Upload pt_to_safetensors_converter.ipynb
Browse files
pt_to_safetensors_converter.ipynb
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
},
|
| 15 |
+
"widgets": {
|
| 16 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 17 |
+
"a44dd6024769456a8262a17b0ce6a2ed": {
|
| 18 |
+
"model_module": "@jupyter-widgets/controls",
|
| 19 |
+
"model_name": "ButtonModel",
|
| 20 |
+
"model_module_version": "1.5.0",
|
| 21 |
+
"state": {
|
| 22 |
+
"_dom_classes": [],
|
| 23 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 24 |
+
"_model_module_version": "1.5.0",
|
| 25 |
+
"_model_name": "ButtonModel",
|
| 26 |
+
"_view_count": null,
|
| 27 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 28 |
+
"_view_module_version": "1.5.0",
|
| 29 |
+
"_view_name": "ButtonView",
|
| 30 |
+
"button_style": "success",
|
| 31 |
+
"description": "✔ Done",
|
| 32 |
+
"disabled": true,
|
| 33 |
+
"icon": "",
|
| 34 |
+
"layout": "IPY_MODEL_49441085d85a4f219a6ccbf2a197f527",
|
| 35 |
+
"style": "IPY_MODEL_f084b7dfcae445a58d36a9c21971793c",
|
| 36 |
+
"tooltip": ""
|
| 37 |
+
}
|
| 38 |
+
},
|
| 39 |
+
"49441085d85a4f219a6ccbf2a197f527": {
|
| 40 |
+
"model_module": "@jupyter-widgets/base",
|
| 41 |
+
"model_name": "LayoutModel",
|
| 42 |
+
"model_module_version": "1.2.0",
|
| 43 |
+
"state": {
|
| 44 |
+
"_model_module": "@jupyter-widgets/base",
|
| 45 |
+
"_model_module_version": "1.2.0",
|
| 46 |
+
"_model_name": "LayoutModel",
|
| 47 |
+
"_view_count": null,
|
| 48 |
+
"_view_module": "@jupyter-widgets/base",
|
| 49 |
+
"_view_module_version": "1.2.0",
|
| 50 |
+
"_view_name": "LayoutView",
|
| 51 |
+
"align_content": null,
|
| 52 |
+
"align_items": null,
|
| 53 |
+
"align_self": null,
|
| 54 |
+
"border": null,
|
| 55 |
+
"bottom": null,
|
| 56 |
+
"display": null,
|
| 57 |
+
"flex": null,
|
| 58 |
+
"flex_flow": null,
|
| 59 |
+
"grid_area": null,
|
| 60 |
+
"grid_auto_columns": null,
|
| 61 |
+
"grid_auto_flow": null,
|
| 62 |
+
"grid_auto_rows": null,
|
| 63 |
+
"grid_column": null,
|
| 64 |
+
"grid_gap": null,
|
| 65 |
+
"grid_row": null,
|
| 66 |
+
"grid_template_areas": null,
|
| 67 |
+
"grid_template_columns": null,
|
| 68 |
+
"grid_template_rows": null,
|
| 69 |
+
"height": null,
|
| 70 |
+
"justify_content": null,
|
| 71 |
+
"justify_items": null,
|
| 72 |
+
"left": null,
|
| 73 |
+
"margin": null,
|
| 74 |
+
"max_height": null,
|
| 75 |
+
"max_width": null,
|
| 76 |
+
"min_height": null,
|
| 77 |
+
"min_width": "50px",
|
| 78 |
+
"object_fit": null,
|
| 79 |
+
"object_position": null,
|
| 80 |
+
"order": null,
|
| 81 |
+
"overflow": null,
|
| 82 |
+
"overflow_x": null,
|
| 83 |
+
"overflow_y": null,
|
| 84 |
+
"padding": null,
|
| 85 |
+
"right": null,
|
| 86 |
+
"top": null,
|
| 87 |
+
"visibility": null,
|
| 88 |
+
"width": null
|
| 89 |
+
}
|
| 90 |
+
},
|
| 91 |
+
"f084b7dfcae445a58d36a9c21971793c": {
|
| 92 |
+
"model_module": "@jupyter-widgets/controls",
|
| 93 |
+
"model_name": "ButtonStyleModel",
|
| 94 |
+
"model_module_version": "1.5.0",
|
| 95 |
+
"state": {
|
| 96 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 97 |
+
"_model_module_version": "1.5.0",
|
| 98 |
+
"_model_name": "ButtonStyleModel",
|
| 99 |
+
"_view_count": null,
|
| 100 |
+
"_view_module": "@jupyter-widgets/base",
|
| 101 |
+
"_view_module_version": "1.2.0",
|
| 102 |
+
"_view_name": "StyleView",
|
| 103 |
+
"button_color": null,
|
| 104 |
+
"font_weight": ""
|
| 105 |
+
}
|
| 106 |
+
}
|
| 107 |
+
}
|
| 108 |
+
}
|
| 109 |
+
},
|
| 110 |
+
"cells": [
|
| 111 |
+
{
|
| 112 |
+
"cell_type": "code",
|
| 113 |
+
"source": [
|
| 114 |
+
"#@title Mount Google Drive\n",
|
| 115 |
+
"from google.colab import drive\n",
|
| 116 |
+
"from IPython.display import clear_output\n",
|
| 117 |
+
"from IPython.display import display\n",
|
| 118 |
+
"import ipywidgets as widgets\n",
|
| 119 |
+
"import os\n",
|
| 120 |
+
"\n",
|
| 121 |
+
"def inf(msg, style, wdth): inf = widgets.Button(description=msg, disabled=True, button_style=style, layout=widgets.Layout(min_width=wdth));display(inf)\n",
|
| 122 |
+
"Shared_Drive = \"\" #@param {type:\"string\"}\n",
|
| 123 |
+
"#@markdown - If you're not using a shared drive, leave this empty\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"print(\"\u001b[0;33mConnecting...\")\n",
|
| 126 |
+
"drive.mount('/content/gdrive')\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"if Shared_Drive!=\"\" and os.path.exists(\"/content/gdrive/Shareddrives\"):\n",
|
| 129 |
+
" mainpth=\"Shareddrives/\"+Shared_Drive\n",
|
| 130 |
+
"else:\n",
|
| 131 |
+
" mainpth=\"MyDrive\"\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"clear_output()\n",
|
| 134 |
+
"inf('\\u2714 Done','success', '50px')"
|
| 135 |
+
],
|
| 136 |
+
"metadata": {
|
| 137 |
+
"id": "fCR2boKCTx0z",
|
| 138 |
+
"cellView": "form",
|
| 139 |
+
"outputId": "baf6303f-9850-4dd2-a6d3-86871ac8aef5",
|
| 140 |
+
"colab": {
|
| 141 |
+
"base_uri": "https://localhost:8080/",
|
| 142 |
+
"height": 49,
|
| 143 |
+
"referenced_widgets": [
|
| 144 |
+
"a44dd6024769456a8262a17b0ce6a2ed",
|
| 145 |
+
"49441085d85a4f219a6ccbf2a197f527",
|
| 146 |
+
"f084b7dfcae445a58d36a9c21971793c"
|
| 147 |
+
]
|
| 148 |
+
}
|
| 149 |
+
},
|
| 150 |
+
"execution_count": null,
|
| 151 |
+
"outputs": [
|
| 152 |
+
{
|
| 153 |
+
"output_type": "display_data",
|
| 154 |
+
"data": {
|
| 155 |
+
"text/plain": [
|
| 156 |
+
"Button(button_style='success', description='✔ Done', disabled=True, layout=Layout(min_width='50px'), style=But…"
|
| 157 |
+
],
|
| 158 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 159 |
+
"version_major": 2,
|
| 160 |
+
"version_minor": 0,
|
| 161 |
+
"model_id": "a44dd6024769456a8262a17b0ce6a2ed"
|
| 162 |
+
}
|
| 163 |
+
},
|
| 164 |
+
"metadata": {}
|
| 165 |
+
}
|
| 166 |
+
]
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
"cell_type": "code",
|
| 170 |
+
"source": [
|
| 171 |
+
"#@title Install Required Dependencies\n",
|
| 172 |
+
"!pip install torch\n",
|
| 173 |
+
"!pip install safetensors\n",
|
| 174 |
+
"!pip install pytorch-lightning"
|
| 175 |
+
],
|
| 176 |
+
"metadata": {
|
| 177 |
+
"id": "5S88gkUJzeqG"
|
| 178 |
+
},
|
| 179 |
+
"execution_count": null,
|
| 180 |
+
"outputs": []
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"cell_type": "code",
|
| 184 |
+
"source": [
|
| 185 |
+
"def inf(msg, style, wdth): inf = widgets.Button(description=msg, disabled=True, button_style=style, layout=widgets.Layout(min_width=wdth));display(inf)\n",
|
| 186 |
+
"file_path = \"\" #@param {type:\"string\"}\n",
|
| 187 |
+
"#@markdown - Copy and paste the path to an embedding or VAE file that you are converting, or a directory containing several files\n",
|
| 188 |
+
"#@markdown - For example: /content/gdrive/MyDrive/myembedding.pt or /content/gdrive/MyDrive/my_directory\n",
|
| 189 |
+
"#@markdown - Pickle files must be in .pt format\n",
|
| 190 |
+
"verbose=True"
|
| 191 |
+
],
|
| 192 |
+
"metadata": {
|
| 193 |
+
"id": "7aLFC6c4O5EW"
|
| 194 |
+
},
|
| 195 |
+
"execution_count": null,
|
| 196 |
+
"outputs": []
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"source": [
|
| 201 |
+
"#@title Define Converter Functions\n",
|
| 202 |
+
"import os\n",
|
| 203 |
+
"from typing import Any, Dict\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"import torch\n",
|
| 206 |
+
"from safetensors.torch import save_file\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
| 209 |
+
"\n",
|
| 210 |
+
"def process_pt_files(path: str, model_type: str, verbose=True) -> None:\n",
|
| 211 |
+
" if os.path.isdir(path):\n",
|
| 212 |
+
" # Path is a directory, process all .pt files in the directory\n",
|
| 213 |
+
" for file_name in os.listdir(path):\n",
|
| 214 |
+
" if file_name.endswith('.pt'):\n",
|
| 215 |
+
" process_file(os.path.join(path, file_name), model_type, verbose)\n",
|
| 216 |
+
" elif os.path.isfile(path) and path.endswith('.pt'):\n",
|
| 217 |
+
" # Path is a .pt file, process this file\n",
|
| 218 |
+
" process_file(path, model_type, verbose)\n",
|
| 219 |
+
" else:\n",
|
| 220 |
+
" print(f\"{path} is not a valid directory or .pt file.\")\n",
|
| 221 |
+
"\n",
|
| 222 |
+
"def process_file(file_path: str, model_type: str, verbose: bool) -> None:\n",
|
| 223 |
+
" # Load the PyTorch model\n",
|
| 224 |
+
" model = torch.load(file_path, map_location=device)\n",
|
| 225 |
+
"\n",
|
| 226 |
+
" if verbose:\n",
|
| 227 |
+
" print(file_path)\n",
|
| 228 |
+
"\n",
|
| 229 |
+
" if model_type == 'embedding':\n",
|
| 230 |
+
" s_model = process_embedding_file(model, verbose)\n",
|
| 231 |
+
" elif model_type == 'vae':\n",
|
| 232 |
+
" s_model = process_vae_file(model, verbose)\n",
|
| 233 |
+
" else:\n",
|
| 234 |
+
" raise Exception(f\"model_type `{model_type}` is not supported!\")\n",
|
| 235 |
+
"\n",
|
| 236 |
+
" # Save the model with the new extension\n",
|
| 237 |
+
" if file_path.endswith('.pt'):\n",
|
| 238 |
+
" new_file_path = file_path[:-3] + '.safetensors'\n",
|
| 239 |
+
" else:\n",
|
| 240 |
+
" new_file_path = file_path + '.safetensors'\n",
|
| 241 |
+
" save_file(s_model, new_file_path)\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"def process_embedding_file(model: Dict[str, Any], verbose: bool) -> Dict[str, torch.Tensor]:\n",
|
| 244 |
+
" # Extract the embedding tensors\n",
|
| 245 |
+
" model_tensors = model.get('string_to_param').get('*')\n",
|
| 246 |
+
" s_model = {\n",
|
| 247 |
+
" 'emb_params': model_tensors\n",
|
| 248 |
+
" }\n",
|
| 249 |
+
"\n",
|
| 250 |
+
" if verbose:\n",
|
| 251 |
+
" # Print the requested training information, if it exists\n",
|
| 252 |
+
" if ('sd_checkpoint_name' in model) and (model['sd_checkpoint_name'] is not None):\n",
|
| 253 |
+
" print(f\"Trained on {model['sd_checkpoint_name']}.\")\n",
|
| 254 |
+
" else:\n",
|
| 255 |
+
" print(\"Checkpoint name not found in the model.\")\n",
|
| 256 |
+
"\n",
|
| 257 |
+
" if ('step' in model) and (model['step'] is not None):\n",
|
| 258 |
+
" print(f\"Trained for {model['step']} steps.\")\n",
|
| 259 |
+
" else:\n",
|
| 260 |
+
" print(\"Step not found in the model.\")\n",
|
| 261 |
+
" # Display the tensor's shape\n",
|
| 262 |
+
" print(f\"Dimensions of embedding tensor: {model_tensors.shape}\")\n",
|
| 263 |
+
" print()\n",
|
| 264 |
+
"\n",
|
| 265 |
+
" return s_model\n",
|
| 266 |
+
"\n",
|
| 267 |
+
"def process_vae_file(model: Dict[str, Any], verbose: bool) -> Dict[str, torch.Tensor]:\n",
|
| 268 |
+
" # Extract the state dictionary\n",
|
| 269 |
+
" s_model = model[\"state_dict\"]\n",
|
| 270 |
+
" if verbose:\n",
|
| 271 |
+
" # Print the requested training information, if it exists\n",
|
| 272 |
+
" step = model.get('step', model.get('global_step'))\n",
|
| 273 |
+
" if step is not None:\n",
|
| 274 |
+
" print(f\"Trained for {step} steps.\")\n",
|
| 275 |
+
" else:\n",
|
| 276 |
+
" print(\"Step not found in the model.\")\n",
|
| 277 |
+
" print()\n",
|
| 278 |
+
" return s_model"
|
| 279 |
+
],
|
| 280 |
+
"metadata": {
|
| 281 |
+
"id": "UwH1lXmGw9XP"
|
| 282 |
+
},
|
| 283 |
+
"execution_count": null,
|
| 284 |
+
"outputs": []
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"cell_type": "markdown",
|
| 288 |
+
"source": [
|
| 289 |
+
"## Convert the file(s)\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"Run whichever of the two following code blocks corresponds to the type of file you are converting.\n",
|
| 292 |
+
"\n",
|
| 293 |
+
"The converted Safetensor file will be saved in the same directory as the original."
|
| 294 |
+
],
|
| 295 |
+
"metadata": {
|
| 296 |
+
"id": "LqEl4sM0sMPG"
|
| 297 |
+
}
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"cell_type": "code",
|
| 301 |
+
"source": [
|
| 302 |
+
"#@title Convert the Embedding(s)\n",
|
| 303 |
+
"process_pt_files(file_path, 'embedding', verbose=verbose)"
|
| 304 |
+
],
|
| 305 |
+
"metadata": {
|
| 306 |
+
"id": "4LEWGfjiUeG1",
|
| 307 |
+
"cellView": "form"
|
| 308 |
+
},
|
| 309 |
+
"execution_count": null,
|
| 310 |
+
"outputs": []
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"cell_type": "code",
|
| 314 |
+
"source": [
|
| 315 |
+
"#@title Convert the VAE(s)\n",
|
| 316 |
+
"process_pt_files(file_path, 'vae', verbose=verbose)"
|
| 317 |
+
],
|
| 318 |
+
"metadata": {
|
| 319 |
+
"id": "Jil7A1ckyiHA",
|
| 320 |
+
"cellView": "form"
|
| 321 |
+
},
|
| 322 |
+
"execution_count": null,
|
| 323 |
+
"outputs": []
|
| 324 |
+
}
|
| 325 |
+
]
|
| 326 |
+
}
|