
|
| 525 |
"trails = (trails + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
| 526 |
"aheads = (aheads + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
|
@@ -537,10 +527,9 @@
|
|
| 537 |
"#-----#\n",
|
| 538 |
"#STEP 2\n",
|
| 539 |
"import random\n",
|
| 540 |
-
"\n",
|
| 541 |
"names = {}\n",
|
| 542 |
-
"\n",
|
| 543 |
-
"
|
| 544 |
"dots = torch.zeros(NUM_PERMUTATIONS)\n",
|
| 545 |
"for index in range(NUM_PERMUTATIONS):\n",
|
| 546 |
" name = must_start_with\n",
|
|
@@ -551,7 +540,7 @@
|
|
| 551 |
" name = name + must_end_with\n",
|
| 552 |
" #----#\n",
|
| 553 |
" ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 554 |
-
"
|
| 555 |
" if(use == '🖼️image_encoding from image'):\n",
|
| 556 |
" text_features = model.get_text_features(**ids)\n",
|
| 557 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
|
@@ -559,26 +548,22 @@
|
|
| 559 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
| 560 |
" sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
| 561 |
" #-----#\n",
|
| 562 |
-
"\n",
|
| 563 |
" if(use == '📝text_encoding from prompt'):\n",
|
| 564 |
" text_features = model.get_text_features(**ids)\n",
|
| 565 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 566 |
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
| 567 |
" #-----#\n",
|
| 568 |
-
"\n",
|
| 569 |
-
"\n",
|
| 570 |
" dots[index] = sim\n",
|
| 571 |
" names[index] = name\n",
|
| 572 |
-
"\n",
|
| 573 |
-
"\n",
|
| 574 |
"#------#\n",
|
| 575 |
-
"\n",
|
| 576 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 577 |
-
"
|
| 578 |
"for index in range(NUM_PERMUTATIONS):\n",
|
| 579 |
" print(names[indices[index].item()])\n",
|
| 580 |
" print(f'similiarity = {round(sorted[index].item(),2)} %')\n",
|
| 581 |
-
" print('------')"
|
|
|
|
|
|
|
| 582 |
],
|
| 583 |
"metadata": {
|
| 584 |
"collapsed": true,
|
|
@@ -620,7 +605,8 @@
|
|
| 620 |
],
|
| 621 |
"metadata": {
|
| 622 |
"id": "QQOjh5BvnG8M",
|
| 623 |
-
"collapsed": true
|
|
|
|
| 624 |
},
|
| 625 |
"execution_count": null,
|
| 626 |
"outputs": []
|
|
|
|
| 274 |
"id": "IUCuV9RtQpBn"
|
| 275 |
}
|
| 276 |
},
|
| 277 |
+
{
|
| 278 |
+
"cell_type": "code",
|
| 279 |
+
"source": [
|
| 280 |
+
"# @title ⚡💾 Save results as .db file\n",
|
| 281 |
+
"import shelve\n",
|
| 282 |
+
"d = shelve.open('tokens_most_similiar_to_' + name_A.replace('</w>','').strip())\n",
|
| 283 |
+
"#NUM TOKENS == 49407\n",
|
| 284 |
+
"for index in range(NUM_TOKENS):\n",
|
| 285 |
+
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
|
| 286 |
+
" d[f'{index}']= vocab[indices[index].item()] #<---- write values to .db file\n",
|
| 287 |
+
"#----#\n",
|
| 288 |
+
"d.close() #close the file\n",
|
| 289 |
+
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
|
| 290 |
+
],
|
| 291 |
+
"metadata": {
|
| 292 |
+
"id": "qj888fPEbX8K"
|
| 293 |
+
},
|
| 294 |
+
"execution_count": 15,
|
| 295 |
+
"outputs": []
|
| 296 |
+
},
|
| 297 |
{
|
| 298 |
"cell_type": "code",
|
| 299 |
"source": [
|
| 300 |
"# @title 🪐🖼️ -> 📝 Token-Sampling Image interrogator\n",
|
| 301 |
+
"VOCAB_FILENAME = 'tokens_most_similiar_to_girl' #This vocab has been ordered where lowest index has the highest similarity to the reference vector \"girl</w>\". Feel free to create your own .db around a target token in above cells.\n",
|
| 302 |
+
"#-----#\n",
|
| 303 |
+
"import shelve\n",
|
| 304 |
+
"db_vocab = shelve.open(VOCAB_FILENAME)\n",
|
| 305 |
"# @markdown # What do you want to to mimic?\n",
|
| 306 |
+
"use = '📝text_encoding from prompt' # @param ['📝text_encoding from prompt', '🖼️image_encoding from image']\n",
|
| 307 |
"# @markdown --------------------------\n",
|
| 308 |
"use_token_padding = True # param {type:\"boolean\"} <---- Enabled by default\n",
|
| 309 |
"prompt = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 310 |
+
"#-----#\n",
|
| 311 |
"prompt_A = prompt\n",
|
| 312 |
+
"#-----#\n",
|
| 313 |
"from google.colab import files\n",
|
| 314 |
"def upload_files():\n",
|
| 315 |
" from google.colab import files\n",
|
|
|
|
| 320 |
"#Get image\n",
|
| 321 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
| 322 |
"image_url = \"http://images.cocodataset.org/val2017/000000039769.jpg\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n",
|
|
|
|
|
|
|
| 323 |
"colab_image_path = \"\" # @param {\"type\":\"string\",\"placeholder\": \"eval. as '/content/sd_tokens/' + **your input**\"}\n",
|
|
|
|
| 324 |
"# @markdown --------------------------\n",
|
| 325 |
"from PIL import Image\n",
|
| 326 |
"import requests\n",
|
| 327 |
"image_A = \"\"\n",
|
|
|
|
| 328 |
"#----#\n",
|
|
|
|
| 329 |
"if(use == '🖼️image_encoding from image'):\n",
|
| 330 |
" if image_url == \"\":\n",
|
| 331 |
" import cv2\n",
|
|
|
|
| 341 |
" else:\n",
|
| 342 |
" image_A = Image.open(requests.get(image_url, stream=True).raw)\n",
|
| 343 |
"#------#\n",
|
|
|
|
| 344 |
"from transformers import AutoTokenizer\n",
|
| 345 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 346 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 347 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 348 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 349 |
+
"#-----#\n",
|
|
|
|
| 350 |
"if(use == '🖼️image_encoding from image'):\n",
|
| 351 |
" # Get image features\n",
|
| 352 |
" inputs = processor(images=image_A, return_tensors=\"pt\")\n",
|
|
|
|
| 354 |
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 355 |
" name_A = \"the image\"\n",
|
| 356 |
"#-----#\n",
|
|
|
|
|
|
|
| 357 |
"if(use == '📝text_encoding from prompt'):\n",
|
| 358 |
" # Get text features\n",
|
| 359 |
" inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
| 360 |
" text_features_A = model.get_text_features(**inputs)\n",
|
| 361 |
" name_A = prompt\n",
|
| 362 |
"#-----#\n",
|
|
|
|
|
|
|
| 363 |
"# @markdown # The output...\n",
|
| 364 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 365 |
"must_contain = \"banana \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 366 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 367 |
"token_B = must_contain\n",
|
|
|
|
| 368 |
"# @markdown -----\n",
|
|
|
|
| 369 |
"# @markdown # Use a range of tokens from the vocab.json (slow method)\n",
|
| 370 |
+
"start_search_at_index = 1700 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
| 371 |
+
"# @markdown The lower the start_index, the more similiar the sampled tokens will be to the reference token \"girl\\</w>\"\n",
|
| 372 |
+
"start_search_at_ID = start_search_at_index\n",
|
| 373 |
"search_range = 100 # @param {type:\"slider\", min:100, max: 2000, step:0}\n",
|
| 374 |
"restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
|
|
|
| 375 |
"#markdown Limit char size of included token <----- Disabled\n",
|
| 376 |
"min_char_size = 0 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
| 377 |
"char_range = 50 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
|
|
|
|
|
|
| 378 |
"# markdown # ...or paste prompt items\n",
|
| 379 |
"# markdown Format must be {item1|item2|...}. You can aquire prompt items using the Randomizer in the fusion gen: https://perchance.org/fusion-ai-image-generator\n",
|
| 380 |
"_enable = False # param {\"type\":\"boolean\"}\n",
|
|
|
|
| 382 |
"#-----#\n",
|
| 383 |
"name_B = must_contain\n",
|
| 384 |
"#-----#\n",
|
|
|
|
| 385 |
"START = start_search_at_ID\n",
|
| 386 |
"RANGE = min(search_range , 49407 - start_search_at_ID)\n",
|
| 387 |
+
"#-----#\n",
|
| 388 |
"dots = torch.zeros(RANGE)\n",
|
| 389 |
"is_BC = torch.zeros(RANGE)\n",
|
|
|
|
| 390 |
"import re\n",
|
| 391 |
+
"#-----#\n",
|
| 392 |
"for index in range(RANGE):\n",
|
| 393 |
" id_C = START + index\n",
|
| 394 |
+
" name_C = db_vocab[f'{id_C}']\n",
|
| 395 |
" is_Prefix = 0\n",
|
|
|
|
|
|
|
| 396 |
" #Skip if non-AZ characters are found\n",
|
| 397 |
" if re.search(\"\\W/g\" , name_C.replace('</w>', '')):\n",
|
| 398 |
" continue\n",
|
| 399 |
+
" #-----#\n",
|
|
|
|
| 400 |
" # Decide if we should process prefix/suffix tokens\n",
|
| 401 |
" if name_C.find('</w>')<=-1:\n",
|
| 402 |
" is_Prefix = 1\n",
|
|
|
|
| 406 |
" if restrictions == \"Prefix only\":\n",
|
| 407 |
" continue\n",
|
| 408 |
" #-----#\n",
|
|
|
|
| 409 |
" # Decide if char-size is within range\n",
|
| 410 |
" if len(name_C) < min_char_size:\n",
|
| 411 |
" continue\n",
|
|
|
|
| 416 |
" if is_Prefix>0:\n",
|
| 417 |
" name_CB = must_start_with + ' ' + name_C.strip() + '-' + name_B.strip() + ' ' + must_end_with\n",
|
| 418 |
" #-----#\n",
|
|
|
|
| 419 |
" if(use == '🖼️image_encoding from image'):\n",
|
| 420 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 421 |
" text_features = model.get_text_features(**ids_CB)\n",
|
|
|
|
| 424 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
| 425 |
" sim_CB = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
| 426 |
" #-----#\n",
|
|
|
|
| 427 |
" if(use == '📝text_encoding from prompt'):\n",
|
| 428 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 429 |
" text_features = model.get_text_features(**ids_CB)\n",
|
| 430 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 431 |
" sim_CB = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
| 432 |
" #-----#\n",
|
|
|
|
|
|
|
|
|
|
| 433 |
" #-----#\n",
|
| 434 |
" if restrictions == \"Prefix only\":\n",
|
| 435 |
" result = sim_CB\n",
|
|
|
|
| 437 |
" dots[index] = result\n",
|
| 438 |
" continue\n",
|
| 439 |
" #-----#\n",
|
|
|
|
| 440 |
" if(use == '🖼️image_encoding from image'):\n",
|
| 441 |
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
| 442 |
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
|
|
|
| 446 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
| 447 |
" sim_BC = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
| 448 |
" #-----#\n",
|
|
|
|
| 449 |
" if(use == '📝text_encoding from prompt'):\n",
|
| 450 |
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
| 451 |
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
|
|
|
| 453 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 454 |
" sim_BC = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
| 455 |
" #-----#\n",
|
|
|
|
| 456 |
" result = sim_CB\n",
|
| 457 |
" if(sim_BC > sim_CB):\n",
|
| 458 |
" is_BC[index] = 1\n",
|
| 459 |
" result = sim_BC\n",
|
| 460 |
+
" #-----#\n",
|
| 461 |
" #result = absolute_value(result.item())\n",
|
| 462 |
" result = result.item()\n",
|
| 463 |
" dots[index] = result\n",
|
| 464 |
"#----#\n",
|
|
|
|
| 465 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
|
|
|
|
|
|
| 466 |
"# @markdown ----------\n",
|
| 467 |
"# @markdown # Print options\n",
|
| 468 |
"list_size = 100 # @param {type:'number'}\n",
|
|
|
|
| 470 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 471 |
"print_Name = True # @param {type:\"boolean\"}\n",
|
| 472 |
"print_Divider = True # @param {type:\"boolean\"}\n",
|
| 473 |
+
"#----#\n",
|
|
|
|
| 474 |
"if (print_Divider):\n",
|
| 475 |
" print('//---//')\n",
|
| 476 |
+
"#----#\n",
|
| 477 |
"print('')\n",
|
| 478 |
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for {prompt_A} : ')\n",
|
| 479 |
"print('')\n",
|
|
|
|
| 490 |
"#----#\n",
|
| 491 |
"for index in range(min(list_size,RANGE)):\n",
|
| 492 |
" id = START + indices[index].item()\n",
|
| 493 |
+
" name = db_vocab[f'{id}']\n",
|
| 494 |
" #-----#\n",
|
| 495 |
" if (name.find('</w>')<=-1):\n",
|
| 496 |
" name = name + '-'\n",
|
|
|
|
| 502 |
" aheads = aheads + name + \"|\"\n",
|
| 503 |
" #----#\n",
|
| 504 |
" sim = sorted[index].item()\n",
|
| 505 |
+
" #----#\n",
|
| 506 |
" if(is_BC[index]>0):\n",
|
| 507 |
" if sim>max_sim_ahead:\n",
|
| 508 |
" max_sim_ahead = sim\n",
|
|
|
|
| 511 |
" if sim>max_sim_trail:\n",
|
| 512 |
" max_sim_trail = sim\n",
|
| 513 |
" max_name_trail = name\n",
|
|
|
|
| 514 |
"#------#\n",
|
| 515 |
"trails = (trails + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
| 516 |
"aheads = (aheads + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
|
|
|
| 527 |
"#-----#\n",
|
| 528 |
"#STEP 2\n",
|
| 529 |
"import random\n",
|
|
|
|
| 530 |
"names = {}\n",
|
| 531 |
+
"NUM_PERMUTATIONS = 4\n",
|
| 532 |
+
"#-----#\n",
|
| 533 |
"dots = torch.zeros(NUM_PERMUTATIONS)\n",
|
| 534 |
"for index in range(NUM_PERMUTATIONS):\n",
|
| 535 |
" name = must_start_with\n",
|
|
|
|
| 540 |
" name = name + must_end_with\n",
|
| 541 |
" #----#\n",
|
| 542 |
" ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 543 |
+
" #----#\n",
|
| 544 |
" if(use == '🖼️image_encoding from image'):\n",
|
| 545 |
" text_features = model.get_text_features(**ids)\n",
|
| 546 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
|
|
|
| 548 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
| 549 |
" sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
| 550 |
" #-----#\n",
|
|
|
|
| 551 |
" if(use == '📝text_encoding from prompt'):\n",
|
| 552 |
" text_features = model.get_text_features(**ids)\n",
|
| 553 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 554 |
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
| 555 |
" #-----#\n",
|
|
|
|
|
|
|
| 556 |
" dots[index] = sim\n",
|
| 557 |
" names[index] = name\n",
|
|
|
|
|
|
|
| 558 |
"#------#\n",
|
|
|
|
| 559 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 560 |
+
"#------#\n",
|
| 561 |
"for index in range(NUM_PERMUTATIONS):\n",
|
| 562 |
" print(names[indices[index].item()])\n",
|
| 563 |
" print(f'similiarity = {round(sorted[index].item(),2)} %')\n",
|
| 564 |
+
" print('------')\n",
|
| 565 |
+
"#------#\n",
|
| 566 |
+
"db_vocab.close() #close the file"
|
| 567 |
],
|
| 568 |
"metadata": {
|
| 569 |
"collapsed": true,
|
|
|
|
| 605 |
],
|
| 606 |
"metadata": {
|
| 607 |
"id": "QQOjh5BvnG8M",
|
| 608 |
+
"collapsed": true,
|
| 609 |
+
"cellView": "form"
|
| 610 |
},
|
| 611 |
"execution_count": null,
|
| 612 |
"outputs": []
|