Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +436 -314
sd_token_similarity_calculator.ipynb
CHANGED
|
@@ -122,10 +122,30 @@
|
|
| 122 |
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n"
|
| 123 |
],
|
| 124 |
"metadata": {
|
| 125 |
-
"id": "rUXQ73IbonHY"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
},
|
| 127 |
-
"execution_count":
|
| 128 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
},
|
| 130 |
{
|
| 131 |
"cell_type": "code",
|
|
@@ -209,7 +229,7 @@
|
|
| 209 |
"base_uri": "https://localhost:8080/"
|
| 210 |
}
|
| 211 |
},
|
| 212 |
-
"execution_count":
|
| 213 |
"outputs": [
|
| 214 |
{
|
| 215 |
"output_type": "stream",
|
|
@@ -487,7 +507,7 @@
|
|
| 487 |
"metadata": {
|
| 488 |
"id": "xc-PbIYF428y"
|
| 489 |
},
|
| 490 |
-
"execution_count":
|
| 491 |
"outputs": []
|
| 492 |
},
|
| 493 |
{
|
|
@@ -541,7 +561,7 @@
|
|
| 541 |
"base_uri": "https://localhost:8080/"
|
| 542 |
}
|
| 543 |
},
|
| 544 |
-
"execution_count":
|
| 545 |
"outputs": [
|
| 546 |
{
|
| 547 |
"output_type": "stream",
|
|
@@ -921,6 +941,161 @@
|
|
| 921 |
}
|
| 922 |
]
|
| 923 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 924 |
{
|
| 925 |
"cell_type": "code",
|
| 926 |
"source": [
|
|
@@ -1240,330 +1415,34 @@
|
|
| 1240 |
{
|
| 1241 |
"cell_type": "code",
|
| 1242 |
"source": [
|
| 1243 |
-
"# @title
|
| 1244 |
-
"
|
| 1245 |
-
"
|
| 1246 |
-
"use_token_padding = True # param {type:\"boolean\"} <----- Enabled by default\n",
|
| 1247 |
-
"#-----#\n",
|
| 1248 |
-
"from transformers import AutoTokenizer\n",
|
| 1249 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\",\n",
|
| 1250 |
-
"clean_up_tokenization_spaces = False)\n",
|
| 1251 |
-
"#-----#\n",
|
| 1252 |
-
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 1253 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 1254 |
-
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 1255 |
-
"#----#\n",
|
| 1256 |
-
"inputs = tokenizer(text = prompt_A, padding=True, return_tensors=\"pt\")\n",
|
| 1257 |
-
"text_features_A = model.get_text_features(**inputs)\n",
|
| 1258 |
-
"text_features_A = text_features_A / text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1259 |
-
"name_A = prompt_A\n",
|
| 1260 |
-
"#----#\n",
|
| 1261 |
-
"inputs = tokenizer(text = prompt_B, padding=True, return_tensors=\"pt\")\n",
|
| 1262 |
-
"text_features_B = model.get_text_features(**inputs)\n",
|
| 1263 |
-
"text_features_B = text_features_B / text_features_B.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1264 |
-
"name_B = prompt_B\n",
|
| 1265 |
-
"#----#\n",
|
| 1266 |
-
"import torch\n",
|
| 1267 |
-
"sim_AB = torch.nn.functional.cosine_similarity(text_features_A, text_features_B)\n",
|
| 1268 |
-
"#----#\n",
|
| 1269 |
-
"print(f'The similarity between the text_encoding for A:\"{prompt_A}\" and B: \"{prompt_B}\" is {round(sim_AB.item()*100,2)} %')"
|
| 1270 |
],
|
| 1271 |
"metadata": {
|
| 1272 |
-
"id": "
|
| 1273 |
-
"collapsed": true,
|
| 1274 |
-
"cellView": "form"
|
| 1275 |
},
|
| 1276 |
"execution_count": null,
|
| 1277 |
"outputs": []
|
| 1278 |
},
|
| 1279 |
{
|
| 1280 |
-
"cell_type": "
|
| 1281 |
"source": [
|
| 1282 |
-
"# @title ⚡ Get similiar tokens (not updated yet)\n",
|
| 1283 |
-
"import torch\n",
|
| 1284 |
-
"from transformers import AutoTokenizer\n",
|
| 1285 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 1286 |
"\n",
|
| 1287 |
-
"# @markdown Write name of token to match against\n",
|
| 1288 |
-
"token_name = \"banana \" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
| 1289 |
"\n",
|
| 1290 |
-
"
|
| 1291 |
-
"# @markdown (optional) Mix the token with something else\n",
|
| 1292 |
-
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
| 1293 |
-
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
| 1294 |
-
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
| 1295 |
-
"# @markdown Limit char size of included token\n",
|
| 1296 |
"\n",
|
| 1297 |
-
"
|
| 1298 |
-
"char_range = 50 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 1299 |
"\n",
|
| 1300 |
-
"
|
| 1301 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
| 1302 |
-
"id_A = input_ids[1]\n",
|
| 1303 |
-
"A = torch.tensor(token[id_A])\n",
|
| 1304 |
-
"A = A/A.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1305 |
-
"#-----#\n",
|
| 1306 |
-
"tokenizer_output = tokenizer(text = mix_with)\n",
|
| 1307 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
| 1308 |
-
"id_C = input_ids[1]\n",
|
| 1309 |
-
"C = torch.tensor(token[id_C])\n",
|
| 1310 |
-
"C = C/C.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1311 |
-
"#-----#\n",
|
| 1312 |
-
"sim_AC = torch.dot(A,C)\n",
|
| 1313 |
-
"#-----#\n",
|
| 1314 |
-
"print(input_ids)\n",
|
| 1315 |
-
"#-----#\n",
|
| 1316 |
"\n",
|
| 1317 |
-
"
|
| 1318 |
-
"if (prompt == \"\"):\n",
|
| 1319 |
-
" id_A = -1\n",
|
| 1320 |
-
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
| 1321 |
-
" R = torch.rand(A.shape)\n",
|
| 1322 |
-
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1323 |
-
" A = R\n",
|
| 1324 |
-
" name_A = 'random_A'\n",
|
| 1325 |
"\n",
|
| 1326 |
-
"
|
| 1327 |
-
"if (mix_with == \"\"):\n",
|
| 1328 |
-
" id_C = -1\n",
|
| 1329 |
-
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
| 1330 |
-
" R = torch.rand(A.shape)\n",
|
| 1331 |
-
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1332 |
-
" C = R\n",
|
| 1333 |
-
" name_C = 'random_C'\n",
|
| 1334 |
"\n",
|
| 1335 |
-
"
|
| 1336 |
-
"if (id_A>-1):\n",
|
| 1337 |
-
" name_A = vocab(id_A)\n",
|
| 1338 |
"\n",
|
| 1339 |
-
"
|
| 1340 |
-
"if (id_C>-1):\n",
|
| 1341 |
-
" name_C = vocab(id_C)\n",
|
| 1342 |
-
"\n",
|
| 1343 |
-
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n",
|
| 1344 |
-
"\n",
|
| 1345 |
-
"if (mix_method == \"None\"):\n",
|
| 1346 |
-
" print(\"No operation\")\n",
|
| 1347 |
-
"\n",
|
| 1348 |
-
"if (mix_method == \"Average\"):\n",
|
| 1349 |
-
" A = w*A + (1-w)*C\n",
|
| 1350 |
-
" _A = LA.vector_norm(A, ord=2)\n",
|
| 1351 |
-
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n",
|
| 1352 |
-
"\n",
|
| 1353 |
-
"if (mix_method == \"Subtract\"):\n",
|
| 1354 |
-
" tmp = w*A - (1-w)*C\n",
|
| 1355 |
-
" tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1356 |
-
" A = tmp\n",
|
| 1357 |
-
" #//---//\n",
|
| 1358 |
-
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
| 1359 |
-
"\n",
|
| 1360 |
-
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
| 1361 |
-
"\n",
|
| 1362 |
-
"dots = torch.zeros(NUM_TOKENS)\n",
|
| 1363 |
-
"for index in range(NUM_TOKENS):\n",
|
| 1364 |
-
" id_B = index\n",
|
| 1365 |
-
" B = torch.tensor(token[id_B])\n",
|
| 1366 |
-
" B = B/B.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1367 |
-
" sim_AB = torch.dot(A,B)\n",
|
| 1368 |
-
" dots[index] = sim_AB\n",
|
| 1369 |
-
"\n",
|
| 1370 |
-
"\n",
|
| 1371 |
-
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 1372 |
-
"#----#\n",
|
| 1373 |
-
"if (mix_method == \"Average\"):\n",
|
| 1374 |
-
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
| 1375 |
-
"if (mix_method == \"Subtract\"):\n",
|
| 1376 |
-
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
| 1377 |
-
"if (mix_method == \"None\"):\n",
|
| 1378 |
-
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
|
| 1379 |
-
"\n",
|
| 1380 |
-
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
|
| 1381 |
-
"\n",
|
| 1382 |
-
"# @markdown Set print options\n",
|
| 1383 |
-
"list_size = 100 # @param {type:'number'}\n",
|
| 1384 |
-
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 1385 |
-
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 1386 |
-
"print_Name = True # @param {type:\"boolean\"}\n",
|
| 1387 |
-
"print_Divider = True # @param {type:\"boolean\"}\n",
|
| 1388 |
-
"\n",
|
| 1389 |
-
"\n",
|
| 1390 |
-
"if (print_Divider):\n",
|
| 1391 |
-
" print('//---//')\n",
|
| 1392 |
-
"\n",
|
| 1393 |
-
"print('')\n",
|
| 1394 |
-
"print('Here is the result : ')\n",
|
| 1395 |
-
"print('')\n",
|
| 1396 |
-
"\n",
|
| 1397 |
-
"for index in range(list_size):\n",
|
| 1398 |
-
" id = indices[index].item()\n",
|
| 1399 |
-
" if (print_Name):\n",
|
| 1400 |
-
" print(f'{vocab(id)}') # vocab item\n",
|
| 1401 |
-
" if (print_ID):\n",
|
| 1402 |
-
" print(f'ID = {id}') # IDs\n",
|
| 1403 |
-
" if (print_Similarity):\n",
|
| 1404 |
-
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
| 1405 |
-
" if (print_Divider):\n",
|
| 1406 |
-
" print('--------')\n",
|
| 1407 |
-
"\n",
|
| 1408 |
-
"#Print the sorted list from above result\n",
|
| 1409 |
-
"\n",
|
| 1410 |
-
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
| 1411 |
-
"\n",
|
| 1412 |
-
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
|
| 1413 |
-
"\n",
|
| 1414 |
-
"# Save results as .db file\n",
|
| 1415 |
-
"import shelve\n",
|
| 1416 |
-
"VOCAB_FILENAME = 'tokens_most_similiar_to_' + name_A.replace('</w>','').strip()\n",
|
| 1417 |
-
"d = shelve.open(VOCAB_FILENAME)\n",
|
| 1418 |
-
"#NUM TOKENS == 49407\n",
|
| 1419 |
-
"for index in range(NUM_TOKENS):\n",
|
| 1420 |
-
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
|
| 1421 |
-
" d[f'{index}']= vocab(indices[index].item()) #<---- write values to .db file\n",
|
| 1422 |
-
"#----#\n",
|
| 1423 |
-
"d.close() #close the file\n",
|
| 1424 |
-
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
|
| 1425 |
-
],
|
| 1426 |
-
"metadata": {
|
| 1427 |
-
"id": "iWeFnT1gAx6A"
|
| 1428 |
-
},
|
| 1429 |
-
"execution_count": null,
|
| 1430 |
-
"outputs": []
|
| 1431 |
-
},
|
| 1432 |
-
{
|
| 1433 |
-
"cell_type": "markdown",
|
| 1434 |
-
"source": [
|
| 1435 |
-
"You can write an url or upload a file locally from your device to use as reference. The image will by saved in the 'sd_tokens' folder. Note that the 'sd_tokens' folder will be deleted upon exiting this runtime."
|
| 1436 |
-
],
|
| 1437 |
-
"metadata": {
|
| 1438 |
-
"id": "hyK423TQCRup"
|
| 1439 |
-
}
|
| 1440 |
-
},
|
| 1441 |
-
{
|
| 1442 |
-
"cell_type": "code",
|
| 1443 |
-
"source": [
|
| 1444 |
-
"%cd /content/\n",
|
| 1445 |
-
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts"
|
| 1446 |
-
],
|
| 1447 |
-
"metadata": {
|
| 1448 |
-
"id": "GPAUFxZgPfrY"
|
| 1449 |
-
},
|
| 1450 |
-
"execution_count": null,
|
| 1451 |
-
"outputs": []
|
| 1452 |
-
},
|
| 1453 |
-
{
|
| 1454 |
-
"cell_type": "code",
|
| 1455 |
-
"source": [
|
| 1456 |
-
"# @title Make your own text_encodings .pt file for later use (using GPU is recommended to speed things up)\n",
|
| 1457 |
-
"\n",
|
| 1458 |
-
"import json\n",
|
| 1459 |
-
"import pandas as pd\n",
|
| 1460 |
-
"import os\n",
|
| 1461 |
-
"import shelve\n",
|
| 1462 |
-
"import torch\n",
|
| 1463 |
-
"from safetensors.torch import save_file\n",
|
| 1464 |
-
"\n",
|
| 1465 |
-
"def my_mkdirs(folder):\n",
|
| 1466 |
-
" if os.path.exists(folder)==False:\n",
|
| 1467 |
-
" os.makedirs(folder)\n",
|
| 1468 |
-
"\n",
|
| 1469 |
-
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
| 1470 |
-
"from transformers import AutoTokenizer\n",
|
| 1471 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 1472 |
-
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 1473 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 1474 |
-
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n",
|
| 1475 |
-
"\n",
|
| 1476 |
-
"%cd /content/\n",
|
| 1477 |
-
"\n",
|
| 1478 |
-
"my_mkdirs('/content/text_encodings/')\n",
|
| 1479 |
-
"filename = ''\n",
|
| 1480 |
-
"\n",
|
| 1481 |
-
"NUM_FILES = 10\n",
|
| 1482 |
-
"\n",
|
| 1483 |
-
"for file_index in range(NUM_FILES + 1):\n",
|
| 1484 |
-
" if file_index <1: continue\n",
|
| 1485 |
-
" #if file_index >4: break\n",
|
| 1486 |
-
" filename = f'🧿📘 fusion-t2i-civitai-0-20-chars-mix-{file_index}'\n",
|
| 1487 |
-
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
| 1488 |
-
"\n",
|
| 1489 |
-
" # Read suffix.json\n",
|
| 1490 |
-
" %cd /content/text-to-image-prompts/civitai-prompts/blue/text\n",
|
| 1491 |
-
" with open(filename + '.json', 'r') as f:\n",
|
| 1492 |
-
" data = json.load(f)\n",
|
| 1493 |
-
" _df = pd.DataFrame({'count': data})['count']\n",
|
| 1494 |
-
" prompts = {\n",
|
| 1495 |
-
" key : value for key, value in _df.items()\n",
|
| 1496 |
-
" }\n",
|
| 1497 |
-
" NUM_ITEMS = int(prompts[\"0\"])\n",
|
| 1498 |
-
" #------#\n",
|
| 1499 |
-
"\n",
|
| 1500 |
-
" # Calculate text_encoding for .json file contents and results as .db file\n",
|
| 1501 |
-
"\n",
|
| 1502 |
-
" %cd /content/text_encodings/\n",
|
| 1503 |
-
" text_encoding_dict = {}\n",
|
| 1504 |
-
" for index in range(NUM_ITEMS + 1):\n",
|
| 1505 |
-
" inputs = tokenizer(text = '' + prompts[f'{index}'], padding=True, return_tensors=\"pt\").to(device)\n",
|
| 1506 |
-
" text_features = model.get_text_features(**inputs).to(device)\n",
|
| 1507 |
-
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True).to(device)\n",
|
| 1508 |
-
" text_encoding_dict[f'{index}'] = text_features.to('cpu')\n",
|
| 1509 |
-
" save_file(text_encoding_dict, f'{filename}.safetensors')\n",
|
| 1510 |
-
" #----#\n",
|
| 1511 |
-
"\n",
|
| 1512 |
-
"#from safetensors.torch import load_file\n",
|
| 1513 |
-
"#%cd /content/text_encodings\n",
|
| 1514 |
-
"#loaded = load_file('🦜 fusion-t2i-prompt-features-1.safetensors')\n",
|
| 1515 |
-
"#print(loaded[\"325\"])"
|
| 1516 |
-
],
|
| 1517 |
-
"metadata": {
|
| 1518 |
-
"id": "9ZiTsF9jV0TV"
|
| 1519 |
-
},
|
| 1520 |
-
"execution_count": null,
|
| 1521 |
-
"outputs": []
|
| 1522 |
-
},
|
| 1523 |
-
{
|
| 1524 |
-
"cell_type": "code",
|
| 1525 |
-
"source": [
|
| 1526 |
-
"# @title Download the created JSON as .zip file\n",
|
| 1527 |
-
"%cd /content/\n",
|
| 1528 |
-
"!zip -r /content/blue.zip /content/text-to-image-prompts/civitai-prompts/blue/text"
|
| 1529 |
-
],
|
| 1530 |
-
"metadata": {
|
| 1531 |
-
"id": "gX-sHZPWj4Lt"
|
| 1532 |
-
},
|
| 1533 |
-
"execution_count": null,
|
| 1534 |
-
"outputs": []
|
| 1535 |
-
},
|
| 1536 |
-
{
|
| 1537 |
-
"cell_type": "code",
|
| 1538 |
-
"source": [
|
| 1539 |
-
"# @title Download the created text_encodings as .zip file\n",
|
| 1540 |
-
"%cd /content/\n",
|
| 1541 |
-
"!zip -r /content/text-encodings.zip /content/text_encodings"
|
| 1542 |
-
],
|
| 1543 |
-
"metadata": {
|
| 1544 |
-
"id": "b3DUPYfskAIc"
|
| 1545 |
-
},
|
| 1546 |
-
"execution_count": null,
|
| 1547 |
-
"outputs": []
|
| 1548 |
-
},
|
| 1549 |
-
{
|
| 1550 |
-
"cell_type": "markdown",
|
| 1551 |
-
"source": [
|
| 1552 |
-
"\n",
|
| 1553 |
-
"\n",
|
| 1554 |
-
"# How does this notebook work?\n",
|
| 1555 |
-
"\n",
|
| 1556 |
-
"Similiar vectors = similiar output in the SD 1.5 / SDXL / FLUX model\n",
|
| 1557 |
-
"\n",
|
| 1558 |
-
"CLIP converts the prompt text to vectors (“tensors”) , with float32 values usually ranging from -1 to 1.\n",
|
| 1559 |
-
"\n",
|
| 1560 |
-
"Dimensions are \\[ 1x768 ] tensors for SD 1.5 , and a \\[ 1x768 , 1x1024 ] tensor for SDXL and FLUX.\n",
|
| 1561 |
-
"\n",
|
| 1562 |
-
"The SD models and FLUX converts these vectors to an image.\n",
|
| 1563 |
-
"\n",
|
| 1564 |
-
"This notebook takes an input string , tokenizes it and matches the first token against the 49407 token vectors in the vocab.json : [https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main/tokenizer](https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fblack-forest-labs%2FFLUX.1-dev%2Ftree%2Fmain%2Ftokenizer)\n",
|
| 1565 |
-
"\n",
|
| 1566 |
-
"It finds the “most similiar tokens” in the list. Similarity is the theta angle between the token vectors.\n",
|
| 1567 |
"\n",
|
| 1568 |
"<div>\n",
|
| 1569 |
"<img src=\"https://huggingface.co/datasets/codeShare/sd_tokens/resolve/main/cosine.jpeg\" width=\"300\"/>\n",
|
|
@@ -1956,6 +1835,249 @@
|
|
| 1956 |
},
|
| 1957 |
"execution_count": null,
|
| 1958 |
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1959 |
}
|
| 1960 |
]
|
| 1961 |
}
|
|
|
|
| 122 |
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n"
|
| 123 |
],
|
| 124 |
"metadata": {
|
| 125 |
+
"id": "rUXQ73IbonHY",
|
| 126 |
+
"outputId": "aa0e25d1-f6b8-46ad-c1c1-0ccd70952cff",
|
| 127 |
+
"colab": {
|
| 128 |
+
"base_uri": "https://localhost:8080/"
|
| 129 |
+
}
|
| 130 |
},
|
| 131 |
+
"execution_count": 1,
|
| 132 |
+
"outputs": [
|
| 133 |
+
{
|
| 134 |
+
"output_type": "stream",
|
| 135 |
+
"name": "stdout",
|
| 136 |
+
"text": [
|
| 137 |
+
"/content\n",
|
| 138 |
+
"Cloning into 'text-to-image-prompts'...\n",
|
| 139 |
+
"remote: Enumerating objects: 478, done.\u001b[K\n",
|
| 140 |
+
"remote: Counting objects: 100% (475/475), done.\u001b[K\n",
|
| 141 |
+
"remote: Compressing objects: 100% (452/452), done.\u001b[K\n",
|
| 142 |
+
"remote: Total 478 (delta 82), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
| 143 |
+
"Receiving objects: 100% (478/478), 1.93 MiB | 6.96 MiB/s, done.\n",
|
| 144 |
+
"Resolving deltas: 100% (82/82), done.\n",
|
| 145 |
+
"Filtering content: 100% (95/95), 305.98 MiB | 59.56 MiB/s, done.\n"
|
| 146 |
+
]
|
| 147 |
+
}
|
| 148 |
+
]
|
| 149 |
},
|
| 150 |
{
|
| 151 |
"cell_type": "code",
|
|
|
|
| 229 |
"base_uri": "https://localhost:8080/"
|
| 230 |
}
|
| 231 |
},
|
| 232 |
+
"execution_count": null,
|
| 233 |
"outputs": [
|
| 234 |
{
|
| 235 |
"output_type": "stream",
|
|
|
|
| 507 |
"metadata": {
|
| 508 |
"id": "xc-PbIYF428y"
|
| 509 |
},
|
| 510 |
+
"execution_count": null,
|
| 511 |
"outputs": []
|
| 512 |
},
|
| 513 |
{
|
|
|
|
| 561 |
"base_uri": "https://localhost:8080/"
|
| 562 |
}
|
| 563 |
},
|
| 564 |
+
"execution_count": null,
|
| 565 |
"outputs": [
|
| 566 |
{
|
| 567 |
"output_type": "stream",
|
|
|
|
| 941 |
}
|
| 942 |
]
|
| 943 |
},
|
| 944 |
+
{
|
| 945 |
+
"cell_type": "code",
|
| 946 |
+
"source": [
|
| 947 |
+
"# @title 💫 Compare Text encodings\n",
|
| 948 |
+
"prompt_A = \"banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 949 |
+
"prompt_B = \"bike \" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
| 950 |
+
"use_token_padding = True # param {type:\"boolean\"} <----- Enabled by default\n",
|
| 951 |
+
"#-----#\n",
|
| 952 |
+
"from transformers import AutoTokenizer\n",
|
| 953 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\",\n",
|
| 954 |
+
"clean_up_tokenization_spaces = False)\n",
|
| 955 |
+
"#-----#\n",
|
| 956 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 957 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 958 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
| 959 |
+
"#----#\n",
|
| 960 |
+
"inputs = tokenizer(text = prompt_A, padding=True, return_tensors=\"pt\")\n",
|
| 961 |
+
"text_features_A = model.get_text_features(**inputs)\n",
|
| 962 |
+
"text_features_A = text_features_A / text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
| 963 |
+
"name_A = prompt_A\n",
|
| 964 |
+
"#----#\n",
|
| 965 |
+
"inputs = tokenizer(text = prompt_B, padding=True, return_tensors=\"pt\")\n",
|
| 966 |
+
"text_features_B = model.get_text_features(**inputs)\n",
|
| 967 |
+
"text_features_B = text_features_B / text_features_B.norm(p=2, dim=-1, keepdim=True)\n",
|
| 968 |
+
"name_B = prompt_B\n",
|
| 969 |
+
"#----#\n",
|
| 970 |
+
"import torch\n",
|
| 971 |
+
"sim_AB = torch.nn.functional.cosine_similarity(text_features_A, text_features_B)\n",
|
| 972 |
+
"#----#\n",
|
| 973 |
+
"print(f'The similarity between the text_encoding for A:\"{prompt_A}\" and B: \"{prompt_B}\" is {round(sim_AB.item()*100,2)} %')"
|
| 974 |
+
],
|
| 975 |
+
"metadata": {
|
| 976 |
+
"id": "QQOjh5BvnG8M",
|
| 977 |
+
"collapsed": true,
|
| 978 |
+
"cellView": "form"
|
| 979 |
+
},
|
| 980 |
+
"execution_count": null,
|
| 981 |
+
"outputs": []
|
| 982 |
+
},
|
| 983 |
+
{
|
| 984 |
+
"cell_type": "markdown",
|
| 985 |
+
"source": [
|
| 986 |
+
"You can write an url or upload a file locally from your device to use as reference. The image will by saved in the 'sd_tokens' folder. Note that the 'sd_tokens' folder will be deleted upon exiting this runtime."
|
| 987 |
+
],
|
| 988 |
+
"metadata": {
|
| 989 |
+
"id": "hyK423TQCRup"
|
| 990 |
+
}
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"cell_type": "code",
|
| 994 |
+
"source": [
|
| 995 |
+
"%cd /content/\n",
|
| 996 |
+
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts"
|
| 997 |
+
],
|
| 998 |
+
"metadata": {
|
| 999 |
+
"id": "GPAUFxZgPfrY"
|
| 1000 |
+
},
|
| 1001 |
+
"execution_count": null,
|
| 1002 |
+
"outputs": []
|
| 1003 |
+
},
|
| 1004 |
+
{
|
| 1005 |
+
"cell_type": "code",
|
| 1006 |
+
"source": [
|
| 1007 |
+
"# @title Make your own text_encodings .pt file for later use (using GPU is recommended to speed things up)\n",
|
| 1008 |
+
"\n",
|
| 1009 |
+
"import json\n",
|
| 1010 |
+
"import pandas as pd\n",
|
| 1011 |
+
"import os\n",
|
| 1012 |
+
"import shelve\n",
|
| 1013 |
+
"import torch\n",
|
| 1014 |
+
"from safetensors.torch import save_file\n",
|
| 1015 |
+
"\n",
|
| 1016 |
+
"def my_mkdirs(folder):\n",
|
| 1017 |
+
" if os.path.exists(folder)==False:\n",
|
| 1018 |
+
" os.makedirs(folder)\n",
|
| 1019 |
+
"\n",
|
| 1020 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
| 1021 |
+
"from transformers import AutoTokenizer\n",
|
| 1022 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 1023 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
| 1024 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
| 1025 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n",
|
| 1026 |
+
"\n",
|
| 1027 |
+
"%cd /content/\n",
|
| 1028 |
+
"\n",
|
| 1029 |
+
"my_mkdirs('/content/text_encodings/')\n",
|
| 1030 |
+
"filename = ''\n",
|
| 1031 |
+
"\n",
|
| 1032 |
+
"NUM_FILES = 9\n",
|
| 1033 |
+
"\n",
|
| 1034 |
+
"\n",
|
| 1035 |
+
"filename = '🆔👩_🦰 fusion-t2i-girl-firstname-1'\n",
|
| 1036 |
+
"%cd /content/text-to-image-prompts/names/firstnames/text\n",
|
| 1037 |
+
"with open(filename + '.json', 'r') as f:\n",
|
| 1038 |
+
" data = json.load(f)\n",
|
| 1039 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
| 1040 |
+
"firstname = {\n",
|
| 1041 |
+
" key : value for key, value in _df.items()\n",
|
| 1042 |
+
"}\n",
|
| 1043 |
+
"\n",
|
| 1044 |
+
"NUM_FIRSTNAME = 100901\n",
|
| 1045 |
+
"\n",
|
| 1046 |
+
"for file_index in range(NUM_FILES + 1):\n",
|
| 1047 |
+
" if file_index <1: continue\n",
|
| 1048 |
+
" #if file_index >4: break\n",
|
| 1049 |
+
" filename = f'👱_♀️ fusion-t2i-lastnames-1 plugin-{file_index}'\n",
|
| 1050 |
+
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
| 1051 |
+
"\n",
|
| 1052 |
+
" # Read suffix.json\n",
|
| 1053 |
+
" %cd /content/text-to-image-prompts/names/lastnames/text\n",
|
| 1054 |
+
" with open(filename + '.json', 'r') as f:\n",
|
| 1055 |
+
" data = json.load(f)\n",
|
| 1056 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
| 1057 |
+
" names = {\n",
|
| 1058 |
+
" key : firstname[f'{random.randint(2,NUM_FIRSTNAME)}'] + f'{value}' for key, value in _df.items()\n",
|
| 1059 |
+
" }\n",
|
| 1060 |
+
" NUM_ITEMS = int(prompts[\"0\"])\n",
|
| 1061 |
+
" #------#\n",
|
| 1062 |
+
"\n",
|
| 1063 |
+
" # Calculate text_encoding for .json file contents and results as .db file\n",
|
| 1064 |
+
"\n",
|
| 1065 |
+
" %cd /content/text_encodings/\n",
|
| 1066 |
+
" text_encoding_dict = {}\n",
|
| 1067 |
+
" for index in range(NUM_ITEMS + 1):\n",
|
| 1068 |
+
" inputs = tokenizer(text = '' + prompts[f'{index}'], padding=True, return_tensors=\"pt\").to(device)\n",
|
| 1069 |
+
" text_features = model.get_text_features(**inputs).to(device)\n",
|
| 1070 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True).to(device)\n",
|
| 1071 |
+
" text_encoding_dict[f'{index}'] = text_features.to('cpu')\n",
|
| 1072 |
+
" save_file(text_encoding_dict, f'{filename}.safetensors')\n",
|
| 1073 |
+
" #----#\n",
|
| 1074 |
+
"\n",
|
| 1075 |
+
"#from safetensors.torch import load_file\n",
|
| 1076 |
+
"#%cd /content/text_encodings\n",
|
| 1077 |
+
"#loaded = load_file('🦜 fusion-t2i-prompt-features-1.safetensors')\n",
|
| 1078 |
+
"#print(loaded[\"325\"])"
|
| 1079 |
+
],
|
| 1080 |
+
"metadata": {
|
| 1081 |
+
"id": "9ZiTsF9jV0TV"
|
| 1082 |
+
},
|
| 1083 |
+
"execution_count": null,
|
| 1084 |
+
"outputs": []
|
| 1085 |
+
},
|
| 1086 |
+
{
|
| 1087 |
+
"cell_type": "code",
|
| 1088 |
+
"source": [
|
| 1089 |
+
"# @title Download the created JSON as .zip file\n",
|
| 1090 |
+
"%cd /content/\n",
|
| 1091 |
+
"!zip -r /content/blue.zip /content/text-to-image-prompts/civitai-prompts/blue/text"
|
| 1092 |
+
],
|
| 1093 |
+
"metadata": {
|
| 1094 |
+
"id": "gX-sHZPWj4Lt"
|
| 1095 |
+
},
|
| 1096 |
+
"execution_count": null,
|
| 1097 |
+
"outputs": []
|
| 1098 |
+
},
|
| 1099 |
{
|
| 1100 |
"cell_type": "code",
|
| 1101 |
"source": [
|
|
|
|
| 1415 |
{
|
| 1416 |
"cell_type": "code",
|
| 1417 |
"source": [
|
| 1418 |
+
"# @title Download the created text_encodings as .zip file\n",
|
| 1419 |
+
"%cd /content/\n",
|
| 1420 |
+
"!zip -r /content/text-encodings.zip /content/text_encodings"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1421 |
],
|
| 1422 |
"metadata": {
|
| 1423 |
+
"id": "b3DUPYfskAIc"
|
|
|
|
|
|
|
| 1424 |
},
|
| 1425 |
"execution_count": null,
|
| 1426 |
"outputs": []
|
| 1427 |
},
|
| 1428 |
{
|
| 1429 |
+
"cell_type": "markdown",
|
| 1430 |
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1431 |
"\n",
|
|
|
|
|
|
|
| 1432 |
"\n",
|
| 1433 |
+
"# How does this notebook work?\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1434 |
"\n",
|
| 1435 |
+
"Similiar vectors = similiar output in the SD 1.5 / SDXL / FLUX model\n",
|
|
|
|
| 1436 |
"\n",
|
| 1437 |
+
"CLIP converts the prompt text to vectors (“tensors”) , with float32 values usually ranging from -1 to 1.\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1438 |
"\n",
|
| 1439 |
+
"Dimensions are \\[ 1x768 ] tensors for SD 1.5 , and a \\[ 1x768 , 1x1024 ] tensor for SDXL and FLUX.\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1440 |
"\n",
|
| 1441 |
+
"The SD models and FLUX converts these vectors to an image.\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1442 |
"\n",
|
| 1443 |
+
"This notebook takes an input string , tokenizes it and matches the first token against the 49407 token vectors in the vocab.json : [https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main/tokenizer](https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fblack-forest-labs%2FFLUX.1-dev%2Ftree%2Fmain%2Ftokenizer)\n",
|
|
|
|
|
|
|
| 1444 |
"\n",
|
| 1445 |
+
"It finds the “most similiar tokens” in the list. Similarity is the theta angle between the token vectors.\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1446 |
"\n",
|
| 1447 |
"<div>\n",
|
| 1448 |
"<img src=\"https://huggingface.co/datasets/codeShare/sd_tokens/resolve/main/cosine.jpeg\" width=\"300\"/>\n",
|
|
|
|
| 1835 |
},
|
| 1836 |
"execution_count": null,
|
| 1837 |
"outputs": []
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"cell_type": "code",
|
| 1841 |
+
"source": [
|
| 1842 |
+
"# @title ⚡ Get similiar tokens (not updated yet)\n",
|
| 1843 |
+
"import torch\n",
|
| 1844 |
+
"from transformers import AutoTokenizer\n",
|
| 1845 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 1846 |
+
"\n",
|
| 1847 |
+
"# @markdown Write name of token to match against\n",
|
| 1848 |
+
"token_name = \"banana \" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
| 1849 |
+
"\n",
|
| 1850 |
+
"prompt = token_name\n",
|
| 1851 |
+
"# @markdown (optional) Mix the token with something else\n",
|
| 1852 |
+
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
| 1853 |
+
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
| 1854 |
+
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
| 1855 |
+
"# @markdown Limit char size of included token\n",
|
| 1856 |
+
"\n",
|
| 1857 |
+
"min_char_size = 0 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 1858 |
+
"char_range = 50 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 1859 |
+
"\n",
|
| 1860 |
+
"tokenizer_output = tokenizer(text = prompt)\n",
|
| 1861 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
| 1862 |
+
"id_A = input_ids[1]\n",
|
| 1863 |
+
"A = torch.tensor(token[id_A])\n",
|
| 1864 |
+
"A = A/A.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1865 |
+
"#-----#\n",
|
| 1866 |
+
"tokenizer_output = tokenizer(text = mix_with)\n",
|
| 1867 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
| 1868 |
+
"id_C = input_ids[1]\n",
|
| 1869 |
+
"C = torch.tensor(token[id_C])\n",
|
| 1870 |
+
"C = C/C.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1871 |
+
"#-----#\n",
|
| 1872 |
+
"sim_AC = torch.dot(A,C)\n",
|
| 1873 |
+
"#-----#\n",
|
| 1874 |
+
"print(input_ids)\n",
|
| 1875 |
+
"#-----#\n",
|
| 1876 |
+
"\n",
|
| 1877 |
+
"#if no imput exists we just randomize the entire thing\n",
|
| 1878 |
+
"if (prompt == \"\"):\n",
|
| 1879 |
+
" id_A = -1\n",
|
| 1880 |
+
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
| 1881 |
+
" R = torch.rand(A.shape)\n",
|
| 1882 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1883 |
+
" A = R\n",
|
| 1884 |
+
" name_A = 'random_A'\n",
|
| 1885 |
+
"\n",
|
| 1886 |
+
"#if no imput exists we just randomize the entire thing\n",
|
| 1887 |
+
"if (mix_with == \"\"):\n",
|
| 1888 |
+
" id_C = -1\n",
|
| 1889 |
+
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
| 1890 |
+
" R = torch.rand(A.shape)\n",
|
| 1891 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1892 |
+
" C = R\n",
|
| 1893 |
+
" name_C = 'random_C'\n",
|
| 1894 |
+
"\n",
|
| 1895 |
+
"name_A = \"A of random type\"\n",
|
| 1896 |
+
"if (id_A>-1):\n",
|
| 1897 |
+
" name_A = vocab(id_A)\n",
|
| 1898 |
+
"\n",
|
| 1899 |
+
"name_C = \"token C of random type\"\n",
|
| 1900 |
+
"if (id_C>-1):\n",
|
| 1901 |
+
" name_C = vocab(id_C)\n",
|
| 1902 |
+
"\n",
|
| 1903 |
+
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n",
|
| 1904 |
+
"\n",
|
| 1905 |
+
"if (mix_method == \"None\"):\n",
|
| 1906 |
+
" print(\"No operation\")\n",
|
| 1907 |
+
"\n",
|
| 1908 |
+
"if (mix_method == \"Average\"):\n",
|
| 1909 |
+
" A = w*A + (1-w)*C\n",
|
| 1910 |
+
" _A = LA.vector_norm(A, ord=2)\n",
|
| 1911 |
+
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n",
|
| 1912 |
+
"\n",
|
| 1913 |
+
"if (mix_method == \"Subtract\"):\n",
|
| 1914 |
+
" tmp = w*A - (1-w)*C\n",
|
| 1915 |
+
" tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1916 |
+
" A = tmp\n",
|
| 1917 |
+
" #//---//\n",
|
| 1918 |
+
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
| 1919 |
+
"\n",
|
| 1920 |
+
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
| 1921 |
+
"\n",
|
| 1922 |
+
"dots = torch.zeros(NUM_TOKENS)\n",
|
| 1923 |
+
"for index in range(NUM_TOKENS):\n",
|
| 1924 |
+
" id_B = index\n",
|
| 1925 |
+
" B = torch.tensor(token[id_B])\n",
|
| 1926 |
+
" B = B/B.norm(p=2, dim=-1, keepdim=True)\n",
|
| 1927 |
+
" sim_AB = torch.dot(A,B)\n",
|
| 1928 |
+
" dots[index] = sim_AB\n",
|
| 1929 |
+
"\n",
|
| 1930 |
+
"\n",
|
| 1931 |
+
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 1932 |
+
"#----#\n",
|
| 1933 |
+
"if (mix_method == \"Average\"):\n",
|
| 1934 |
+
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
| 1935 |
+
"if (mix_method == \"Subtract\"):\n",
|
| 1936 |
+
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
| 1937 |
+
"if (mix_method == \"None\"):\n",
|
| 1938 |
+
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
|
| 1939 |
+
"\n",
|
| 1940 |
+
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
|
| 1941 |
+
"\n",
|
| 1942 |
+
"# @markdown Set print options\n",
|
| 1943 |
+
"list_size = 100 # @param {type:'number'}\n",
|
| 1944 |
+
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 1945 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 1946 |
+
"print_Name = True # @param {type:\"boolean\"}\n",
|
| 1947 |
+
"print_Divider = True # @param {type:\"boolean\"}\n",
|
| 1948 |
+
"\n",
|
| 1949 |
+
"\n",
|
| 1950 |
+
"if (print_Divider):\n",
|
| 1951 |
+
" print('//---//')\n",
|
| 1952 |
+
"\n",
|
| 1953 |
+
"print('')\n",
|
| 1954 |
+
"print('Here is the result : ')\n",
|
| 1955 |
+
"print('')\n",
|
| 1956 |
+
"\n",
|
| 1957 |
+
"for index in range(list_size):\n",
|
| 1958 |
+
" id = indices[index].item()\n",
|
| 1959 |
+
" if (print_Name):\n",
|
| 1960 |
+
" print(f'{vocab(id)}') # vocab item\n",
|
| 1961 |
+
" if (print_ID):\n",
|
| 1962 |
+
" print(f'ID = {id}') # IDs\n",
|
| 1963 |
+
" if (print_Similarity):\n",
|
| 1964 |
+
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
| 1965 |
+
" if (print_Divider):\n",
|
| 1966 |
+
" print('--------')\n",
|
| 1967 |
+
"\n",
|
| 1968 |
+
"#Print the sorted list from above result\n",
|
| 1969 |
+
"\n",
|
| 1970 |
+
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
| 1971 |
+
"\n",
|
| 1972 |
+
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
|
| 1973 |
+
"\n",
|
| 1974 |
+
"# Save results as .db file\n",
|
| 1975 |
+
"import shelve\n",
|
| 1976 |
+
"VOCAB_FILENAME = 'tokens_most_similiar_to_' + name_A.replace('</w>','').strip()\n",
|
| 1977 |
+
"d = shelve.open(VOCAB_FILENAME)\n",
|
| 1978 |
+
"#NUM TOKENS == 49407\n",
|
| 1979 |
+
"for index in range(NUM_TOKENS):\n",
|
| 1980 |
+
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
|
| 1981 |
+
" d[f'{index}']= vocab(indices[index].item()) #<---- write values to .db file\n",
|
| 1982 |
+
"#----#\n",
|
| 1983 |
+
"d.close() #close the file\n",
|
| 1984 |
+
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
|
| 1985 |
+
],
|
| 1986 |
+
"metadata": {
|
| 1987 |
+
"id": "iWeFnT1gAx6A"
|
| 1988 |
+
},
|
| 1989 |
+
"execution_count": null,
|
| 1990 |
+
"outputs": []
|
| 1991 |
+
},
|
| 1992 |
+
{
|
| 1993 |
+
"cell_type": "code",
|
| 1994 |
+
"source": [
|
| 1995 |
+
"\n",
|
| 1996 |
+
"# @title Create random names from firstname and lastnames\n",
|
| 1997 |
+
"import random\n",
|
| 1998 |
+
"import json\n",
|
| 1999 |
+
"import pandas as pd\n",
|
| 2000 |
+
"import os\n",
|
| 2001 |
+
"import shelve\n",
|
| 2002 |
+
"import torch\n",
|
| 2003 |
+
"from safetensors.torch import save_file\n",
|
| 2004 |
+
"\n",
|
| 2005 |
+
"def my_mkdirs(folder):\n",
|
| 2006 |
+
" if os.path.exists(folder)==False:\n",
|
| 2007 |
+
" os.makedirs(folder)\n",
|
| 2008 |
+
"\n",
|
| 2009 |
+
"\n",
|
| 2010 |
+
"my_mkdirs('/content/female_full_names/')\n",
|
| 2011 |
+
"filename = ''\n",
|
| 2012 |
+
"\n",
|
| 2013 |
+
"filename = '🆔👩_🦰 fusion-t2i-girl-firstname-1'\n",
|
| 2014 |
+
"%cd /content/text-to-image-prompts/names/firstnames/text\n",
|
| 2015 |
+
"with open(filename + '.json', 'r') as f:\n",
|
| 2016 |
+
" data = json.load(f)\n",
|
| 2017 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
| 2018 |
+
"firstname = {\n",
|
| 2019 |
+
" key : value for key, value in _df.items()\n",
|
| 2020 |
+
"}\n",
|
| 2021 |
+
"\n",
|
| 2022 |
+
"NUM_FIRSTNAME = 100901\n",
|
| 2023 |
+
"\n",
|
| 2024 |
+
"\n",
|
| 2025 |
+
"NUM_FILES = 9\n",
|
| 2026 |
+
"for file_index in range(NUM_FILES + 1):\n",
|
| 2027 |
+
" if file_index <1: continue\n",
|
| 2028 |
+
" #if file_index >4: break\n",
|
| 2029 |
+
" filename = f'👱_♀️ fusion-t2i-lastnames-{file_index} plugin'\n",
|
| 2030 |
+
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
| 2031 |
+
"\n",
|
| 2032 |
+
" # Read suffix.json\n",
|
| 2033 |
+
" %cd /content/text-to-image-prompts/names/lastnames/text\n",
|
| 2034 |
+
" with open(filename + '.json', 'r') as f:\n",
|
| 2035 |
+
" data = json.load(f)\n",
|
| 2036 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
| 2037 |
+
" names = {\n",
|
| 2038 |
+
" key : firstname[f'{random.randint(2,NUM_FIRSTNAME)}'] + ' ' f'{value}' + ' ' for key, value in _df.items()\n",
|
| 2039 |
+
" }\n",
|
| 2040 |
+
"\n",
|
| 2041 |
+
" index = 0\n",
|
| 2042 |
+
"\n",
|
| 2043 |
+
" for key in names:\n",
|
| 2044 |
+
" index = index + 1\n",
|
| 2045 |
+
" #-----#\n",
|
| 2046 |
+
"\n",
|
| 2047 |
+
" names[f'{1}'] = f'👱_♀️female_fullnames-{file_index}'\n",
|
| 2048 |
+
" names[f'{0}'] = f'{index}'\n",
|
| 2049 |
+
"\n",
|
| 2050 |
+
" txt_filename = f'👱_♀️female_fullnames-{file_index}'\n",
|
| 2051 |
+
" %cd /content/female_full_names/\n",
|
| 2052 |
+
" with open(txt_filename + '.txt', 'w') as f:\n",
|
| 2053 |
+
" f.write(str(names))\n",
|
| 2054 |
+
"\n",
|
| 2055 |
+
" #files.download(f'fullnames-{file_index}.txt')\n",
|
| 2056 |
+
"\n",
|
| 2057 |
+
"#firstname[f'{random.randint(2,NUM_FIRSTNAME)}'] + f'{value}'\n",
|
| 2058 |
+
"\n",
|
| 2059 |
+
" #------#\n",
|
| 2060 |
+
"\n",
|
| 2061 |
+
"\n"
|
| 2062 |
+
],
|
| 2063 |
+
"metadata": {
|
| 2064 |
+
"id": "JR0wl2ecj6RJ"
|
| 2065 |
+
},
|
| 2066 |
+
"execution_count": null,
|
| 2067 |
+
"outputs": []
|
| 2068 |
+
},
|
| 2069 |
+
{
|
| 2070 |
+
"cell_type": "code",
|
| 2071 |
+
"source": [
|
| 2072 |
+
"# @title Download the created text_encodings as .zip file\n",
|
| 2073 |
+
"%cd /content/\n",
|
| 2074 |
+
"!zip -r /content/female_full_names.zip /content/female_full_names/"
|
| 2075 |
+
],
|
| 2076 |
+
"metadata": {
|
| 2077 |
+
"id": "IBenvYVrofil"
|
| 2078 |
+
},
|
| 2079 |
+
"execution_count": null,
|
| 2080 |
+
"outputs": []
|
| 2081 |
}
|
| 2082 |
]
|
| 2083 |
}
|