Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +121 -222
sd_token_similarity_calculator.ipynb
CHANGED
|
@@ -116,28 +116,10 @@
|
|
| 116 |
"metadata": {
|
| 117 |
"id": "Ch9puvwKH1s3",
|
| 118 |
"collapsed": true,
|
| 119 |
-
"cellView": "form"
|
| 120 |
-
"outputId": "8101e515-49f2-41d4-b03b-4195d56f50de",
|
| 121 |
-
"colab": {
|
| 122 |
-
"base_uri": "https://localhost:8080/"
|
| 123 |
-
}
|
| 124 |
},
|
| 125 |
-
"execution_count":
|
| 126 |
-
"outputs": [
|
| 127 |
-
{
|
| 128 |
-
"output_type": "stream",
|
| 129 |
-
"name": "stdout",
|
| 130 |
-
"text": [
|
| 131 |
-
"Cloning into 'sd_tokens'...\n",
|
| 132 |
-
"remote: Enumerating objects: 10, done.\u001b[K\n",
|
| 133 |
-
"remote: Counting objects: 100% (7/7), done.\u001b[K\n",
|
| 134 |
-
"remote: Compressing objects: 100% (7/7), done.\u001b[K\n",
|
| 135 |
-
"remote: Total 10 (delta 1), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
| 136 |
-
"Unpacking objects: 100% (10/10), 306.93 KiB | 1.19 MiB/s, done.\n",
|
| 137 |
-
"/content/sd_tokens\n"
|
| 138 |
-
]
|
| 139 |
-
}
|
| 140 |
-
]
|
| 141 |
},
|
| 142 |
{
|
| 143 |
"cell_type": "code",
|
|
@@ -306,7 +288,16 @@
|
|
| 306 |
{
|
| 307 |
"cell_type": "code",
|
| 308 |
"source": [
|
| 309 |
-
"# @title 🪐🖼️ -> 📝
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
"from google.colab import files\n",
|
| 311 |
"def upload_files():\n",
|
| 312 |
" from google.colab import files\n",
|
|
@@ -316,61 +307,80 @@
|
|
| 316 |
" return list(uploaded.keys())\n",
|
| 317 |
"#Get image\n",
|
| 318 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
| 319 |
-
"
|
|
|
|
|
|
|
|
|
|
| 320 |
"\n",
|
| 321 |
-
"
|
| 322 |
"from PIL import Image\n",
|
| 323 |
"import requests\n",
|
| 324 |
"image_A = \"\"\n",
|
| 325 |
"\n",
|
| 326 |
"#----#\n",
|
| 327 |
-
"if url == \"\":\n",
|
| 328 |
-
" import cv2\n",
|
| 329 |
-
" from google.colab.patches import cv2_imshow\n",
|
| 330 |
-
" # Open the image.\n",
|
| 331 |
-
" if colab_image_path == \"\":\n",
|
| 332 |
-
" keys = upload_files()\n",
|
| 333 |
-
" for key in keys:\n",
|
| 334 |
-
" image_A = cv2.imread(\"/content/sd_tokens/\" + key)\n",
|
| 335 |
-
" colab_image_path = \"/content/sd_tokens/\" + key\n",
|
| 336 |
-
" else:\n",
|
| 337 |
-
" image_A = cv2.imread(colab_image_path)\n",
|
| 338 |
-
"else:\n",
|
| 339 |
-
" image_A = Image.open(requests.get(url, stream=True).raw)\n",
|
| 340 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
"\n",
|
| 342 |
-
"
|
|
|
|
| 343 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 344 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 345 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 346 |
-
"
|
| 347 |
-
"
|
| 348 |
-
"
|
| 349 |
-
"
|
| 350 |
-
"
|
|
|
|
|
|
|
|
|
|
| 351 |
"#-----#\n",
|
| 352 |
"\n",
|
| 353 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 355 |
"must_contain = \"banana \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 356 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 357 |
"token_B = must_contain\n",
|
| 358 |
"\n",
|
| 359 |
-
"# @markdown
|
| 360 |
-
"
|
|
|
|
| 361 |
"start_search_at_ID = 27700 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
| 362 |
-
"search_range =
|
| 363 |
"restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
| 364 |
"\n",
|
| 365 |
-
"#
|
| 366 |
-
"min_char_size =
|
| 367 |
-
"char_range =
|
| 368 |
"\n",
|
| 369 |
-
"
|
| 370 |
-
"
|
| 371 |
-
"
|
| 372 |
-
"
|
| 373 |
-
"
|
| 374 |
"#-----#\n",
|
| 375 |
"name_B = must_contain\n",
|
| 376 |
"#-----#\n",
|
|
@@ -412,17 +422,29 @@
|
|
| 412 |
" if len(name_C) > min_char_size + char_range:\n",
|
| 413 |
" continue\n",
|
| 414 |
" #-----#\n",
|
| 415 |
-
"\n",
|
| 416 |
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
| 417 |
" if is_Prefix>0:\n",
|
| 418 |
" name_CB = must_start_with + ' ' + name_C.strip() + '-' + name_B.strip() + ' ' + must_end_with\n",
|
| 419 |
" #-----#\n",
|
| 420 |
-
"
|
| 421 |
-
"
|
| 422 |
-
"
|
| 423 |
-
"
|
| 424 |
-
"
|
| 425 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
" #-----#\n",
|
| 427 |
" if restrictions == \"Prefix only\":\n",
|
| 428 |
" result = sim_CB\n",
|
|
@@ -430,13 +452,23 @@
|
|
| 430 |
" dots[index] = result\n",
|
| 431 |
" continue\n",
|
| 432 |
" #-----#\n",
|
| 433 |
-
"
|
| 434 |
-
"
|
| 435 |
-
"
|
| 436 |
-
"
|
| 437 |
-
"
|
| 438 |
-
"
|
| 439 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
" #-----#\n",
|
| 441 |
"\n",
|
| 442 |
" result = sim_CB\n",
|
|
@@ -451,7 +483,9 @@
|
|
| 451 |
"\n",
|
| 452 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 453 |
"\n",
|
| 454 |
-
"
|
|
|
|
|
|
|
| 455 |
"list_size = 100 # @param {type:'number'}\n",
|
| 456 |
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 457 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
|
@@ -531,13 +565,25 @@
|
|
| 531 |
" #----#\n",
|
| 532 |
" ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 533 |
"\n",
|
| 534 |
-
"
|
| 535 |
-
"
|
| 536 |
-
"
|
| 537 |
-
"
|
| 538 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
" dots[index] = sim\n",
|
| 540 |
" names[index] = name\n",
|
|
|
|
|
|
|
| 541 |
"#------#\n",
|
| 542 |
"\n",
|
| 543 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
|
@@ -604,153 +650,6 @@
|
|
| 604 |
"id": "hyK423TQCRup"
|
| 605 |
}
|
| 606 |
},
|
| 607 |
-
{
|
| 608 |
-
"cell_type": "code",
|
| 609 |
-
"source": [
|
| 610 |
-
"# @title 🪐📝 Prompt to prompt : Add single token to existing prompt to match another prompt\n",
|
| 611 |
-
"# @markdown Write a text to match against...\n",
|
| 612 |
-
"prompt_A = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 613 |
-
"\n",
|
| 614 |
-
"# @markdown Set conditions for the output\n",
|
| 615 |
-
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 616 |
-
"must_contain = \"yellow\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 617 |
-
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 618 |
-
"token_B = must_contain\n",
|
| 619 |
-
"\n",
|
| 620 |
-
"# @markdown Limit the search\n",
|
| 621 |
-
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
| 622 |
-
"start_search_at_ID = 12500 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
| 623 |
-
"search_range = 500 # @param {type:\"slider\", min:0, max: 2000, step:100}\n",
|
| 624 |
-
"restrictions = 'Suffix only' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
| 625 |
-
"\n",
|
| 626 |
-
"# @markdown Limit char size of included token\n",
|
| 627 |
-
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 628 |
-
"char_range = 5 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 629 |
-
"\n",
|
| 630 |
-
"#Tokenize input B\n",
|
| 631 |
-
"from transformers import AutoTokenizer\n",
|
| 632 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 633 |
-
"tokenizer_output = tokenizer(text = token_B)\n",
|
| 634 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
| 635 |
-
"#-----#\n",
|
| 636 |
-
"name_B = must_contain\n",
|
| 637 |
-
"#-----#\n",
|
| 638 |
-
"\n",
|
| 639 |
-
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 640 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 641 |
-
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 642 |
-
"#-------#\n",
|
| 643 |
-
"ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 644 |
-
"text_encoding_A = model.get_text_features(**ids_A)\n",
|
| 645 |
-
"A = text_encoding_A[0]\n",
|
| 646 |
-
"_A = LA.vector_norm(A, ord=2)\n",
|
| 647 |
-
"name_A = prompt_A\n",
|
| 648 |
-
"print(f'a text_encoding was created for the prompt \"{prompt_A}\" ')\n",
|
| 649 |
-
"print('')\n",
|
| 650 |
-
"#----#\n",
|
| 651 |
-
"\n",
|
| 652 |
-
"START = start_search_at_ID\n",
|
| 653 |
-
"RANGE = min(search_range , 49407 - start_search_at_ID)\n",
|
| 654 |
-
"\n",
|
| 655 |
-
"dots = torch.zeros(RANGE)\n",
|
| 656 |
-
"is_BC = torch.zeros(RANGE)\n",
|
| 657 |
-
"for index in range(RANGE):\n",
|
| 658 |
-
" id_C = START + index\n",
|
| 659 |
-
" C = token[id_C]\n",
|
| 660 |
-
" _C = LA.vector_norm(C, ord=2)\n",
|
| 661 |
-
" name_C = vocab[id_C]\n",
|
| 662 |
-
"\n",
|
| 663 |
-
" # Decide if we should process prefix/suffix tokens\n",
|
| 664 |
-
" if name_C.find('</w>')<=-1:\n",
|
| 665 |
-
" if restrictions != \"Prefix only\":\n",
|
| 666 |
-
" continue\n",
|
| 667 |
-
" else:\n",
|
| 668 |
-
" if restrictions == \"Prefix only\":\n",
|
| 669 |
-
" continue\n",
|
| 670 |
-
" #-----#\n",
|
| 671 |
-
"\n",
|
| 672 |
-
" # Decide if char-size is within range\n",
|
| 673 |
-
" if len(name_C) < min_char_size:\n",
|
| 674 |
-
" continue\n",
|
| 675 |
-
" if len(name_C) > min_char_size + char_range:\n",
|
| 676 |
-
" continue\n",
|
| 677 |
-
" #-----#\n",
|
| 678 |
-
"\n",
|
| 679 |
-
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
| 680 |
-
" if restrictions == \"Prefix only\":\n",
|
| 681 |
-
" name_CB = must_start_with + name_C + '-' + name_B + must_end_with\n",
|
| 682 |
-
" #-----#\n",
|
| 683 |
-
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 684 |
-
" text_encoding_CB = model.get_text_features(**ids_CB)\n",
|
| 685 |
-
" CB = text_encoding_CB[0]\n",
|
| 686 |
-
" _CB = LA.vector_norm(CB, ord=2)\n",
|
| 687 |
-
" sim_CB = torch.dot(A,CB)/(_A*_CB)\n",
|
| 688 |
-
" #-----#\n",
|
| 689 |
-
" if restrictions == \"Prefix only\":\n",
|
| 690 |
-
" result = sim_CB\n",
|
| 691 |
-
" result = result.item()\n",
|
| 692 |
-
" dots[index] = result\n",
|
| 693 |
-
" continue\n",
|
| 694 |
-
" #-----#\n",
|
| 695 |
-
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
| 696 |
-
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 697 |
-
" text_encoding_BC = model.get_text_features(**ids_BC)\n",
|
| 698 |
-
" BC = text_encoding_BC[0]\n",
|
| 699 |
-
" _BC = LA.vector_norm(BC, ord=2)\n",
|
| 700 |
-
" sim_BC = torch.dot(A,BC)/(_A*_BC)\n",
|
| 701 |
-
" #-----#\n",
|
| 702 |
-
"\n",
|
| 703 |
-
" result = sim_CB\n",
|
| 704 |
-
" if(sim_BC > sim_CB):\n",
|
| 705 |
-
" is_BC[index] = 1\n",
|
| 706 |
-
" result = sim_BC\n",
|
| 707 |
-
"\n",
|
| 708 |
-
" #result = absolute_value(result.item())\n",
|
| 709 |
-
" result = result.item()\n",
|
| 710 |
-
" dots[index] = result\n",
|
| 711 |
-
"#----#\n",
|
| 712 |
-
"\n",
|
| 713 |
-
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 714 |
-
"\n",
|
| 715 |
-
"# @markdown Print options\n",
|
| 716 |
-
"list_size = 100 # @param {type:'number'}\n",
|
| 717 |
-
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 718 |
-
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 719 |
-
"print_Name = True # @param {type:\"boolean\"}\n",
|
| 720 |
-
"print_Divider = True # @param {type:\"boolean\"}\n",
|
| 721 |
-
"\n",
|
| 722 |
-
"\n",
|
| 723 |
-
"if (print_Divider):\n",
|
| 724 |
-
" print('//---//')\n",
|
| 725 |
-
"\n",
|
| 726 |
-
"print('')\n",
|
| 727 |
-
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for the prompt \"{prompt_A}\" : ')\n",
|
| 728 |
-
"print('')\n",
|
| 729 |
-
"\n",
|
| 730 |
-
"for index in range(min(list_size,RANGE)):\n",
|
| 731 |
-
" id = START + indices[index].item()\n",
|
| 732 |
-
" if (print_Name):\n",
|
| 733 |
-
" if(is_BC[index]>0):\n",
|
| 734 |
-
" print(must_start_with + name_B + vocab[id] + must_end_with)\n",
|
| 735 |
-
" else:\n",
|
| 736 |
-
" if restrictions == \"Prefix only\":\n",
|
| 737 |
-
" print(must_start_with + vocab[id] + '-' + name_B + must_end_with)\n",
|
| 738 |
-
" else:\n",
|
| 739 |
-
" print(must_start_with + vocab[id] + name_B + must_end_with)\n",
|
| 740 |
-
" if (print_ID):\n",
|
| 741 |
-
" print(f'ID = {id}') # IDs\n",
|
| 742 |
-
" if (print_Similarity):\n",
|
| 743 |
-
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
| 744 |
-
" if (print_Divider):\n",
|
| 745 |
-
" print('--------')"
|
| 746 |
-
],
|
| 747 |
-
"metadata": {
|
| 748 |
-
"cellView": "form",
|
| 749 |
-
"id": "uDtcm-l8UCJk"
|
| 750 |
-
},
|
| 751 |
-
"execution_count": null,
|
| 752 |
-
"outputs": []
|
| 753 |
-
},
|
| 754 |
{
|
| 755 |
"cell_type": "markdown",
|
| 756 |
"source": [
|
|
|
|
| 116 |
"metadata": {
|
| 117 |
"id": "Ch9puvwKH1s3",
|
| 118 |
"collapsed": true,
|
| 119 |
+
"cellView": "form"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
},
|
| 121 |
+
"execution_count": null,
|
| 122 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
},
|
| 124 |
{
|
| 125 |
"cell_type": "code",
|
|
|
|
| 288 |
{
|
| 289 |
"cell_type": "code",
|
| 290 |
"source": [
|
| 291 |
+
"# @title 🪐🖼️ -> 📝 Slow Recursive Token Image interrogator\n",
|
| 292 |
+
"\n",
|
| 293 |
+
"# @markdown # What do you want to to mimic?\n",
|
| 294 |
+
"use = '🖼️image_encoding from image' # @param ['📝text_encoding from prompt', '🖼️image_encoding from image']\n",
|
| 295 |
+
"# @markdown --------------------------\n",
|
| 296 |
+
"use_token_padding = True # param {type:\"boolean\"} <---- Enabled by default\n",
|
| 297 |
+
"prompt = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"prompt_A = prompt\n",
|
| 300 |
+
"\n",
|
| 301 |
"from google.colab import files\n",
|
| 302 |
"def upload_files():\n",
|
| 303 |
" from google.colab import files\n",
|
|
|
|
| 307 |
" return list(uploaded.keys())\n",
|
| 308 |
"#Get image\n",
|
| 309 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
| 310 |
+
"image_url = \"http://images.cocodataset.org/val2017/000000039769.jpg\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n",
|
| 311 |
+
"\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"colab_image_path = \"\" # @param {\"type\":\"string\",\"placeholder\": \"eval. as '/content/sd_tokens/' + **your input**\"}\n",
|
| 314 |
"\n",
|
| 315 |
+
"# @markdown --------------------------\n",
|
| 316 |
"from PIL import Image\n",
|
| 317 |
"import requests\n",
|
| 318 |
"image_A = \"\"\n",
|
| 319 |
"\n",
|
| 320 |
"#----#\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
"\n",
|
| 322 |
+
"if(use == '🖼️image_encoding from image'):\n",
|
| 323 |
+
" if image_url == \"\":\n",
|
| 324 |
+
" import cv2\n",
|
| 325 |
+
" from google.colab.patches import cv2_imshow\n",
|
| 326 |
+
" # Open the image.\n",
|
| 327 |
+
" if colab_image_path == \"\":\n",
|
| 328 |
+
" keys = upload_files()\n",
|
| 329 |
+
" for key in keys:\n",
|
| 330 |
+
" image_A = cv2.imread(\"/content/sd_tokens/\" + key)\n",
|
| 331 |
+
" colab_image_path = \"/content/sd_tokens/\" + key\n",
|
| 332 |
+
" else:\n",
|
| 333 |
+
" image_A = cv2.imread(\"/content/sd_tokens/\" + colab_image_path)\n",
|
| 334 |
+
" else:\n",
|
| 335 |
+
" image_A = Image.open(requests.get(image_url, stream=True).raw)\n",
|
| 336 |
+
"#------#\n",
|
| 337 |
"\n",
|
| 338 |
+
"from transformers import AutoTokenizer\n",
|
| 339 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 340 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 341 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 342 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 343 |
+
"\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"if(use == '🖼️image_encoding from image'):\n",
|
| 346 |
+
" # Get image features\n",
|
| 347 |
+
" inputs = processor(images=image_A, return_tensors=\"pt\")\n",
|
| 348 |
+
" image_features = model.get_image_features(**inputs)\n",
|
| 349 |
+
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 350 |
+
" name_A = \"the image\"\n",
|
| 351 |
"#-----#\n",
|
| 352 |
"\n",
|
| 353 |
+
"\n",
|
| 354 |
+
"if(use == '📝text_encoding from prompt'):\n",
|
| 355 |
+
" # Get text features\n",
|
| 356 |
+
" inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
| 357 |
+
" text_features_A = model.get_text_features(**inputs)\n",
|
| 358 |
+
" name_A = prompt\n",
|
| 359 |
+
"#-----#\n",
|
| 360 |
+
"\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"# @markdown # The output...\n",
|
| 363 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 364 |
"must_contain = \"banana \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 365 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
| 366 |
"token_B = must_contain\n",
|
| 367 |
"\n",
|
| 368 |
+
"# @markdown -----\n",
|
| 369 |
+
"\n",
|
| 370 |
+
"# @markdown # Use a range of tokens from the vocab.json (slow method)\n",
|
| 371 |
"start_search_at_ID = 27700 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
| 372 |
+
"search_range = 100 # @param {type:\"slider\", min:100, max: 2000, step:0}\n",
|
| 373 |
"restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
| 374 |
"\n",
|
| 375 |
+
"#markdown Limit char size of included token <----- Disabled\n",
|
| 376 |
+
"min_char_size = 0 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
| 377 |
+
"char_range = 50 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
| 378 |
"\n",
|
| 379 |
+
"\n",
|
| 380 |
+
"# markdown # ...or paste prompt items\n",
|
| 381 |
+
"# markdown Format must be {item1|item2|...}. You can aquire prompt items using the Randomizer in the fusion gen: https://perchance.org/fusion-ai-image-generator\n",
|
| 382 |
+
"_enable = False # param {\"type\":\"boolean\"}\n",
|
| 383 |
+
"prompt_items = \"\" # param {\"type\":\"string\",\"placeholder\":\"{item1|item2|...}\"}\n",
|
| 384 |
"#-----#\n",
|
| 385 |
"name_B = must_contain\n",
|
| 386 |
"#-----#\n",
|
|
|
|
| 422 |
" if len(name_C) > min_char_size + char_range:\n",
|
| 423 |
" continue\n",
|
| 424 |
" #-----#\n",
|
|
|
|
| 425 |
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
| 426 |
" if is_Prefix>0:\n",
|
| 427 |
" name_CB = must_start_with + ' ' + name_C.strip() + '-' + name_B.strip() + ' ' + must_end_with\n",
|
| 428 |
" #-----#\n",
|
| 429 |
+
"\n",
|
| 430 |
+
" if(use == '🖼️image_encoding from image'):\n",
|
| 431 |
+
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 432 |
+
" text_features = model.get_text_features(**ids_CB)\n",
|
| 433 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 434 |
+
" logit_scale = model.logit_scale.exp()\n",
|
| 435 |
+
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
| 436 |
+
" sim_CB = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
| 437 |
+
" #-----#\n",
|
| 438 |
+
"\n",
|
| 439 |
+
" if(use == '📝text_encoding from prompt'):\n",
|
| 440 |
+
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 441 |
+
" text_features = model.get_text_features(**ids_CB)\n",
|
| 442 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 443 |
+
" sim_CB = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
| 444 |
+
" #-----#\n",
|
| 445 |
+
"\n",
|
| 446 |
+
"\n",
|
| 447 |
+
"\n",
|
| 448 |
" #-----#\n",
|
| 449 |
" if restrictions == \"Prefix only\":\n",
|
| 450 |
" result = sim_CB\n",
|
|
|
|
| 452 |
" dots[index] = result\n",
|
| 453 |
" continue\n",
|
| 454 |
" #-----#\n",
|
| 455 |
+
"\n",
|
| 456 |
+
" if(use == '🖼️image_encoding from image'):\n",
|
| 457 |
+
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
| 458 |
+
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 459 |
+
" text_features = model.get_text_features(**ids_BC)\n",
|
| 460 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 461 |
+
" logit_scale = model.logit_scale.exp()\n",
|
| 462 |
+
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
| 463 |
+
" sim_BC = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
| 464 |
+
" #-----#\n",
|
| 465 |
+
"\n",
|
| 466 |
+
" if(use == '📝text_encoding from prompt'):\n",
|
| 467 |
+
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
| 468 |
+
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 469 |
+
" text_features = model.get_text_features(**ids_BC)\n",
|
| 470 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 471 |
+
" sim_BC = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
| 472 |
" #-----#\n",
|
| 473 |
"\n",
|
| 474 |
" result = sim_CB\n",
|
|
|
|
| 483 |
"\n",
|
| 484 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 485 |
"\n",
|
| 486 |
+
"\n",
|
| 487 |
+
"# @markdown ----------\n",
|
| 488 |
+
"# @markdown # Print options\n",
|
| 489 |
"list_size = 100 # @param {type:'number'}\n",
|
| 490 |
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 491 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
|
|
|
| 565 |
" #----#\n",
|
| 566 |
" ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n",
|
| 567 |
"\n",
|
| 568 |
+
" if(use == '🖼️image_encoding from image'):\n",
|
| 569 |
+
" text_features = model.get_text_features(**ids)\n",
|
| 570 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 571 |
+
" logit_scale = model.logit_scale.exp()\n",
|
| 572 |
+
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
| 573 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
| 574 |
+
" #-----#\n",
|
| 575 |
+
"\n",
|
| 576 |
+
" if(use == '📝text_encoding from prompt'):\n",
|
| 577 |
+
" text_features = model.get_text_features(**ids)\n",
|
| 578 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
| 579 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
| 580 |
+
" #-----#\n",
|
| 581 |
+
"\n",
|
| 582 |
+
"\n",
|
| 583 |
" dots[index] = sim\n",
|
| 584 |
" names[index] = name\n",
|
| 585 |
+
"\n",
|
| 586 |
+
"\n",
|
| 587 |
"#------#\n",
|
| 588 |
"\n",
|
| 589 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
|
|
|
| 650 |
"id": "hyK423TQCRup"
|
| 651 |
}
|
| 652 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 653 |
{
|
| 654 |
"cell_type": "markdown",
|
| 655 |
"source": [
|