|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch Phi-4-MM model.""" | 
					
						
						|  | import math | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import CrossEntropyLoss | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache | 
					
						
						|  | from transformers.generation import GenerationMixin | 
					
						
						|  | from transformers.modeling_attn_mask_utils import AttentionMaskConverter | 
					
						
						|  | from transformers.modeling_flash_attention_utils import _flash_attention_forward | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPast, | 
					
						
						|  | CausalLMOutputWithPast, | 
					
						
						|  | SequenceClassifierOutputWithPast, | 
					
						
						|  | TokenClassifierOutput, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_code_sample_docstrings, | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  | from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig | 
					
						
						|  |  | 
					
						
						|  | from .configuration_phi4mm import Phi4MMConfig | 
					
						
						|  | from .processing_phi4mm import InputMode | 
					
						
						|  | from .vision_siglip_navit import get_siglip_vision_model | 
					
						
						|  | from .speech_conformer_encoder import ConformerEncoder | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CHECKPOINT_FOR_DOC = "TBA" | 
					
						
						|  | _CONFIG_FOR_DOC = "Phi4MMConfig" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _IMAGE_SPECIAL_TOKEN_ID = 200010 | 
					
						
						|  | _AUDIO_SPECIAL_TOKEN_ID = 200011 | 
					
						
						|  | _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE = [-9999, -1] | 
					
						
						|  | _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE = [float('-inf'), -10000] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMImageEmbedding(nn.Module): | 
					
						
						|  | """Image embedding.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: PretrainedConfig, **kwargs) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size | 
					
						
						|  | if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): | 
					
						
						|  | embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop | 
					
						
						|  | self.drop = nn.Dropout(embd_drop) | 
					
						
						|  | else: | 
					
						
						|  | self.drop = None | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"create image tower {config.img_processor}") | 
					
						
						|  | enable_gradient_checkpointing = kwargs.get('enable_gradient_checkpointing', False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.img_processor = get_siglip_vision_model( | 
					
						
						|  | _flash_attn_2_enabled=config._attn_implementation == 'flash_attention_2' | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pe_weight = self.img_processor.embeddings.position_embedding.weight | 
					
						
						|  | L, D = pe_weight.size() | 
					
						
						|  | H = int(math.sqrt(L)) | 
					
						
						|  | assert H**2 == L | 
					
						
						|  | if H % 2 != 0: | 
					
						
						|  | self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1)) | 
					
						
						|  | H += 1 | 
					
						
						|  | image_dim_out = D | 
					
						
						|  |  | 
					
						
						|  | self.num_img_tokens = (H//2)**2 | 
					
						
						|  | self.base_feat_height_target = H | 
					
						
						|  |  | 
					
						
						|  | if enable_gradient_checkpointing: | 
					
						
						|  | self.img_processor.encoder.gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | self.image_dim_out = image_dim_out | 
					
						
						|  | self.img_sizes = None | 
					
						
						|  | self.image_attention_mask = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.use_hd_transform = kwargs.get('use_hd_transform', False) | 
					
						
						|  | self.with_learnable_separator = kwargs.get('with_learnable_separator', False) | 
					
						
						|  | self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub') | 
					
						
						|  | self.freeze_img_processor = kwargs.get('freeze_img_processor', False) | 
					
						
						|  | self.crop_size = kwargs.get('crop_size', 336) | 
					
						
						|  | logger.info(f'freeze_img_processor = {self.freeze_img_processor}') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.image_token_compression_cls = kwargs.get('image_token_compression_cls', None) | 
					
						
						|  | if self.image_token_compression_cls == 'avg_pool_2d': | 
					
						
						|  | self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2) | 
					
						
						|  | self.base_feat_height_reduction = 1 | 
					
						
						|  | self.base_feat_height_target = self.base_feat_height_target // 2 | 
					
						
						|  | elif self.image_token_compression_cls is None: | 
					
						
						|  | self.image_token_compression = None | 
					
						
						|  | self.base_feat_height_reduction = 2 | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'image_token_compression_cls = {self.image_token_compression_cls}, not implemented') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value' | 
					
						
						|  | if self.with_learnable_separator: | 
					
						
						|  | assert self.use_hd_transform, 'learnable separator is only for hd transform' | 
					
						
						|  |  | 
					
						
						|  | self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * self.base_feat_height_reduction**2])) | 
					
						
						|  | self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * self.base_feat_height_reduction**2])) | 
					
						
						|  | logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}') | 
					
						
						|  |  | 
					
						
						|  | projection_cls = kwargs.get('projection_cls', 'linear') | 
					
						
						|  | if projection_cls == 'linear': | 
					
						
						|  | self.img_projection = nn.Linear(image_dim_out, hidden_size) | 
					
						
						|  | elif projection_cls == 'mlp' and self.use_hd_transform: | 
					
						
						|  | dim_projection = hidden_size | 
					
						
						|  | depth = 2 | 
					
						
						|  | layers = [nn.Linear(image_dim_out * self.base_feat_height_reduction**2, dim_projection)] | 
					
						
						|  | for _ in range(1, depth): | 
					
						
						|  | layers.extend([nn.GELU(), | 
					
						
						|  | nn.Linear(dim_projection, dim_projection)]) | 
					
						
						|  | self.img_projection = nn.Sequential(*layers) | 
					
						
						|  | elif projection_cls == 'mlp': | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dim_projection = hidden_size | 
					
						
						|  | depth = 2 | 
					
						
						|  | layers = [nn.Linear(image_dim_out, dim_projection)] | 
					
						
						|  | for _ in range(1, depth): | 
					
						
						|  | layers.extend([nn.GELU(), | 
					
						
						|  | nn.Linear(dim_projection, dim_projection)]) | 
					
						
						|  | self.img_projection = nn.Sequential(*layers) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.img_features = None | 
					
						
						|  |  | 
					
						
						|  | if isinstance(config.img_processor, dict): | 
					
						
						|  | self.layer_idx = config.img_processor.get('layer_idx', -2) | 
					
						
						|  | self.type_feature = config.img_processor.get('type_feature', 'patch') | 
					
						
						|  | else: | 
					
						
						|  | self.layer_idx = -2 | 
					
						
						|  | self.type_feature = 'patch' | 
					
						
						|  |  | 
					
						
						|  | def set_img_features(self, img_features: torch.FloatTensor) -> None: | 
					
						
						|  | self.img_features = img_features | 
					
						
						|  |  | 
					
						
						|  | def set_img_sizes(self, img_sizes: torch.LongTensor) -> None: | 
					
						
						|  | self.img_sizes = img_sizes | 
					
						
						|  |  | 
					
						
						|  | def set_img_attn_mask(self, image_attention_mask: torch.FloatTensor) -> None: | 
					
						
						|  | self.image_attention_mask = image_attention_mask | 
					
						
						|  |  | 
					
						
						|  | def get_img_features(self, img_embeds: torch.FloatTensor, attention_mask=None) -> torch.FloatTensor: | 
					
						
						|  | LAYER_IDX = self.layer_idx | 
					
						
						|  | TYPE_FEATURE = self.type_feature | 
					
						
						|  |  | 
					
						
						|  | if self.freeze_img_processor: | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | img_processor_output = self.img_processor(img_embeds, output_hidden_states=True, patch_attention_mask=attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) | 
					
						
						|  | img_feature = img_processor_output.hidden_states[LAYER_IDX] | 
					
						
						|  | else: | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | img_processor_output = self.img_processor(img_embeds, output_hidden_states=True, patch_attention_mask=attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) | 
					
						
						|  | img_feature = img_processor_output.hidden_states[LAYER_IDX] | 
					
						
						|  |  | 
					
						
						|  | if TYPE_FEATURE == "patch": | 
					
						
						|  | patch_feature = img_feature | 
					
						
						|  | if self.image_token_compression is not None: | 
					
						
						|  |  | 
					
						
						|  | width = int(math.sqrt(patch_feature.size(1))) | 
					
						
						|  | patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) | 
					
						
						|  |  | 
					
						
						|  | patch_feature = patch_feature.permute(0, 3, 1, 2) | 
					
						
						|  | if getattr(self, 'img_processor_padding', None) is not None: | 
					
						
						|  | patch_feature = self.img_processor_padding(patch_feature) | 
					
						
						|  | patch_feature = self.image_token_compression(patch_feature) | 
					
						
						|  |  | 
					
						
						|  | patch_feature = patch_feature.permute(0, 2, 3, 1) | 
					
						
						|  | patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1)) | 
					
						
						|  | elif getattr(self, 'img_processor_padding', None) is not None: | 
					
						
						|  | width = int(math.sqrt(patch_feature.size(1))) | 
					
						
						|  | patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) | 
					
						
						|  |  | 
					
						
						|  | patch_feature = patch_feature.permute(0, 3, 1, 2) | 
					
						
						|  | patch_feature = self.img_processor_padding(patch_feature) | 
					
						
						|  |  | 
					
						
						|  | patch_feature = patch_feature.permute(0, 2, 3, 1) | 
					
						
						|  | patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1)) | 
					
						
						|  | return patch_feature | 
					
						
						|  |  | 
					
						
						|  | if TYPE_FEATURE == "cls_patch": | 
					
						
						|  | if self.image_token_compression is not None: | 
					
						
						|  |  | 
					
						
						|  | patch_feature = img_feature[:, 1:] | 
					
						
						|  | cls_feature = img_feature[:, 0] | 
					
						
						|  | width = math.sqrt(patch_feature.size(1)) | 
					
						
						|  | patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) | 
					
						
						|  | patch_feature = self.image_token_compression(patch_feature) | 
					
						
						|  | patch_feature = patch_feature.view(-1, patch_feature.size(-2) * patch_feature.size(-1)) | 
					
						
						|  | img_feature = torch.cat([cls_feature, patch_feature], dim=1) | 
					
						
						|  | return img_feature | 
					
						
						|  |  | 
					
						
						|  | logger.info(f'processed img feature size = {img_feature.size()}') | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | def spatiotemporal_pool(self, x, num_img_tokens, batch_size=1, T=1): | 
					
						
						|  |  | 
					
						
						|  | if self.image_pos_embed is not None: | 
					
						
						|  | x = x.view(batch_size * T, -1, x.shape[-1]) | 
					
						
						|  | num_tokens = x.shape[-2] | 
					
						
						|  | h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5) | 
					
						
						|  | assert h * w == num_tokens, 'only support square feature maps for now' | 
					
						
						|  | x = x.view(batch_size * T, h, w, x.shape[-1]) | 
					
						
						|  | pos_embed = self.image_pos_embed(x) | 
					
						
						|  | x = x + pos_embed | 
					
						
						|  | x = x.view(batch_size, T * h * w, x.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if self.visual_temporal_embed is not None: | 
					
						
						|  | visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0]) | 
					
						
						|  | x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | new_x = [] | 
					
						
						|  |  | 
					
						
						|  | spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2) | 
					
						
						|  | new_x.append(spatial_avg_pool_x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1) | 
					
						
						|  | new_x.append(temporal_avg_pool_x) | 
					
						
						|  |  | 
					
						
						|  | x = torch.cat(new_x, dim=1).view(-1, self.image_dim_out) | 
					
						
						|  | num_img_tokens += T | 
					
						
						|  | return x, num_img_tokens | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input_ids: torch.LongTensor, input_embeds: torch.FloatTensor, image_sizes=None, **kwargs) -> torch.FloatTensor: | 
					
						
						|  |  | 
					
						
						|  | if isinstance(input_ids, tuple): | 
					
						
						|  |  | 
					
						
						|  | input_ids, input_embeds = input_ids | 
					
						
						|  |  | 
					
						
						|  | img_embeds = input_embeds | 
					
						
						|  | if image_sizes is None and 'image_sizes' in kwargs: | 
					
						
						|  | image_sizes = kwargs['image_sizes'] | 
					
						
						|  | img_sizes = image_sizes | 
					
						
						|  |  | 
					
						
						|  | if self.img_features is not None: | 
					
						
						|  | img_embeds = self.img_features.clone() | 
					
						
						|  | self.img_features = None | 
					
						
						|  |  | 
					
						
						|  | if self.img_sizes is not None: | 
					
						
						|  | img_sizes = self.img_sizes | 
					
						
						|  |  | 
					
						
						|  | dtype = self.img_processor.embeddings.patch_embedding.weight.dtype | 
					
						
						|  | if img_embeds is not None: | 
					
						
						|  |  | 
					
						
						|  | img_embeds = img_embeds.to(dtype) | 
					
						
						|  |  | 
					
						
						|  | if self.image_attention_mask is not None: | 
					
						
						|  | image_attention_mask = self.image_attention_mask.clone() | 
					
						
						|  | self.image_attention_mask = None | 
					
						
						|  | elif 'image_attention_mask' in kwargs: | 
					
						
						|  | image_attention_mask = kwargs['image_attention_mask'] | 
					
						
						|  | else: | 
					
						
						|  | image_attention_mask = None | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | input_ids = input_ids.view(-1, input_shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | positions = torch.nonzero(input_ids == _IMAGE_SPECIAL_TOKEN_ID, as_tuple=False) | 
					
						
						|  | positions_tuple = torch.nonzero(input_ids == _IMAGE_SPECIAL_TOKEN_ID, as_tuple=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fake_image_forward = False | 
					
						
						|  | select = False | 
					
						
						|  | hd_transform = False | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.img_projection, nn.Sequential): | 
					
						
						|  | target_device = self.img_projection[0].bias.device | 
					
						
						|  | target_dtype = self.img_projection[0].bias.dtype | 
					
						
						|  | else: | 
					
						
						|  | target_device = self.img_projection.bias.device | 
					
						
						|  | target_dtype = self.img_projection.bias.dtype | 
					
						
						|  |  | 
					
						
						|  | num_img_tokens = self.num_img_tokens | 
					
						
						|  | if len(positions.tolist()) > 0: | 
					
						
						|  | if self.use_hd_transform and img_sizes is not None and len(img_sizes): | 
					
						
						|  | hd_transform = True | 
					
						
						|  | assert img_embeds.ndim == 5, f'(branch 1) img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | bs = img_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if image_attention_mask is not None and len(image_attention_mask) > 0: | 
					
						
						|  | img_features = self.get_img_features(img_embeds.flatten(0, 1), attention_mask=image_attention_mask.type(torch.BoolTensor).flatten(0,1).to(target_device)) | 
					
						
						|  | else: | 
					
						
						|  | img_features = self.get_img_features(img_embeds.flatten(0, 1)) | 
					
						
						|  |  | 
					
						
						|  | base_feat_height_target = self.base_feat_height_target | 
					
						
						|  | base_resolution = self.crop_size | 
					
						
						|  | base_feat_height_reduction = self.base_feat_height_reduction | 
					
						
						|  |  | 
					
						
						|  | base_feat_height = base_feat_width = int(np.sqrt(img_features.shape[1])) | 
					
						
						|  |  | 
					
						
						|  | assert base_feat_height == base_feat_height_target and base_feat_width == base_feat_height_target, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect {base_feat_height_target} features for hd transform' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out) | 
					
						
						|  | C = self.image_dim_out | 
					
						
						|  | H = base_feat_height | 
					
						
						|  |  | 
					
						
						|  | output_imgs = [] | 
					
						
						|  | output_len = [] | 
					
						
						|  |  | 
					
						
						|  | if isinstance(img_sizes, torch.Tensor): | 
					
						
						|  | img_sizes = img_sizes.view(-1, 2) | 
					
						
						|  | for _bs in range(bs): | 
					
						
						|  | h, w = img_sizes[_bs] | 
					
						
						|  | h = h // base_resolution | 
					
						
						|  | w = w // base_resolution | 
					
						
						|  | B_ = h * w | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | global_img_feature = img_features[_bs, :1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//base_feat_height_reduction,base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction*base_feat_height_reduction*C).contiguous() | 
					
						
						|  | temp_glb_GN = self.sub_GN.repeat(1, H//base_feat_height_reduction, 1, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,base_feat_height_reduction*base_feat_height_reduction*C) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sub_img = img_features[_bs, 1:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sub_img = sub_img[:B_] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//base_feat_height_reduction,base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,base_feat_height_reduction*base_feat_height_reduction*C).contiguous() | 
					
						
						|  | sub_img = sub_img.reshape(1, h, w, base_feat_height // base_feat_height_reduction, base_feat_width // base_feat_height_reduction, -1).permute(0,1,3,2,4,5).reshape(1,h*base_feat_height//base_feat_height_reduction,w*base_feat_width//base_feat_height_reduction,base_feat_height_reduction*base_feat_height_reduction*C) | 
					
						
						|  |  | 
					
						
						|  | if image_attention_mask is not None and len(image_attention_mask) > 0: | 
					
						
						|  | reshaped_image_attention_mask = image_attention_mask[_bs,1:B_+1,0::2,0::2].reshape(1, h, w, base_feat_height // base_feat_height_reduction, base_feat_width // base_feat_height_reduction).permute(0,1,3,2,4).reshape(1,h*base_feat_height//base_feat_height_reduction,w*base_feat_width//base_feat_height_reduction) | 
					
						
						|  | useful_height = int(reshaped_image_attention_mask[0,:,0].sum().item()) | 
					
						
						|  | useful_width = int(reshaped_image_attention_mask[0,0,:].sum().item()) | 
					
						
						|  | sub_img = sub_img[:,:useful_height, :useful_width] | 
					
						
						|  | temp_sub_GN = self.sub_GN.repeat(1, useful_height, 1, 1) | 
					
						
						|  | temp_len = int(image_attention_mask[_bs,:B_+1,0::2,0::2].sum().item()) + (useful_height+1) + base_feat_height//base_feat_height_reduction | 
					
						
						|  | else: | 
					
						
						|  | temp_sub_GN = self.sub_GN.repeat(1, h*base_feat_height//base_feat_height_reduction, 1, 1) | 
					
						
						|  | temp_len = int((h*w+1)*self.num_img_tokens+ 1 + (h+1)*base_feat_height//base_feat_height_reduction) | 
					
						
						|  |  | 
					
						
						|  | sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,base_feat_height_reduction*base_feat_height_reduction*C) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.hd_transform_order == 'glb_sub': | 
					
						
						|  | output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1)) | 
					
						
						|  | elif self.hd_transform_order == 'sub_glb': | 
					
						
						|  | output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1)) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}' | 
					
						
						|  | output_len.append(temp_len) | 
					
						
						|  |  | 
					
						
						|  | num_img_tokens = output_len | 
					
						
						|  | img_set_tensor = [] | 
					
						
						|  | for _output_img in output_imgs: | 
					
						
						|  | img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype)) | 
					
						
						|  | img_set_tensor.append(img_feature_proj) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  | select = True | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.training: | 
					
						
						|  | img_embeds = torch.zeros(1, 3, self.crop_size, self.crop_size, dtype=target_dtype, device=input_ids.device) | 
					
						
						|  |  | 
					
						
						|  | tt = ( | 
					
						
						|  | self.get_img_features(img_embeds) | 
					
						
						|  | .to(target_device) | 
					
						
						|  | .to(target_dtype) | 
					
						
						|  | .reshape(-1, 1024) | 
					
						
						|  | ) | 
					
						
						|  | if self.use_hd_transform: | 
					
						
						|  | img_set_tensor = self.img_projection(tt.reshape(-1, self.image_dim_out*self.base_feat_height_reduction**2) * self.glb_GN[0] * self.sub_GN[0, 0]) | 
					
						
						|  | else: | 
					
						
						|  | img_set_tensor = self.img_projection(tt) | 
					
						
						|  | fake_image_forward = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = kwargs['wte'](input_ids) | 
					
						
						|  |  | 
					
						
						|  | if select: | 
					
						
						|  | if hd_transform: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert all([_img_set_tensor.shape[0] == 1 for _img_set_tensor in img_set_tensor]), 'img_set_tensor should have shape (1, N_tokens, C)' | 
					
						
						|  |  | 
					
						
						|  | merged_img_set_tensor = torch.cat(img_set_tensor, dim=1).squeeze(0) | 
					
						
						|  | merged_img_set_tensor = merged_img_set_tensor.to(hidden_states.dtype).to(hidden_states.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with torch.autocast(device_type=hidden_states.device.type, enabled=False): | 
					
						
						|  | new_hidden_states = hidden_states.index_put( | 
					
						
						|  | indices=positions_tuple, | 
					
						
						|  | values=merged_img_set_tensor, | 
					
						
						|  | accumulate=False | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = new_hidden_states | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | if fake_image_forward and self.training: | 
					
						
						|  | hidden_states = hidden_states + (0 * img_set_tensor[0].to(hidden_states.dtype).to(hidden_states.device)).sum() | 
					
						
						|  |  | 
					
						
						|  | if self.drop is not None: | 
					
						
						|  | hidden_states = self.drop(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMAudioEmbedding(nn.Module): | 
					
						
						|  | """Audio embedding.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: PretrainedConfig, **kwargs) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): | 
					
						
						|  | embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop | 
					
						
						|  | self.drop = nn.Dropout(embd_drop) | 
					
						
						|  | else: | 
					
						
						|  | self.drop = None | 
					
						
						|  |  | 
					
						
						|  | audio_dim_out = None | 
					
						
						|  | logger.info(f"create audio processor {config.audio_processor}") | 
					
						
						|  | self.layer_idx = -2 | 
					
						
						|  |  | 
					
						
						|  | if isinstance(config.audio_processor, dict) and config.audio_processor.get('name', None) == "cascades": | 
					
						
						|  | encoder_config = config.audio_processor.get("config", None) | 
					
						
						|  | assert encoder_config is not None | 
					
						
						|  | self.encoder = ConformerEncoder(**encoder_config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.encoder.post_init({}) | 
					
						
						|  |  | 
					
						
						|  | audio_dim_out = encoder_config["attention_dim"] | 
					
						
						|  | n_mels = encoder_config["input_size"] | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | assert audio_dim_out is not None, "Remember to set values for audio_dim_out" | 
					
						
						|  | self.audio_dim_out = audio_dim_out | 
					
						
						|  | self.audio_dim_in = n_mels | 
					
						
						|  |  | 
					
						
						|  | self.freeze_audio_processor = kwargs.get('freeze_audio_processor', False) | 
					
						
						|  | logger.info(f'freeze_audio_processor = {self.freeze_audio_processor}') | 
					
						
						|  |  | 
					
						
						|  | self.downsample_rate = kwargs.get('downsample_rate', 1) | 
					
						
						|  |  | 
					
						
						|  | enable_gradient_checkpointing = kwargs.get('enable_gradient_checkpointing', False) | 
					
						
						|  | if enable_gradient_checkpointing: | 
					
						
						|  | self.encoder.gradient_checkpointing_enable() | 
					
						
						|  | logger.info(f'gradient checkpointing enabled for audio processor') | 
					
						
						|  |  | 
					
						
						|  | projection_cls = kwargs.get('projection_cls', 'linear') | 
					
						
						|  | if projection_cls == 'linear': | 
					
						
						|  | self.audio_projection = nn.Linear(audio_dim_out, hidden_size) | 
					
						
						|  | elif projection_cls == 'mlp': | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dim_projection = hidden_size | 
					
						
						|  | depth = 2 | 
					
						
						|  | self.linear_downsample_rate = self.downsample_rate | 
					
						
						|  |  | 
					
						
						|  | layers_for_speech = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)] | 
					
						
						|  | for _ in range(1, depth): | 
					
						
						|  | layers_for_speech.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) | 
					
						
						|  | audio_projection_for_speech = nn.Sequential(*layers_for_speech) | 
					
						
						|  |  | 
					
						
						|  | layers_for_vision = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)] | 
					
						
						|  | for _ in range(1, depth): | 
					
						
						|  | layers_for_vision.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) | 
					
						
						|  | audio_projection_for_vision = nn.Sequential(*layers_for_vision) | 
					
						
						|  |  | 
					
						
						|  | self.audio_projection = nn.ModuleDict({ | 
					
						
						|  | 'speech': audio_projection_for_speech, | 
					
						
						|  | 'vision': audio_projection_for_vision | 
					
						
						|  | }) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.input_embeds = None | 
					
						
						|  | self.audio_embed_sizes = None | 
					
						
						|  |  | 
					
						
						|  | def post_init(self, audio_config): | 
					
						
						|  |  | 
					
						
						|  | if audio_config.get('name', None) == "cascades": | 
					
						
						|  | init_model_config = audio_config.get("init_model", {}) | 
					
						
						|  | self.encoder.post_init(init_model_config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "init_model" in audio_config: | 
					
						
						|  | audio_config.pop("init_model") | 
					
						
						|  |  | 
					
						
						|  | def set_audio_embeds(self, input_embeds: torch.FloatTensor) -> None: | 
					
						
						|  | self.input_embeds = input_embeds | 
					
						
						|  |  | 
					
						
						|  | def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None: | 
					
						
						|  | self.audio_embed_sizes = audio_embed_sizes | 
					
						
						|  |  | 
					
						
						|  | def get_audio_features(self, input_embeds: torch.FloatTensor, audio_attention_mask: torch.Tensor, audio_projection_mode: str='speech'): | 
					
						
						|  |  | 
					
						
						|  | if self.freeze_audio_processor: | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | audio_features, masks = self.encoder(input_embeds, audio_attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | audio_features, masks = self.encoder(input_embeds, audio_attention_mask) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.audio_projection, nn.Sequential): | 
					
						
						|  | audio_set_tensor = self.audio_projection(audio_features) | 
					
						
						|  | elif isinstance(self.audio_projection, nn.ModuleDict): | 
					
						
						|  | audio_set_tensor = self.audio_projection[audio_projection_mode](audio_features) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | return audio_set_tensor | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input_ids: torch.LongTensor, input_embeds: torch.FloatTensor, audio_embed_sizes=None, audio_attention_mask=None, audio_projection_mode='speech', **kwargs) -> torch.FloatTensor: | 
					
						
						|  | ''' | 
					
						
						|  | arguments: | 
					
						
						|  | input_ids: input text ids (B, U) | 
					
						
						|  | input_embeds: audio features (B, T, D)  B: num audios in a sequence | 
					
						
						|  | ''' | 
					
						
						|  | if self.input_embeds is not None: | 
					
						
						|  | input_embeds = self.input_embeds.clone() | 
					
						
						|  | if self.audio_embed_sizes is not None: | 
					
						
						|  | audio_embed_sizes = self.audio_embed_sizes.clone() | 
					
						
						|  |  | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | input_ids = input_ids.view(-1, input_shape[-1]) | 
					
						
						|  | MAX_INPUT_ID = int(1e9) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | positions = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=False) | 
					
						
						|  | positions_tuple = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=True) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.audio_projection, nn.Sequential): | 
					
						
						|  | target_device = self.audio_projection[0].bias.device | 
					
						
						|  | target_dtype = self.audio_projection[0].bias.dtype | 
					
						
						|  | elif isinstance(self.audio_projection, nn.ModuleDict): | 
					
						
						|  | target_device = self.audio_projection[audio_projection_mode][0].bias.device | 
					
						
						|  | target_dtype = self.audio_projection[audio_projection_mode][0].bias.dtype | 
					
						
						|  | else: | 
					
						
						|  | target_device = self.audio_projection.bias.device | 
					
						
						|  | target_dtype = self.audio_projection.bias.dtype | 
					
						
						|  |  | 
					
						
						|  | if input_embeds is not None: | 
					
						
						|  | input_embeds = input_embeds.to(target_device).to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  | if len(positions.tolist()) > 0: | 
					
						
						|  | audio_set_tensor = self.get_audio_features(input_embeds, audio_attention_mask, audio_projection_mode) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.training: | 
					
						
						|  | audio_embeds = torch.zeros(1, 500, self.audio_dim_in).to(target_device).to(target_dtype) | 
					
						
						|  | audio_attention_mask = audio_embeds.new_ones(audio_embeds.size()[:2]).long() | 
					
						
						|  | audio_set_tensor = self.get_audio_features(audio_embeds, audio_attention_mask, audio_projection_mode) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = kwargs['wte'](input_ids) | 
					
						
						|  |  | 
					
						
						|  | if len(positions.tolist()) > 0: | 
					
						
						|  |  | 
					
						
						|  | assert audio_embed_sizes.sum().item() == len(positions), \ | 
					
						
						|  | f"please ensure the encoder outputs have the same length as defined in input_ids! \n audio_embed_sizes.sum().item(): {audio_embed_sizes.sum().item()} \n len(positions): {len(positions)} \n audio_embed_sizes: {audio_embed_sizes} \n positions: {positions} \n input_ids.shape \n {input_ids.shape}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | merged_audio_set_tensor = torch.cat([ | 
					
						
						|  | audio_set_tensor[i, :audio_embed_sizes[i], :] | 
					
						
						|  | for i in range(len(audio_embed_sizes)) | 
					
						
						|  | ], dim=0) | 
					
						
						|  | merged_audio_set_tensor = merged_audio_set_tensor.to(hidden_states.dtype).to(hidden_states.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with torch.autocast(device_type=hidden_states.device.type, enabled=False): | 
					
						
						|  | new_hidden_states = hidden_states.index_put( | 
					
						
						|  | indices=positions_tuple, | 
					
						
						|  | values=merged_audio_set_tensor, | 
					
						
						|  | accumulate=False | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = new_hidden_states | 
					
						
						|  | else: | 
					
						
						|  | if self.training: | 
					
						
						|  | hidden_states  = hidden_states + (0 * audio_set_tensor[:,0].to(hidden_states.dtype).to(hidden_states.device)).sum() | 
					
						
						|  |  | 
					
						
						|  | if self.drop is not None: | 
					
						
						|  | hidden_states = self.drop(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMImageAudioEmbedding(nn.Module): | 
					
						
						|  | """Image-audio embedding.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: PretrainedConfig, **kwargs) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.image_input_id = kwargs.get('image_input_id', -1) | 
					
						
						|  | self.audio_input_id = kwargs.get('audio_input_id', -10000) | 
					
						
						|  | assert self.image_input_id != self.audio_input_id, 'image_input_id and audio_input_id should be different' | 
					
						
						|  |  | 
					
						
						|  | self.image_embd_layer_kwargs = kwargs['image_embd_layer'] | 
					
						
						|  | self.image_embed = Phi4MMImageEmbedding(config, **self.image_embd_layer_kwargs) | 
					
						
						|  | self.audio_embd_layer_kwargs = kwargs['audio_embd_layer'] | 
					
						
						|  | self.audio_embed = Phi4MMAudioEmbedding(config, **self.audio_embd_layer_kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.input_image_embeds = None | 
					
						
						|  | self.image_sizes = None | 
					
						
						|  | self.image_attention_mask = None | 
					
						
						|  | self.input_audio_embeds = None | 
					
						
						|  | self.audio_embed_sizes = None | 
					
						
						|  |  | 
					
						
						|  | def post_init(self, audio_config): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.audio_embed.post_init(audio_config) | 
					
						
						|  |  | 
					
						
						|  | def set_input_image_embeds(self, input_image_embeds: torch.FloatTensor) -> None: | 
					
						
						|  | self.input_image_embeds = input_image_embeds | 
					
						
						|  |  | 
					
						
						|  | def set_image_sizes(self, image_sizes: torch.LongTensor) -> None: | 
					
						
						|  | self.image_sizes = image_sizes | 
					
						
						|  |  | 
					
						
						|  | def set_img_attn_mask(self, image_attention_mask: torch.FloatTensor) -> None: | 
					
						
						|  | self.image_attention_mask = image_attention_mask | 
					
						
						|  |  | 
					
						
						|  | def set_input_audio_embeds(self, input_audio_embeds: torch.FloatTensor) -> None: | 
					
						
						|  | self.input_audio_embeds = input_audio_embeds | 
					
						
						|  |  | 
					
						
						|  | def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None: | 
					
						
						|  | self.audio_embed_sizes = audio_embed_sizes | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor, | 
					
						
						|  | input_embeds, | 
					
						
						|  | input_image_embeds: Optional[torch.FloatTensor]=None, | 
					
						
						|  | input_audio_embeds: Optional[torch.FloatTensor]=None, | 
					
						
						|  | image_sizes=None, | 
					
						
						|  | image_attention_mask=None, | 
					
						
						|  | audio_embed_sizes=None, | 
					
						
						|  | audio_attention_mask=None, | 
					
						
						|  | audio_projection_mode='speech', | 
					
						
						|  | wte=None, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | MAX_INPUT_ID = int(1e9) | 
					
						
						|  | assert -MAX_INPUT_ID < self.audio_input_id < self.image_input_id | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.input_image_embeds is not None: | 
					
						
						|  | assert input_image_embeds is None | 
					
						
						|  | input_image_embeds = self.input_image_embeds.clone() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.input_image_embeds = None | 
					
						
						|  |  | 
					
						
						|  | if self.image_sizes is not None: | 
					
						
						|  | assert image_sizes is None | 
					
						
						|  | image_sizes = self.image_sizes | 
					
						
						|  |  | 
					
						
						|  | if self.input_audio_embeds is not None: | 
					
						
						|  | assert input_audio_embeds is None | 
					
						
						|  | input_audio_embeds = self.input_audio_embeds.clone() | 
					
						
						|  | self.input_audio_embeds = None | 
					
						
						|  |  | 
					
						
						|  | if self.audio_embed_sizes is not None: | 
					
						
						|  | assert audio_embed_sizes is None | 
					
						
						|  | audio_embed_sizes = self.audio_embed_sizes.clone() | 
					
						
						|  |  | 
					
						
						|  | if self.image_attention_mask is not None: | 
					
						
						|  | assert image_attention_mask is None | 
					
						
						|  | image_attention_mask = self.image_attention_mask.clone() | 
					
						
						|  | self.image_attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | input_ids = input_ids.view(-1, input_shape[-1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | new_input_ids = input_ids.clone() | 
					
						
						|  | new_input_ids[(input_ids >= _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE[0]) & | 
					
						
						|  | (input_ids <= _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE[1])] = _IMAGE_SPECIAL_TOKEN_ID | 
					
						
						|  | new_input_ids[(input_ids >= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[0]) & | 
					
						
						|  | (input_ids <= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[1])] = _AUDIO_SPECIAL_TOKEN_ID | 
					
						
						|  | input_ids = new_input_ids | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | image_position_mask = input_ids == _IMAGE_SPECIAL_TOKEN_ID | 
					
						
						|  | non_image_position_mask = ~image_position_mask | 
					
						
						|  |  | 
					
						
						|  | assert input_embeds is None | 
					
						
						|  | if self.training: | 
					
						
						|  | assert input_image_embeds is not None or input_audio_embeds is not None | 
					
						
						|  |  | 
					
						
						|  | if input_image_embeds is not None: | 
					
						
						|  | image_hidden_states = self.image_embed( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | input_embeds=input_image_embeds, | 
					
						
						|  | image_sizes=image_sizes, | 
					
						
						|  | wte=wte, | 
					
						
						|  | image_attention_mask=image_attention_mask | 
					
						
						|  | ) | 
					
						
						|  | if input_audio_embeds is not None: | 
					
						
						|  | audio_hidden_states = self.audio_embed( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | input_embeds=input_audio_embeds, | 
					
						
						|  | audio_embed_sizes=audio_embed_sizes, | 
					
						
						|  | audio_attention_mask=audio_attention_mask, | 
					
						
						|  | wte=wte, | 
					
						
						|  | audio_projection_mode=audio_projection_mode, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_image_embeds is not None and input_audio_embeds is not None: | 
					
						
						|  | dtype = image_hidden_states.dtype | 
					
						
						|  | hidden_states = image_hidden_states * image_position_mask.to(dtype).unsqueeze(-1) + audio_hidden_states * non_image_position_mask.to(dtype).unsqueeze(-1) | 
					
						
						|  | elif input_image_embeds is not None: | 
					
						
						|  | hidden_states = image_hidden_states | 
					
						
						|  | elif input_audio_embeds is not None: | 
					
						
						|  | hidden_states = audio_hidden_states | 
					
						
						|  | else: | 
					
						
						|  | assert wte is not None | 
					
						
						|  | hidden_states = wte(input_ids) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMRMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | Phi4MMRMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  | def extra_repr(self): | 
					
						
						|  | return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMRotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  |  | 
					
						
						|  | inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids, seq_len=None): | 
					
						
						|  |  | 
					
						
						|  | self.inv_freq.to(x.device) | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = emb.cos() | 
					
						
						|  | sin = emb.sin() | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMSuScaledRotaryEmbedding(Phi4MMRotaryEmbedding): | 
					
						
						|  | def __init__(self, dim, config, device=None): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "The class Phi4MMSuScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers. Please" | 
					
						
						|  | " use Phi4MMLongRoPEScaledRotaryEmbedding instead.", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | 
					
						
						|  |  | 
					
						
						|  | self.short_factor = config.rope_scaling["short_factor"] | 
					
						
						|  | self.long_factor = config.rope_scaling["long_factor"] | 
					
						
						|  | self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids, seq_len=None): | 
					
						
						|  | seq_len = torch.max(position_ids) + 1 | 
					
						
						|  | if seq_len > self.original_max_position_embeddings: | 
					
						
						|  | ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  | else: | 
					
						
						|  | ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  | inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | 
					
						
						|  | self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | scale = self.max_position_embeddings / self.original_max_position_embeddings | 
					
						
						|  | if scale <= 1.0: | 
					
						
						|  | scaling_factor = 1.0 | 
					
						
						|  | else: | 
					
						
						|  | scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) | 
					
						
						|  | cos = emb.cos() * scaling_factor | 
					
						
						|  | sin = emb.sin() * scaling_factor | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMYarnScaledRotaryEmbedding(Phi4MMRotaryEmbedding): | 
					
						
						|  | def __init__(self, dim, config, device=None): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "The class Phi4MMYarnScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | 
					
						
						|  |  | 
					
						
						|  | self.short_factor = config.rope_scaling["short_factor"] | 
					
						
						|  | self.long_factor = config.rope_scaling["long_factor"] | 
					
						
						|  | self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids, seq_len=None): | 
					
						
						|  | seq_len = torch.max(position_ids) + 1 | 
					
						
						|  | if seq_len > self.original_max_position_embeddings: | 
					
						
						|  | ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  | else: | 
					
						
						|  | ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  |  | 
					
						
						|  | inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | 
					
						
						|  | self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | 
					
						
						|  |  | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  |  | 
					
						
						|  | scale = self.max_position_embeddings / self.original_max_position_embeddings | 
					
						
						|  | if scale <= 1.0: | 
					
						
						|  | scaling_factor = 1.0 | 
					
						
						|  | else: | 
					
						
						|  | scaling_factor = 0.1 * math.log(scale) + 1.0 | 
					
						
						|  |  | 
					
						
						|  | cos = emb.cos() * scaling_factor | 
					
						
						|  | sin = emb.sin() * scaling_factor | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMLongRoPEScaledRotaryEmbedding(Phi4MMRotaryEmbedding): | 
					
						
						|  | def __init__(self, dim, config, device=None): | 
					
						
						|  | super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | 
					
						
						|  |  | 
					
						
						|  | self.short_factor = config.rope_scaling["short_factor"] | 
					
						
						|  | self.long_factor = config.rope_scaling["long_factor"] | 
					
						
						|  | self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids, seq_len=None): | 
					
						
						|  | seq_len = seq_len or torch.max(position_ids) + 1 | 
					
						
						|  | if seq_len > self.original_max_position_embeddings: | 
					
						
						|  | ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  | else: | 
					
						
						|  | ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  |  | 
					
						
						|  | inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | 
					
						
						|  | self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | 
					
						
						|  |  | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  |  | 
					
						
						|  | scale = self.max_position_embeddings / self.original_max_position_embeddings | 
					
						
						|  | if scale <= 1.0: | 
					
						
						|  | scaling_factor = 1.0 | 
					
						
						|  | else: | 
					
						
						|  | scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) | 
					
						
						|  |  | 
					
						
						|  | cos = emb.cos() * scaling_factor | 
					
						
						|  | sin = emb.sin() * scaling_factor | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`, *optional*): | 
					
						
						|  | Deprecated and unused. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos.unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin.unsqueeze(unsqueeze_dim) | 
					
						
						|  |  | 
					
						
						|  | rotary_dim = cos.shape[-1] | 
					
						
						|  | q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] | 
					
						
						|  | k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] | 
					
						
						|  |  | 
					
						
						|  | q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1) | 
					
						
						|  | k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMMLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.activation_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | 
					
						
						|  | up_states = self.gate_up_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | gate, up_states = up_states.chunk(2, dim=-1) | 
					
						
						|  | up_states = up_states * self.activation_fn(gate) | 
					
						
						|  |  | 
					
						
						|  | return self.down_proj(up_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Phi4MMConfig, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
						
						|  | "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.rope_scaling = config.rope_scaling | 
					
						
						|  | self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor) | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
						
						|  | f" and `num_heads`: {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) | 
					
						
						|  | self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | 
					
						
						|  | self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False) | 
					
						
						|  | self._init_rope() | 
					
						
						|  |  | 
					
						
						|  | def _init_rope(self): | 
					
						
						|  | if self.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = Phi4MMRotaryEmbedding( | 
					
						
						|  | self.rotary_ndims, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | scaling_type = self.config.rope_scaling["type"] | 
					
						
						|  | if scaling_type == "longrope": | 
					
						
						|  | self.rotary_emb = Phi4MMLongRoPEScaledRotaryEmbedding(self.rotary_ndims, self.config) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv_proj(hidden_states) | 
					
						
						|  | query_pos = self.num_heads * self.head_dim | 
					
						
						|  | query_states = qkv[..., :query_pos] | 
					
						
						|  | key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | 
					
						
						|  | value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  | attn_weights += causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMFlashAttention2(Phi4MMAttention): | 
					
						
						|  | """ | 
					
						
						|  | Phi-4-MM flash attention module. This module inherits from `Phi4MMAttention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_attentions = False | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv_proj(hidden_states) | 
					
						
						|  | query_pos = self.num_heads * self.head_dim | 
					
						
						|  | query_states = qkv[..., :query_pos] | 
					
						
						|  | key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | 
					
						
						|  | value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rotary_seq_len = ( | 
					
						
						|  | max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len, position_ids=position_ids) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_dropout = self.attention_dropout if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.qkv_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attn_output = _flash_attention_forward( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | q_len, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | dropout=attn_dropout, | 
					
						
						|  | sliding_window=getattr(self.config, "sliding_window", None), | 
					
						
						|  | use_top_left_mask=self._flash_attn_uses_top_left_mask, | 
					
						
						|  | is_causal=self.is_causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMSdpaAttention(Phi4MMAttention): | 
					
						
						|  | """ | 
					
						
						|  | Phi4MM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `Phi4MMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
						
						|  | SDPA API. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "Phi4MMModel is using Phi4MMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
						
						|  | 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv_proj(hidden_states) | 
					
						
						|  | query_pos = self.num_heads * self.head_dim | 
					
						
						|  | query_states = qkv[..., :query_pos] | 
					
						
						|  | key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | 
					
						
						|  | value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and attention_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_causal = True if causal_mask is None and q_len > 1 else False | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=causal_mask, | 
					
						
						|  | dropout_p=self.attention_dropout if self.training else 0.0, | 
					
						
						|  | is_causal=is_causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.view(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PHI4MM_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": Phi4MMAttention, | 
					
						
						|  | "flash_attention_2": Phi4MMFlashAttention2, | 
					
						
						|  | "sdpa": Phi4MMSdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMDecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: Phi4MMConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.self_attn = PHI4MM_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = Phi4MMMLP(config) | 
					
						
						|  | self.input_layernorm = Phi4MMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) | 
					
						
						|  | self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) | 
					
						
						|  | self.post_attention_layernorm = Phi4MMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): | 
					
						
						|  | input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
						
						|  | `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range | 
					
						
						|  | `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | 
					
						
						|  | into the model | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_outputs, self_attn_weights, present_key_value = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = residual + self.resid_attn_dropout(attn_outputs) | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | hidden_states = residual + self.resid_mlp_dropout(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PHI4MM_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`Phi4MMConfig`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Phi-4-MM model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | PHI4MM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class Phi4MMPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = Phi4MMConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["Phi4MMDecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  |  | 
					
						
						|  | _version = "0.0.5" | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PHI4MM_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  |  | 
					
						
						|  | Two formats are allowed: | 
					
						
						|  | - a [`~cache_utils.Cache`] instance, see our | 
					
						
						|  | [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); | 
					
						
						|  | - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
						
						|  | cache format. | 
					
						
						|  |  | 
					
						
						|  | The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
						
						|  | legacy cache format will be returned. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | 
					
						
						|  | this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | 
					
						
						|  | the complete sequence length. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Phi-4-MM model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | PHI4MM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class Phi4MMModel(Phi4MMPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi4MMDecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: Phi4MMConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Phi4MMConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.embed_dropout = nn.Dropout(config.embd_pdrop) | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens_extend = None | 
					
						
						|  | if isinstance(config.embd_layer, dict): | 
					
						
						|  | embedding_config = { | 
					
						
						|  | 'embedding_cls': config.embd_layer['embedding_cls'], | 
					
						
						|  | **config.embd_layer | 
					
						
						|  | } | 
					
						
						|  | self.embed_tokens_extend = Phi4MMImageAudioEmbedding(config, **embedding_config) | 
					
						
						|  |  | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [Phi4MMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self._attn_implementation = config._attn_implementation | 
					
						
						|  | self.norm = Phi4MMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(PHI4MM_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | input_image_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_sizes: Optional[torch.LongTensor] = None, | 
					
						
						|  | image_attention_mask=None, | 
					
						
						|  | input_audio_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | audio_embed_sizes=None, | 
					
						
						|  | audio_attention_mask=None, | 
					
						
						|  | audio_projection_mode=None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return_legacy_cache = False | 
					
						
						|  | if use_cache and not isinstance(past_key_values, Cache): | 
					
						
						|  | return_legacy_cache = True | 
					
						
						|  | if past_key_values is None: | 
					
						
						|  | past_key_values = DynamicCache() | 
					
						
						|  | else: | 
					
						
						|  | past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " | 
					
						
						|  | "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " | 
					
						
						|  | "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens_extend( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | input_embeds=inputs_embeds, | 
					
						
						|  | input_image_embeds=input_image_embeds, | 
					
						
						|  | input_audio_embeds=input_audio_embeds, | 
					
						
						|  | image_sizes=image_sizes, | 
					
						
						|  | image_attention_mask=image_attention_mask, | 
					
						
						|  | audio_embed_sizes=audio_embed_sizes, | 
					
						
						|  | audio_attention_mask=audio_attention_mask, | 
					
						
						|  | audio_projection_mode=audio_projection_mode, | 
					
						
						|  | wte=self.embed_tokens, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if cache_position is None: | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | cache_position = torch.arange( | 
					
						
						|  | past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = cache_position.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = self._update_causal_mask( | 
					
						
						|  | attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | causal_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | use_cache, | 
					
						
						|  | cache_position, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=causal_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = next_decoder_cache if use_cache else None | 
					
						
						|  | if return_legacy_cache: | 
					
						
						|  | next_cache = next_cache.to_legacy_cache() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _update_causal_mask( | 
					
						
						|  | self, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | input_tensor: torch.Tensor, | 
					
						
						|  | cache_position: torch.Tensor, | 
					
						
						|  | past_key_values: Cache, | 
					
						
						|  | output_attentions: bool, | 
					
						
						|  | ): | 
					
						
						|  | if self.config._attn_implementation == "flash_attention_2": | 
					
						
						|  | if attention_mask is not None and 0.0 in attention_mask: | 
					
						
						|  | return attention_mask | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | using_static_cache = isinstance(past_key_values, StaticCache) | 
					
						
						|  | using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | self.config._attn_implementation == "sdpa" | 
					
						
						|  | and not (using_static_cache or using_sliding_window_cache) | 
					
						
						|  | and not output_attentions | 
					
						
						|  | ): | 
					
						
						|  | if AttentionMaskConverter._ignore_causal_mask_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | inputs_embeds=input_tensor, | 
					
						
						|  | past_key_values_length=past_seen_tokens, | 
					
						
						|  | sliding_window=self.config.sliding_window, | 
					
						
						|  | is_training=self.training, | 
					
						
						|  | ): | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | dtype, device = input_tensor.dtype, input_tensor.device | 
					
						
						|  | min_dtype = torch.finfo(dtype).min | 
					
						
						|  | sequence_length = input_tensor.shape[1] | 
					
						
						|  |  | 
					
						
						|  | if using_sliding_window_cache or using_static_cache: | 
					
						
						|  | target_length = past_key_values.get_max_cache_shape() | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | target_length = ( | 
					
						
						|  | attention_mask.shape[-1] | 
					
						
						|  | if isinstance(attention_mask, torch.Tensor) | 
					
						
						|  | else past_seen_tokens + sequence_length + 1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( | 
					
						
						|  | attention_mask, | 
					
						
						|  | sequence_length=sequence_length, | 
					
						
						|  | target_length=target_length, | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | device=device, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | batch_size=input_tensor.shape[0], | 
					
						
						|  | config=self.config, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | self.config._attn_implementation == "sdpa" | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and attention_mask.device.type == "cuda" | 
					
						
						|  | and not output_attentions | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | 
					
						
						|  |  | 
					
						
						|  | return causal_mask | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  |  | 
					
						
						|  | def _prepare_4d_causal_attention_mask_with_cache_position( | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | sequence_length: int, | 
					
						
						|  | target_length: int, | 
					
						
						|  | dtype: torch.dtype, | 
					
						
						|  | device: torch.device, | 
					
						
						|  | cache_position: torch.Tensor, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | config: Phi4MMConfig, | 
					
						
						|  | past_key_values: Cache, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
						
						|  | `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | 
					
						
						|  | sequence_length (`int`): | 
					
						
						|  | The sequence length being processed. | 
					
						
						|  | target_length (`int`): | 
					
						
						|  | The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | 
					
						
						|  | dtype (`torch.dtype`): | 
					
						
						|  | The dtype to use for the 4D attention mask. | 
					
						
						|  | device (`torch.device`): | 
					
						
						|  | The device to plcae the 4D attention mask on. | 
					
						
						|  | cache_position (`torch.Tensor`): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. | 
					
						
						|  | batch_size (`torch.Tensor`): | 
					
						
						|  | Batch size. | 
					
						
						|  | config (`Phi4MMConfig`): | 
					
						
						|  | The model's configuration class | 
					
						
						|  | past_key_values (`Cache`): | 
					
						
						|  | The cache class that is being used currently to generate | 
					
						
						|  | """ | 
					
						
						|  | if attention_mask is not None and attention_mask.dim() == 4: | 
					
						
						|  |  | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  | else: | 
					
						
						|  | min_dtype = torch.finfo(dtype).min | 
					
						
						|  | causal_mask = torch.full( | 
					
						
						|  | (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device | 
					
						
						|  | ) | 
					
						
						|  | diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | 
					
						
						|  | if config.sliding_window is not None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: | 
					
						
						|  | sliding_attend_mask = torch.arange(target_length, device=device) <= ( | 
					
						
						|  | cache_position.reshape(-1, 1) - config.sliding_window | 
					
						
						|  | ) | 
					
						
						|  | diagonal_attend_mask.bitwise_or_(sliding_attend_mask) | 
					
						
						|  | causal_mask *= diagonal_attend_mask | 
					
						
						|  | causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = causal_mask.clone() | 
					
						
						|  | if attention_mask.shape[-1] > target_length: | 
					
						
						|  | attention_mask = attention_mask[:, :target_length] | 
					
						
						|  | mask_length = attention_mask.shape[-1] | 
					
						
						|  | padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | 
					
						
						|  | padding_mask = padding_mask == 0 | 
					
						
						|  | causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | 
					
						
						|  | padding_mask, min_dtype | 
					
						
						|  | ) | 
					
						
						|  | return causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMForCausalLM(Phi4MMPreTrainedModel, GenerationMixin): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = Phi4MMModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert getattr(config, "vision_lora", None) is not None | 
					
						
						|  | from peft import LoraConfig, get_peft_model | 
					
						
						|  | vision_lora_config = LoraConfig( | 
					
						
						|  | r=config.vision_lora['r'], | 
					
						
						|  | lora_alpha=config.vision_lora['lora_alpha'], | 
					
						
						|  | target_modules=config.vision_lora['layer'], | 
					
						
						|  | lora_dropout=config.vision_lora['dp'], | 
					
						
						|  | task_type="CAUSAL_LM", | 
					
						
						|  | ) | 
					
						
						|  | peft_model = get_peft_model(self.model, vision_lora_config, adapter_name="vision") | 
					
						
						|  | self.config.vision_lora['r'] = config.vision_lora['r'] | 
					
						
						|  | self.config.vision_lora['lora_alpha'] = config.vision_lora['lora_alpha'] | 
					
						
						|  | self.config.vision_lora['layer'] = config.vision_lora['layer'] | 
					
						
						|  | self.config.vision_lora['dp'] = config.vision_lora['dp'] | 
					
						
						|  |  | 
					
						
						|  | assert getattr(config, "speech_lora", None) is not None | 
					
						
						|  | speech_lora_config = LoraConfig( | 
					
						
						|  | r=config.speech_lora['r'], | 
					
						
						|  | lora_alpha=config.speech_lora['lora_alpha'], | 
					
						
						|  | target_modules=config.speech_lora['layer'], | 
					
						
						|  | lora_dropout=config.speech_lora['dp'], | 
					
						
						|  | task_type="CAUSAL_LM", | 
					
						
						|  | ) | 
					
						
						|  | peft_model.base_model.active_adapter.append("speech") | 
					
						
						|  | peft_model.add_adapter("speech", speech_lora_config) | 
					
						
						|  | self.config.speech_lora['r'] = config.speech_lora['r'] | 
					
						
						|  | self.config.speech_lora['lora_alpha'] = config.speech_lora['lora_alpha'] | 
					
						
						|  | self.config.speech_lora['layer'] = config.speech_lora['layer'] | 
					
						
						|  | self.config.speech_lora['dp'] = config.speech_lora['dp'] | 
					
						
						|  |  | 
					
						
						|  | def set_lora_adapter(self, adapter_name) -> None: | 
					
						
						|  | from peft.tuners.lora.layer import LoraLayer | 
					
						
						|  | for module in self.modules(): | 
					
						
						|  | if isinstance(module, LoraLayer): | 
					
						
						|  | if module.merged: | 
					
						
						|  | warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") | 
					
						
						|  | module.unmerge() | 
					
						
						|  | module.set_adapter(adapter_name) | 
					
						
						|  | module._disable_adapters = False | 
					
						
						|  |  | 
					
						
						|  | def unset_lora_adapter(self) -> None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from peft.tuners.lora.layer import LoraLayer | 
					
						
						|  | for module in self.modules(): | 
					
						
						|  | if isinstance(module, LoraLayer): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for layer_name in module.adapter_layer_names: | 
					
						
						|  | layer = getattr(module, layer_name) | 
					
						
						|  | layer.requires_grad_(False) | 
					
						
						|  | module._disable_adapters = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(PHI4MM_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | input_image_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_sizes: Optional[torch.LongTensor] = None, | 
					
						
						|  | image_attention_mask=None, | 
					
						
						|  | input_audio_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | audio_embed_sizes=None, | 
					
						
						|  | audio_attention_mask=None, | 
					
						
						|  | input_mode=None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | num_logits_to_keep: int = 0, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | num_logits_to_keep (`int`, *optional*): | 
					
						
						|  | Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all | 
					
						
						|  | `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that | 
					
						
						|  | token can save memory, which becomes pretty significant for long sequences or large vocabulary size. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, Phi4MMForCausalLM | 
					
						
						|  |  | 
					
						
						|  | >>> model = Phi4MMForCausalLM.from_pretrained("TBA") | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("TBA") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "This is an example script ." | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum' | 
					
						
						|  | ```""" | 
					
						
						|  | if ( | 
					
						
						|  | use_cache | 
					
						
						|  | and self.config.rope_scaling | 
					
						
						|  | and cache_position is not None | 
					
						
						|  | and cache_position[0] == self.config.original_max_position_embeddings | 
					
						
						|  | ): | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if isinstance(input_mode, torch.Tensor): | 
					
						
						|  | assert len(input_mode) == 1 | 
					
						
						|  | input_mode = input_mode[0].item() | 
					
						
						|  | input_mode = InputMode(input_mode) | 
					
						
						|  |  | 
					
						
						|  | if input_mode in [InputMode.VISION_SPEECH, InputMode.VISION]: | 
					
						
						|  | self.set_lora_adapter('vision') | 
					
						
						|  | audio_projection_mode = 'vision' | 
					
						
						|  | elif input_mode == InputMode.SPEECH: | 
					
						
						|  | self.set_lora_adapter('speech') | 
					
						
						|  | audio_projection_mode = 'speech' | 
					
						
						|  | elif input_mode == InputMode.LANGUAGE: | 
					
						
						|  | self.unset_lora_adapter() | 
					
						
						|  | audio_projection_mode = 'speech' | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Invalid input_mode: {input_mode}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | input_image_embeds=input_image_embeds, | 
					
						
						|  | image_sizes=image_sizes, | 
					
						
						|  | image_attention_mask=image_attention_mask, | 
					
						
						|  | input_audio_embeds=input_audio_embeds, | 
					
						
						|  | audio_embed_sizes=audio_embed_sizes, | 
					
						
						|  | audio_attention_mask=audio_attention_mask, | 
					
						
						|  | audio_projection_mode=audio_projection_mode, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss = self.loss_function(logits, labels, self.vocab_size) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | input_image_embeds=None, | 
					
						
						|  | image_sizes=None, | 
					
						
						|  | image_attention_mask=None, | 
					
						
						|  | input_audio_embeds=None, | 
					
						
						|  | audio_embed_sizes=None, | 
					
						
						|  | audio_attention_mask=None, | 
					
						
						|  | input_mode=None, | 
					
						
						|  | cache_position=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | num_logits_to_keep=None, | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | past_key_values | 
					
						
						|  | and self.config.rope_scaling | 
					
						
						|  | and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1 | 
					
						
						|  | ): | 
					
						
						|  | past_length = cache_position[0] | 
					
						
						|  | if past_length <= self.config.original_max_position_embeddings: | 
					
						
						|  | past_key_values = None | 
					
						
						|  |  | 
					
						
						|  | model_inputs = super().prepare_inputs_for_generation( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | input_image_embeds=input_image_embeds, | 
					
						
						|  | image_sizes=image_sizes, | 
					
						
						|  | image_attention_mask=image_attention_mask, | 
					
						
						|  | input_audio_embeds=input_audio_embeds, | 
					
						
						|  | audio_embed_sizes=audio_embed_sizes, | 
					
						
						|  | audio_attention_mask=audio_attention_mask, | 
					
						
						|  | input_mode=input_mode, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | num_logits_to_keep=num_logits_to_keep, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The [`Phi4MMModel`] with a sequence classification head on top (linear layer). | 
					
						
						|  |  | 
					
						
						|  | [`Phi4MMForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
						
						|  | (e.g. GPT-2) do. | 
					
						
						|  |  | 
					
						
						|  | Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
						
						|  | `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
						
						|  | no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
						
						|  | padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
						
						|  | each row of the batch). | 
					
						
						|  | """, | 
					
						
						|  | PHI4MM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMForSequenceClassification(Phi4MMPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = Phi4MMModel(config) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(PHI4MM_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | model_outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = model_outputs[0] | 
					
						
						|  | logits = self.score(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | batch_size = input_ids.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | batch_size = inputs_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if self.config.pad_token_id is None and batch_size != 1: | 
					
						
						|  | raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
						
						|  | if self.config.pad_token_id is None: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  | else: | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  |  | 
					
						
						|  | sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
						
						|  | sequence_lengths = sequence_lengths % input_ids.shape[-1] | 
					
						
						|  | sequence_lengths = sequence_lengths.to(logits.device) | 
					
						
						|  | else: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  |  | 
					
						
						|  | pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (pooled_logits,) + model_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=pooled_logits, | 
					
						
						|  | past_key_values=model_outputs.past_key_values, | 
					
						
						|  | hidden_states=model_outputs.hidden_states, | 
					
						
						|  | attentions=model_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | [`Phi4MMModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for | 
					
						
						|  | Named-Entity-Recognition (NER) tasks. | 
					
						
						|  | """, | 
					
						
						|  | PHI4MM_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMForTokenClassification(Phi4MMPreTrainedModel): | 
					
						
						|  | def __init__(self, config: Phi4MMConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  |  | 
					
						
						|  | self.model = Phi4MMModel(config) | 
					
						
						|  | if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | 
					
						
						|  | classifier_dropout = config.classifier_dropout | 
					
						
						|  | elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | 
					
						
						|  | classifier_dropout = config.hidden_dropout | 
					
						
						|  | else: | 
					
						
						|  | classifier_dropout = 0.1 | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(PHI4MM_INPUTS_DOCSTRING) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=TokenClassifierOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | **deprecated_arguments, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | model_outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = model_outputs[0] | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | logits = self.classifier(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | batch_size, seq_length = labels.shape | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct( | 
					
						
						|  | logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + model_outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return TokenClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=model_outputs.hidden_states, | 
					
						
						|  | attentions=model_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | AutoConfig.register("phi4mm", Phi4MMConfig) | 
					
						
						|  | AutoModelForCausalLM.register(Phi4MMConfig, Phi4MMForCausalLM) | 
					
						
						|  | Phi4MMConfig.register_for_auto_class() | 
					
						
						|  | Phi4MMForCausalLM.register_for_auto_class("AutoModelForCausalLM") | 
					
						
						|  |  |