csycsycsy commited on
Commit
84db192
·
verified ·
1 Parent(s): 9cd2775

Upload 10 files

Browse files
Files changed (11) hide show
  1. .Rhistory +14 -0
  2. .gitattributes +1 -0
  3. PCA.py +66 -0
  4. Training_Data_Generation.R +15 -0
  5. bar.py +22 -0
  6. best_model.pth +3 -0
  7. hyperparameters.py +169 -0
  8. methane.py +257 -0
  9. use_pre_pca.py +36 -0
  10. webplot.png +3 -0
  11. webplot.py +81 -0
.Rhistory ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ library(readr)
2
+ # 读取数据
3
+ mathylation <- read.csv("pca_principal_components.csv")
4
+ data <- read_tsv("TCGA-ACC.survival.tsv", na = c("NaN", "null", ""))
5
+ data <- read_tsv("TCGA-LGG.survival.tsv", na = c("NaN", "null", ""))
6
+ data = data[data$OS == 1, ]
7
+ # 更改列名
8
+ colnames(mathylation)[1] = 'sample'
9
+ # 合并数据
10
+ data = merge(data, mathylation, by = 'sample')
11
+ data = data[, -c(1, 2, 3)]
12
+ data[is.na(data)] <- 0
13
+ # 保存结果
14
+ write.csv(data, 'data.csv')
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ webplot.png filter=lfs diff=lfs merge=lfs -text
PCA.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from sklearn.decomposition import PCA
3
+ from sklearn.preprocessing import StandardScaler
4
+ import matplotlib.pyplot as plt
5
+ from mpl_toolkits.mplot3d import Axes3D
6
+ import os
7
+ import joblib
8
+
9
+
10
+ script_path = os.path.abspath(__file__)
11
+ script_dir = os.path.dirname(script_path)
12
+ os.chdir(script_dir)
13
+
14
+
15
+ file_path = 'TCGA-LGG.methylation450.tsv'
16
+ df = pd.read_csv(file_path, sep='\t', index_col=0)
17
+
18
+
19
+
20
+ df.dropna(inplace=True)
21
+
22
+
23
+ scaler = StandardScaler()
24
+ scaled_data = scaler.fit_transform(df.T)
25
+
26
+
27
+ pca = PCA(n_components=50)
28
+ principal_components = pca.fit_transform(scaled_data)
29
+
30
+
31
+ pca_model_path = 'pca_model.pkl'
32
+ joblib.dump(pca, pca_model_path)
33
+ print(f"PCA模型已保存为 {pca_model_path}")
34
+
35
+
36
+ loadings = pd.DataFrame(pca.components_.T, columns=[f'PC{i+1}' for i in range(pca.n_components_)], index=df.index)
37
+ loadings.to_csv('pca_loadings.csv')
38
+ print("主成分载荷矩阵已保存为 pca_loadings.csv")
39
+
40
+
41
+ sample_ids = df.columns
42
+ principal_df = pd.DataFrame(data=principal_components, columns=[f'Principal Component {i+1}' for i in range(50)], index=sample_ids)
43
+
44
+
45
+ fig = plt.figure(figsize=(10, 8))
46
+ ax = fig.add_subplot(111, projection='3d')
47
+ ax.scatter(principal_df['Principal Component 1'], principal_df['Principal Component 2'], principal_df['Principal Component 3'])
48
+
49
+ for i, sample_id in enumerate(sample_ids):
50
+ ax.text(principal_df['Principal Component 1'][i], principal_df['Principal Component 2'][i], principal_df['Principal Component 3'][i], sample_id)
51
+
52
+ ax.set_xlabel('Principal Component 1')
53
+ ax.set_ylabel('Principal Component 2')
54
+ ax.set_zlabel('Principal Component 3')
55
+ ax.set_title('3D PCA of Methylation Data')
56
+ plt.show()
57
+
58
+
59
+ output_file_path = 'pca_principal_components.csv'
60
+ principal_df.to_csv(output_file_path)
61
+
62
+
63
+ explained_variance = pca.explained_variance_ratio_
64
+ print(f"Explained variance by each component: {explained_variance}")
65
+
66
+ print(f"50个主成分已保存为 {output_file_path}")
Training_Data_Generation.R ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ library(readr)
2
+
3
+ mathylation <- read.csv("pca_principal_components.csv")
4
+
5
+ data <- read_tsv("TCGA-LGG.survival.tsv", na = c("NaN", "null", ""))
6
+ data = data[data$OS == 1, ]
7
+
8
+ colnames(mathylation)[1] = 'sample'
9
+
10
+
11
+ data = merge(data, mathylation, by = 'sample')
12
+ data = data[, -c(1, 2, 3)]
13
+ data[is.na(data)] <- 0
14
+
15
+ write.csv(data, 'data.csv')
bar.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import numpy as np
3
+ import os
4
+
5
+ script_path = os.path.abspath(__file__)
6
+ script_dir = os.path.dirname(script_path)
7
+ os.chdir(script_dir)
8
+
9
+
10
+ cmap = plt.colormaps['viridis']
11
+
12
+
13
+ fig, ax = plt.subplots(figsize=(2, 6))
14
+ norm = plt.Normalize(vmin=0, vmax=10000)
15
+ fig.colorbar(plt.cm.ScalarMappable(norm=norm, cmap=cmap), cax=ax, orientation='vertical')
16
+
17
+
18
+ output_path = 'colorbar_purple_yellow.png'
19
+ plt.savefig(output_path, bbox_inches='tight', dpi=300)
20
+ plt.close()
21
+
22
+ output_path
best_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:318faacf364785b66666fdeb8e4023949c2c3daf5550a9c9b312eb2cff5a50db
3
+ size 63727
hyperparameters.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import optuna
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.optim as optim
5
+ from torch.utils.data import DataLoader, TensorDataset
6
+ import pandas as pd
7
+ import numpy as np
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.preprocessing import StandardScaler
10
+ import matplotlib.pyplot as plt
11
+ import os
12
+
13
+
14
+ script_path = os.path.abspath(__file__)
15
+ script_dir = os.path.dirname(script_path)
16
+ os.chdir(script_dir)
17
+
18
+
19
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
+ print(f"Using device: {device}")
21
+
22
+
23
+ data = pd.read_csv('data.csv')
24
+
25
+
26
+ X = data.drop(columns=['OS.time']).values
27
+ y = data['OS.time'].values
28
+
29
+ scaler = StandardScaler()
30
+ X_scaled = scaler.fit_transform(X)
31
+
32
+ X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
33
+
34
+ X_train_tensor = torch.tensor(X_train, dtype=torch.float32).to(device)
35
+ y_train_tensor = torch.tensor(y_train, dtype=torch.float32).view(-1, 1).to(device)
36
+ X_test_tensor = torch.tensor(X_test, dtype=torch.float32).to(device)
37
+ y_test_tensor = torch.tensor(y_test, dtype=torch.float32).view(-1, 1).to(device)
38
+
39
+ train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
40
+ test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
41
+
42
+ train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
43
+ test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
44
+
45
+
46
+ class SimpleNN(nn.Module):
47
+ def __init__(self, input_dim, hidden_dim, num_layers, dropout_rate):
48
+ super(SimpleNN, self).__init__()
49
+ self.layers = nn.ModuleList()
50
+ last_dim = input_dim
51
+ for _ in range(num_layers):
52
+ self.layers.append(nn.Linear(last_dim, hidden_dim))
53
+ self.layers.append(nn.ReLU())
54
+ self.layers.append(nn.Dropout(dropout_rate))
55
+ last_dim = hidden_dim
56
+ self.layers.append(nn.Linear(last_dim, 1))
57
+
58
+ def forward(self, x):
59
+ for layer in self.layers:
60
+ x = layer(x)
61
+ return x
62
+
63
+
64
+ def weights_init(m):
65
+ if isinstance(m, nn.Linear):
66
+ nn.init.kaiming_uniform_(m.weight)
67
+ nn.init.zeros_(m.bias)
68
+
69
+
70
+ def objective(trial):
71
+
72
+ num_layers = trial.suggest_int('num_layers', 2, 5)
73
+ hidden_dim = trial.suggest_int('hidden_dim', 50, 200)
74
+ dropout_rate = trial.suggest_float('dropout_rate', 0.2, 0.5)
75
+ momentum = trial.suggest_float('momentum', 0.5, 0.9)
76
+ num_epochs = trial.suggest_int('num_epochs', 6000, 10000)
77
+
78
+
79
+ model = SimpleNN(X_train.shape[1], hidden_dim, num_layers, dropout_rate).to(device)
80
+ model.apply(weights_init)
81
+
82
+ criterion = nn.MSELoss()
83
+ optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=momentum)
84
+
85
+
86
+ for epoch in range(num_epochs):
87
+ model.train()
88
+ for inputs, targets in train_loader:
89
+ optimizer.zero_grad()
90
+ outputs = model(inputs)
91
+ loss = criterion(outputs, targets)
92
+ loss.backward()
93
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
94
+ optimizer.step()
95
+
96
+
97
+ model.eval()
98
+ test_loss = 0
99
+ with torch.no_grad():
100
+ for inputs, targets in test_loader:
101
+ outputs = model(inputs)
102
+ test_loss += criterion(outputs, targets).item() * inputs.size(0)
103
+
104
+ test_loss /= len(test_loader.dataset)
105
+
106
+ trial.report(test_loss, epoch)
107
+
108
+ if trial.should_prune():
109
+ raise optuna.exceptions.TrialPruned()
110
+
111
+ return test_loss
112
+
113
+
114
+ study = optuna.create_study(direction='minimize')
115
+ study.optimize(objective, n_trials=200)
116
+
117
+
118
+ print(f"Best trial parameters: {study.best_trial.params}")
119
+ print(f"Best trial test loss: {study.best_trial.value}")
120
+
121
+
122
+ import optuna.visualization as vis
123
+
124
+ vis.plot_param_importances(study).show()
125
+
126
+ vis.plot_parallel_coordinate(study).show()
127
+
128
+ best_params = study.best_trial.params
129
+
130
+ model = SimpleNN(X_train.shape[1], best_params['hidden_dim'], best_params['num_layers'], best_params['dropout_rate']).to(device)
131
+ model.apply(weights_init)
132
+
133
+ criterion = nn.MSELoss()
134
+ optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=best_params['momentum'])
135
+
136
+ test_losses = []
137
+ for epoch in range(best_params['num_epochs']):
138
+ model.train()
139
+ for inputs, targets in train_loader:
140
+ optimizer.zero_grad()
141
+ outputs = model(inputs)
142
+ loss = criterion(outputs, targets)
143
+ loss.backward()
144
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
145
+ optimizer.step()
146
+
147
+ model.eval()
148
+ test_loss = 0
149
+ with torch.no_grad():
150
+ for inputs, targets in test_loader:
151
+ outputs = model(inputs)
152
+ test_loss += criterion(outputs, targets).item() * inputs.size(0)
153
+
154
+ test_loss /= len(test_loader.dataset)
155
+
156
+ if epoch % 100 == 0:
157
+ test_losses.append(test_loss)
158
+ print(f'Epoch {epoch+1}, Test Loss: {test_loss}')
159
+
160
+ print("Training completed with best hyperparameters.")
161
+
162
+
163
+ plt.figure(figsize=(10, 5))
164
+ plt.plot(range(1, len(test_losses) * 100, 100), test_losses, label='Test Loss')
165
+ plt.xlabel('Epoch')
166
+ plt.ylabel('Test Loss')
167
+ plt.title('Test Loss over Epochs')
168
+ plt.legend()
169
+ plt.show()
methane.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import matplotlib.cm as cm
5
+ from sklearn.model_selection import train_test_split
6
+ from sklearn.preprocessing import StandardScaler
7
+ from sklearn.metrics import r2_score
8
+ from scipy.stats import pearsonr
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.optim as optim
12
+ from torch.utils.data import DataLoader, TensorDataset
13
+ import os
14
+
15
+
16
+ script_path = os.path.abspath(__file__)
17
+ script_dir = os.path.dirname(script_path)
18
+ os.chdir(script_dir)
19
+
20
+
21
+ data = pd.read_csv('data.csv')
22
+
23
+
24
+ X = data.drop(columns=['OS.time']).values
25
+ y = data['OS.time'].values
26
+
27
+
28
+ print(np.isnan(X).sum(), np.isnan(y).sum())
29
+ print(np.isinf(X).sum(), np.isinf(y).sum())
30
+
31
+ scaler = StandardScaler()
32
+ X_scaled = scaler.fit_transform(X)
33
+
34
+ X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
35
+
36
+ X_train_tensor = torch.tensor(X_train, dtype=torch.float32)
37
+ y_train_tensor = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)
38
+ X_test_tensor = torch.tensor(X_test, dtype=torch.float32)
39
+ y_test_tensor = torch.tensor(y_test, dtype=torch.float32).view(-1, 1)
40
+
41
+ train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
42
+ test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
43
+
44
+ train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
45
+ test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
46
+
47
+
48
+ class SimpleNN(nn.Module):
49
+ def __init__(self, input_dim):
50
+ super(SimpleNN, self).__init__()
51
+ self.fc1 = nn.Linear(input_dim, 100)
52
+ self.dropout1 = nn.Dropout(0.5)
53
+ self.fc2 = nn.Linear(100, 100)
54
+ self.dropout2 = nn.Dropout(0.5)
55
+ self.fc3 = nn.Linear(100, 1)
56
+
57
+ def forward(self, x):
58
+ x = torch.relu(self.fc1(x))
59
+ x = self.dropout1(x)
60
+ x = torch.relu(self.fc2(x))
61
+ x = self.dropout2(x)
62
+ x = self.fc3(x)
63
+ return x
64
+
65
+
66
+ def weights_init(m):
67
+ if isinstance(m, nn.Linear):
68
+ nn.init.kaiming_uniform_(m.weight)
69
+ nn.init.zeros_(m.bias)
70
+
71
+ model = SimpleNN(X_train.shape[1])
72
+ model.apply(weights_init)
73
+
74
+ criterion = nn.MSELoss()
75
+ optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=0.9)
76
+
77
+
78
+ best_test_loss = float('inf')
79
+ best_model_state = None
80
+
81
+
82
+ num_epochs = 10000
83
+ train_losses = []
84
+ test_losses = []
85
+ all_predictions = []
86
+ gradients = []
87
+ r2_scores = []
88
+
89
+ for epoch in range(num_epochs):
90
+ model.train()
91
+ train_loss = 0.0
92
+ epoch_gradients = []
93
+ for inputs, targets in train_loader:
94
+ optimizer.zero_grad()
95
+ outputs = model(inputs)
96
+ loss = criterion(outputs, targets)
97
+ loss.backward()
98
+
99
+ for param in model.parameters():
100
+ epoch_gradients.append(param.grad.abs().mean().item())
101
+
102
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
103
+ optimizer.step()
104
+ train_loss += loss.item()
105
+
106
+ train_loss /= len(train_loader)
107
+ train_losses.append(train_loss)
108
+ gradients.append(epoch_gradients)
109
+ print(f'Epoch {epoch+1}, Train Loss: {train_loss}')
110
+
111
+ model.eval()
112
+ test_loss = 0.0
113
+ predictions = []
114
+ with torch.no_grad():
115
+ for inputs, targets in test_loader:
116
+ outputs = model(inputs)
117
+ loss = criterion(outputs, targets)
118
+ test_loss += loss.item()
119
+ predictions.append(outputs.numpy())
120
+
121
+ test_loss /= len(test_loader)
122
+ test_losses.append(test_loss)
123
+ all_predictions.append(predictions)
124
+
125
+
126
+ predictions_flat = np.concatenate(predictions).flatten()
127
+ r2 = r2_score(y_test, predictions_flat)
128
+ r2_scores.append(r2)
129
+ print(f'Epoch {epoch+1}, R^2: {r2}')
130
+
131
+
132
+ if test_loss < best_test_loss:
133
+ best_test_loss = test_loss
134
+ best_model_state = model.state_dict()
135
+ torch.save(best_model_state, 'best_model.pth')
136
+ print(f'Saved new best model at epoch {epoch+1} with test loss {test_loss}')
137
+
138
+
139
+
140
+
141
+
142
+ plt.figure(figsize=(10, 5))
143
+ plt.plot(range(1, num_epochs + 1), train_losses, label='Train Loss')
144
+ plt.plot(range(1, num_epochs + 1), test_losses, label='Test Loss')
145
+
146
+
147
+ window_size = 50
148
+ train_losses_ma = pd.Series(train_losses).rolling(window=window_size).mean()
149
+ test_losses_ma = pd.Series(test_losses).rolling(window=window_size).mean()
150
+
151
+ plt.plot(range(1, num_epochs + 1), train_losses_ma, label='Train Loss (MA)', linestyle='--')
152
+ plt.plot(range(1, num_epochs + 1), test_losses_ma, label='Test Loss (MA)', linestyle='--')
153
+
154
+ plt.xlabel('Epoch')
155
+ plt.ylabel('Loss')
156
+ plt.title('Train and Test Loss with Moving Average')
157
+ plt.legend()
158
+ plt.savefig('train_test_loss.png')
159
+ plt.close()
160
+
161
+
162
+ final_predictions = np.array(all_predictions[-1]).flatten()
163
+ actuals = y_test_tensor.numpy().flatten()
164
+
165
+
166
+ correlation, p_value = pearsonr(actuals, final_predictions)
167
+ print(f'Pearson Correlation: {correlation}')
168
+ print(f'P-value: {p_value}')
169
+
170
+
171
+ plt.figure(figsize=(10, 5))
172
+ plt.scatter(actuals, final_predictions, color='blue', label=f'Predictions vs Actuals (r={correlation:.2f}, p={p_value:.2g})')
173
+ plt.plot([min(actuals), max(actuals)], [min(actuals), max(actuals)], color='red', linestyle='--', label='Ideal Fit')
174
+ plt.xlabel('Actual OS.time')
175
+ plt.ylabel('Predicted OS.time')
176
+ plt.title('Predictions vs Actuals')
177
+ plt.legend()
178
+ plt.savefig('predictions_vs_actuals.png')
179
+ plt.close()
180
+
181
+
182
+ errors = final_predictions - actuals
183
+ plt.figure(figsize=(10, 5))
184
+ plt.hist(errors, bins=30, color='purple', alpha=0.7)
185
+ plt.xlabel('Prediction Error')
186
+ plt.ylabel('Frequency')
187
+ plt.title('Error Distribution')
188
+ plt.savefig('error_distribution.png')
189
+ plt.close()
190
+
191
+
192
+ actuals = y_test_tensor.numpy()
193
+ colors = cm.viridis(np.linspace(0, 1, num_epochs))
194
+
195
+ plt.figure(figsize=(10, 5))
196
+ plt.plot(actuals, label='Actual Values', color='b', marker='o', linestyle='-')
197
+
198
+ for i in range(0, num_epochs, max(1, num_epochs // 100)):
199
+ predictions = np.array(all_predictions[i]).flatten()
200
+ plt.plot(predictions, label=f'Epoch {i+1}', color=colors[i], linestyle='--')
201
+
202
+ plt.xlabel('Sample Index')
203
+ plt.ylabel('OS.time')
204
+ plt.title('Actual vs Predicted Values Over Time')
205
+ plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
206
+ plt.savefig('actual_vs_predicted_over_time.png')
207
+ plt.close()
208
+
209
+
210
+ for i, layer in enumerate(model.children()):
211
+ if isinstance(layer, nn.Linear):
212
+ plt.figure(figsize=(10, 5))
213
+ plt.hist(layer.weight.detach().numpy().flatten(), bins=30, alpha=0.6, color='blue')
214
+ plt.xlabel(f'Layer {i+1} Weights')
215
+ plt.ylabel('Frequency')
216
+ plt.title(f'Weight Distribution of Layer {i+1}')
217
+ plt.savefig(f'layer_{i+1}_weight_distribution.png')
218
+ plt.close()
219
+
220
+
221
+ importances = np.abs(model.fc1.weight.detach().numpy()).sum(axis=0)
222
+ indices = np.argsort(importances)
223
+
224
+ plt.figure(figsize=(10, 5))
225
+ plt.barh(range(X_train.shape[1]), importances[indices], align='center')
226
+ plt.xlabel('Importance')
227
+ plt.ylabel('Feature Index')
228
+ plt.title('Feature Importances in the First Layer')
229
+ plt.savefig('feature_importances.png')
230
+ plt.close()
231
+
232
+
233
+ for i, layer in enumerate(model.children()):
234
+ if isinstance(layer, nn.Linear):
235
+ plt.figure(figsize=(10, 5))
236
+ plt.imshow(layer.weight.detach().numpy(), aspect='auto', cmap='viridis')
237
+ plt.colorbar()
238
+ plt.title(f'Weight Heatmap of Layer {i+1}')
239
+ plt.xlabel('Input Features')
240
+ plt.ylabel('Neurons')
241
+ plt.savefig(f'layer_{i+1}_weight_heatmap.png')
242
+ plt.close()
243
+
244
+
245
+ plt.figure(figsize=(10, 5))
246
+ plt.plot(range(1, num_epochs + 1), r2_scores, label='R^2 Score')
247
+
248
+
249
+ r2_scores_ma = pd.Series(r2_scores).rolling(window=window_size).mean()
250
+ plt.plot(range(1, num_epochs + 1), r2_scores_ma, label='R^2 Score (MA)', linestyle='--')
251
+
252
+ plt.xlabel('Epoch')
253
+ plt.ylabel('R^2 Score')
254
+ plt.title('R^2 Score over Epochs')
255
+ plt.legend()
256
+ plt.savefig('r2_over_epochs.png')
257
+ plt.close()
use_pre_pca.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from sklearn.preprocessing import StandardScaler
3
+ import joblib
4
+ import os
5
+ script_path=os.path.abspath(__file__)
6
+ script_dir=os.path.dirname(script_path)
7
+ os.chdir(script_dir)
8
+
9
+ pca_model_path = 'pca_model.pkl'
10
+ loaded_pca = joblib.load(pca_model_path)
11
+
12
+
13
+
14
+ file_path = 'TCGA-LGG.methylation450.tsv'
15
+ new_data = pd.read_csv(file_path, sep='\t', index_col=0)
16
+
17
+
18
+
19
+ new_data.dropna(inplace=True)
20
+
21
+
22
+ scaler = StandardScaler()
23
+ scaled_new_data = scaler.fit_transform(new_data.T)
24
+
25
+
26
+ new_principal_components = loaded_pca.transform(scaled_new_data)
27
+
28
+
29
+ sample_ids = new_data.columns
30
+ new_principal_df = pd.DataFrame(data=new_principal_components, columns=[f'Principal Component {i+1}' for i in range(loaded_pca.n_components_)], index=sample_ids)
31
+
32
+
33
+ print(new_principal_df)
34
+
35
+ output_file_path = 'pca_principal_components.csv'
36
+ new_principal_df.to_csv(output_file_path)
webplot.png ADDED

Git LFS Details

  • SHA256: 5d425b619a07ba42ba2e993917fa26aad0b50148a73d8097d765e1b756ac7cb6
  • Pointer size: 132 Bytes
  • Size of remote file: 1.17 MB
webplot.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import networkx as nx
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ import os
7
+ script_path=os.path.abspath(__file__)
8
+ script_dir=os.path.dirname(script_path)
9
+ os.chdir(script_dir)
10
+ class SimpleNN(nn.Module):
11
+ def __init__(self, input_dim):
12
+ super(SimpleNN, self).__init__()
13
+ self.fc1 = nn.Linear(input_dim, 100)
14
+ self.dropout1 = nn.Dropout(0.5)
15
+ self.fc2 = nn.Linear(100, 100)
16
+ self.dropout2 = nn.Dropout(0.5)
17
+ self.fc3 = nn.Linear(100, 1)
18
+
19
+ def forward(self, x):
20
+ x = torch.relu(self.fc1(x))
21
+ x = self.dropout1(x)
22
+ x = torch.relu(self.fc2(x))
23
+ x = self.dropout2(x)
24
+ x = self.fc3(x)
25
+ return x
26
+
27
+
28
+ input_dim = 51
29
+ model = SimpleNN(input_dim)
30
+ model.load_state_dict(torch.load('best_model.pth'))
31
+ model.eval()
32
+
33
+
34
+ weights = []
35
+ weights.append(model.fc1.weight.detach().numpy())
36
+ weights.append(model.fc2.weight.detach().numpy())
37
+ weights.append(model.fc3.weight.detach().numpy())
38
+
39
+
40
+ layers = [input_dim, 100, 100, 1]
41
+
42
+
43
+ def draw_neural_network(layers, weights):
44
+ G = nx.Graph()
45
+
46
+
47
+ pos = {}
48
+ layer_nodes = []
49
+ for i, num_nodes in enumerate(layers):
50
+ layer_nodes.append([])
51
+ for j in range(num_nodes):
52
+ node_name = f'L{i}_N{j}'
53
+ layer_nodes[-1].append(node_name)
54
+ pos[node_name] = (i, -j + num_nodes // 2)
55
+
56
+
57
+ edges = []
58
+ edge_colors = []
59
+ for i in range(len(layers) - 1):
60
+ for j, node in enumerate(layer_nodes[i]):
61
+ for k, next_node in enumerate(layer_nodes[i+1]):
62
+ weight = weights[i][k, j]
63
+ edges.append((node, next_node))
64
+ edge_colors.append(weight)
65
+
66
+ G.add_edges_from(edges)
67
+
68
+
69
+ plt.figure(figsize=(10, 10))
70
+ nx.draw(G, pos, with_labels=False, node_size=700, node_color='lightblue',
71
+ edge_color=edge_colors, edge_cmap=plt.cm.viridis,
72
+ width=2, edge_vmin=min(edge_colors), edge_vmax=max(edge_colors))
73
+
74
+
75
+ for key, value in pos.items():
76
+ plt.text(value[0], value[1] + 0.1, key, ha='center', va='center')
77
+
78
+ plt.title("Neural Network Visualization")
79
+ plt.show()
80
+
81
+ draw_neural_network(layers, weights)