Update README.md
Browse files
README.md
CHANGED
|
@@ -22,17 +22,19 @@ CodeFuse-DeepSeek-33B is a 33B Code-LLM finetuned by QLoRA on multiple code-rela
|
|
| 22 |
|
| 23 |
🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B has been released, achieving a pass@1 (greedy decoding) score of 78.65% on HumanEval.
|
| 24 |
|
| 25 |
-
|
| 26 |
|
| 27 |
-
|
| 28 |
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
|
| 37 |
<br>
|
| 38 |
|
|
@@ -54,8 +56,13 @@ CodeFuse-DeepSeek-33B is a 33B Code-LLM finetuned by QLoRA on multiple code-rela
|
|
| 54 |
|
| 55 |
| Model | HumanEval(pass@1) | Date |
|
| 56 |
|:----------------------------|:-----------------:|:-------:|
|
|
|
|
|
|
|
| 57 |
| **CodeFuse-CodeLlama-34B** | 74.4% | 2023.9 |
|
| 58 |
|**CodeFuse-CodeLlama-34B-4bits** | 73.8% | 2023.9 |
|
|
|
|
|
|
|
|
|
|
| 59 |
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
|
| 60 |
| GPT-4(zero-shot) | 67.0% | 2023.3 |
|
| 61 |
| PanGu-Coder2 15B | 61.6% | 2023.8 |
|
|
@@ -65,10 +72,8 @@ CodeFuse-DeepSeek-33B is a 33B Code-LLM finetuned by QLoRA on multiple code-rela
|
|
| 65 |
| OctoCoder | 46.2% | 2023.8 |
|
| 66 |
| StarCoder-15B | 33.6% | 2023.5 |
|
| 67 |
| Qwen-14b | 32.3% | 2023.10 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
| **CodeFuse-CodeGeeX2-6B** | 45.12% | 2023.11 |
|
| 71 |
-
| **CodeFuse-DeepSeek-33B** | **78.65%** | 2024.01 |
|
| 72 |
|
| 73 |
|
| 74 |
### NLP
|
|
@@ -127,7 +132,7 @@ In this format, the system section is optional and the conversation can be eithe
|
|
| 127 |
|
| 128 |
For example, the format used to infer HumanEval is like the following:
|
| 129 |
|
| 130 |
-
```
|
| 131 |
<s>human
|
| 132 |
# language: Python
|
| 133 |
from typing import List
|
|
@@ -153,7 +158,7 @@ import torch
|
|
| 153 |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 154 |
|
| 155 |
def load_model_tokenizer(model_path):
|
| 156 |
-
tokenizer = AutoTokenizer.from_pretrained("codefuse-ai/CodeFuse-DeepSeek-33B", trust_remote_code=True
|
| 157 |
tokenizer.eos_token = "<|end▁of▁sentence|>"
|
| 158 |
tokenizer.pad_token = "<|end▁of▁sentence|>"
|
| 159 |
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
|
|
@@ -177,7 +182,7 @@ attention_mask = inputs["attention_mask"]
|
|
| 177 |
generation_config = GenerationConfig(
|
| 178 |
eos_token_id=tokenizer.eos_token_id,
|
| 179 |
pad_token_id=tokenizer.pad_token_id,
|
| 180 |
-
temperature=0.
|
| 181 |
max_new_tokens=512,
|
| 182 |
num_return_sequences=1,
|
| 183 |
num_beams=1,
|
|
@@ -211,13 +216,13 @@ CodeFuse-DeepSeek-33B 是一个通过QLoRA对基座模型DeepSeek-Coder-33B进
|
|
| 211 |
|
| 212 |
🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B模型发布,模型在HumanEval pass@1指标为78.65% (贪婪解码)。
|
| 213 |
|
| 214 |
-
|
| 215 |
|
| 216 |
-
|
| 217 |
|
| 218 |
-
|
| 219 |
|
| 220 |
-
|
| 221 |
|
| 222 |
🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B-4bits/summary)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。
|
| 223 |
|
|
|
|
| 22 |
|
| 23 |
🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B has been released, achieving a pass@1 (greedy decoding) score of 78.65% on HumanEval.
|
| 24 |
|
| 25 |
+
🔥🔥🔥 2024-01-12 CodeFuse-Mixtral-8x7B has been released, achieving a pass@1 (greedy decoding) score of 56.1% on HumanEval, which is a 15% increase compared to Mixtral-8x7b's 40%.
|
| 26 |
|
| 27 |
+
🔥🔥 2023-11-10 CodeFuse-CodeGeeX2-6B has been released, achieving a pass@1 (greedy decoding) score of 45.12% on HumanEval, which is a 9.22% increase compared to CodeGeeX2 35.9%.
|
| 28 |
|
| 29 |
+
🔥🔥 2023-10-20 CodeFuse-QWen-14B technical documentation has been released. For those interested, please refer to the CodeFuse article on our WeChat official account via the provided link.(https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw)
|
| 30 |
|
| 31 |
+
🔥🔥 2023-10-16 CodeFuse-QWen-14B has been released, achieving a pass@1 (greedy decoding) score of 48.78% on HumanEval, which is a 16% increase compared to Qwen-14b's 32.3%.
|
| 32 |
|
| 33 |
+
🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.
|
| 34 |
|
| 35 |
+
🔥🔥 2023-09-26 We are pleased to announce the release of the [4-bit quantized version](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B-4bits/summary) of [CodeFuse-CodeLlama-34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary). Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.
|
| 36 |
+
|
| 37 |
+
🔥🔥 2023-09-11 [CodeFuse-CodeLlama34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary) has achieved 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.
|
| 38 |
|
| 39 |
<br>
|
| 40 |
|
|
|
|
| 56 |
|
| 57 |
| Model | HumanEval(pass@1) | Date |
|
| 58 |
|:----------------------------|:-----------------:|:-------:|
|
| 59 |
+
| **CodeFuse-DeepSeek-33B** | **78.65%** | 2024.01 |
|
| 60 |
+
| **CodeFuse-Mixtral-8x7B** | **56.10%** | 2024.01 |
|
| 61 |
| **CodeFuse-CodeLlama-34B** | 74.4% | 2023.9 |
|
| 62 |
|**CodeFuse-CodeLlama-34B-4bits** | 73.8% | 2023.9 |
|
| 63 |
+
| **CodeFuse-StarCoder-15B** | 54.9% | 2023.9 |
|
| 64 |
+
| **CodeFuse-QWen-14B** | 48.78% | 2023.10 |
|
| 65 |
+
| **CodeFuse-CodeGeeX2-6B** | 45.12% | 2023.11 |
|
| 66 |
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
|
| 67 |
| GPT-4(zero-shot) | 67.0% | 2023.3 |
|
| 68 |
| PanGu-Coder2 15B | 61.6% | 2023.8 |
|
|
|
|
| 72 |
| OctoCoder | 46.2% | 2023.8 |
|
| 73 |
| StarCoder-15B | 33.6% | 2023.5 |
|
| 74 |
| Qwen-14b | 32.3% | 2023.10 |
|
| 75 |
+
|
| 76 |
+
|
|
|
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
### NLP
|
|
|
|
| 132 |
|
| 133 |
For example, the format used to infer HumanEval is like the following:
|
| 134 |
|
| 135 |
+
```
|
| 136 |
<s>human
|
| 137 |
# language: Python
|
| 138 |
from typing import List
|
|
|
|
| 158 |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 159 |
|
| 160 |
def load_model_tokenizer(model_path):
|
| 161 |
+
tokenizer = AutoTokenizer.from_pretrained("codefuse-ai/CodeFuse-DeepSeek-33B", trust_remote_code=True)
|
| 162 |
tokenizer.eos_token = "<|end▁of▁sentence|>"
|
| 163 |
tokenizer.pad_token = "<|end▁of▁sentence|>"
|
| 164 |
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
|
|
|
|
| 182 |
generation_config = GenerationConfig(
|
| 183 |
eos_token_id=tokenizer.eos_token_id,
|
| 184 |
pad_token_id=tokenizer.pad_token_id,
|
| 185 |
+
temperature=0.1,
|
| 186 |
max_new_tokens=512,
|
| 187 |
num_return_sequences=1,
|
| 188 |
num_beams=1,
|
|
|
|
| 216 |
|
| 217 |
🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B模型发布,模型在HumanEval pass@1指标为78.65% (贪婪解码)。
|
| 218 |
|
| 219 |
+
🔥🔥🔥 2023-11-10 开源了CodeFuse-CodeGeeX2-6B模型,在HumanEval pass@1(greedy decoding)上可以达到48.12%, 比CodeGeeX2提高了9.22%的代码能力(HumanEval)
|
| 220 |
|
| 221 |
+
🔥🔥🔥 2023-10-20 公布了CodeFuse-QWen-14B技术文档,感兴趣详见微信公众号CodeFuse文章:https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw
|
| 222 |
|
| 223 |
+
🔥🔥🔥 2023-10-16开源了CodeFuse-QWen-14B模型,在HumanEval pass@1(greedy decoding)上可以达到48.78%, 比Qwen-14b提高了16%的代码能力(HumanEval)
|
| 224 |
|
| 225 |
+
🔥🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)
|
| 226 |
|
| 227 |
🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B-4bits/summary)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。
|
| 228 |
|