Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
entity-linking-classification
Languages:
English
Size:
< 1K
License:
Create SemEval2018_Task7.py
Browse files- SemEval2018_Task7.py +308 -0
SemEval2018_Task7.py
ADDED
|
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# I am trying to understand to the following code. Do not use this for any purpose as I do not support this.
|
| 2 |
+
# Use the original source from https://huggingface.co/datasets/DFKI-SLT/science_ie/raw/main/science_ie.py
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 6 |
+
#
|
| 7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 8 |
+
# you may not use this file except in compliance with the License.
|
| 9 |
+
# You may obtain a copy of the License at
|
| 10 |
+
#
|
| 11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 12 |
+
#
|
| 13 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 16 |
+
# See the License for the specific language governing permissions and
|
| 17 |
+
# limitations under the License.
|
| 18 |
+
"""Semeval2018Task7 is a dataset that describes the first task on semantic relation extraction and classification in scientific paper abstracts"""
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
import glob
|
| 23 |
+
import datasets
|
| 24 |
+
import xml.dom.minidom
|
| 25 |
+
import xml.etree.ElementTree as ET
|
| 26 |
+
|
| 27 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 28 |
+
_CITATION = """\
|
| 29 |
+
@inproceedings{gabor-etal-2018-semeval,
|
| 30 |
+
title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers",
|
| 31 |
+
author = {G{\'a}bor, Kata and
|
| 32 |
+
Buscaldi, Davide and
|
| 33 |
+
Schumann, Anne-Kathrin and
|
| 34 |
+
QasemiZadeh, Behrang and
|
| 35 |
+
Zargayouna, Ha{\"\i}fa and
|
| 36 |
+
Charnois, Thierry},
|
| 37 |
+
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
|
| 38 |
+
month = jun,
|
| 39 |
+
year = "2018",
|
| 40 |
+
address = "New Orleans, Louisiana",
|
| 41 |
+
publisher = "Association for Computational Linguistics",
|
| 42 |
+
url = "https://aclanthology.org/S18-1111",
|
| 43 |
+
doi = "10.18653/v1/S18-1111",
|
| 44 |
+
pages = "679--688",
|
| 45 |
+
abstract = "This paper describes the first task on semantic relation extraction and classification in
|
| 46 |
+
scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations
|
| 47 |
+
and includes three different subtasks. The subtasks were designed so as to compare and quantify the
|
| 48 |
+
effect of different pre-processing steps on the relation classification results. We expect the task to
|
| 49 |
+
be relevant for a broad range of researchers working on extracting specialized knowledge from domain
|
| 50 |
+
corpora, for example but not limited to scientific or bio-medical information extraction. The task
|
| 51 |
+
attracted a total of 32 participants, with 158 submissions across different scenarios.",
|
| 52 |
+
}
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
# You can copy an official description
|
| 56 |
+
_DESCRIPTION = """\
|
| 57 |
+
This paper describes the first task on semantic relation extraction and classification in scientific paper
|
| 58 |
+
abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three
|
| 59 |
+
different subtasks. The subtasks were designed so as to compare and quantify the effect of different
|
| 60 |
+
pre-processing steps on the relation classification results. We expect the task to be relevant for a broad
|
| 61 |
+
range of researchers working on extracting specialized knowledge from domain corpora, for example but not
|
| 62 |
+
limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants,
|
| 63 |
+
with 158 submissions across different scenarios.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
# Add a link to an official homepage for the dataset here
|
| 67 |
+
_HOMEPAGE = "https://github.com/gkata/SemEval2018Task7/tree/testing"
|
| 68 |
+
|
| 69 |
+
# Add the licence for the dataset here if you can find it
|
| 70 |
+
_LICENSE = ""
|
| 71 |
+
|
| 72 |
+
# Add link to the official dataset URLs here
|
| 73 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 74 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 75 |
+
_URLS = {
|
| 76 |
+
"Subtask_1_1": {
|
| 77 |
+
"train": {
|
| 78 |
+
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.relations.txt",
|
| 79 |
+
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.text.xml",
|
| 80 |
+
},
|
| 81 |
+
"test": {
|
| 82 |
+
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.relations.txt",
|
| 83 |
+
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.text.xml",
|
| 84 |
+
},
|
| 85 |
+
},
|
| 86 |
+
"Subtask_1_2": {
|
| 87 |
+
"train": {
|
| 88 |
+
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.relations.txt",
|
| 89 |
+
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.text.xml",
|
| 90 |
+
},
|
| 91 |
+
"test": {
|
| 92 |
+
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.relations.txt",
|
| 93 |
+
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.text.xml",
|
| 94 |
+
},
|
| 95 |
+
},
|
| 96 |
+
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def all_text_nodes(root):
|
| 101 |
+
if root.text is not None:
|
| 102 |
+
yield root.text
|
| 103 |
+
for child in root:
|
| 104 |
+
if child.tail is not None:
|
| 105 |
+
yield child.tail
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def reading_entity_data(ET_data_to_convert):
|
| 109 |
+
parsed_data = ET.tostring(ET_data_to_convert,"utf-8")
|
| 110 |
+
parsed_data= parsed_data.decode('utf8').replace("b\'","")
|
| 111 |
+
parsed_data= parsed_data.replace("<abstract>","")
|
| 112 |
+
parsed_data= parsed_data.replace("</abstract>","")
|
| 113 |
+
parsed_data= parsed_data.replace("<title>","")
|
| 114 |
+
parsed_data= parsed_data.replace("</title>","")
|
| 115 |
+
parsed_data = parsed_data.replace("\n\n\n","")
|
| 116 |
+
|
| 117 |
+
parsing_tag = False
|
| 118 |
+
final_string = ""
|
| 119 |
+
tag_string= ""
|
| 120 |
+
current_tag_id = ""
|
| 121 |
+
current_tag_starting_pos = 0
|
| 122 |
+
current_tag_ending_pos= 0
|
| 123 |
+
entity_mapping_list=[]
|
| 124 |
+
|
| 125 |
+
for i in parsed_data:
|
| 126 |
+
if i=='<':
|
| 127 |
+
parsing_tag = True
|
| 128 |
+
if current_tag_id!="":
|
| 129 |
+
current_tag_ending_pos = len(final_string)-1
|
| 130 |
+
entity_mapping_list.append({"id":current_tag_id,
|
| 131 |
+
"char_start":current_tag_starting_pos,
|
| 132 |
+
"char_end":current_tag_ending_pos+1})
|
| 133 |
+
current_tag_id= ""
|
| 134 |
+
tag_string=""
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
elif i=='>':
|
| 138 |
+
parsing_tag = False
|
| 139 |
+
tag_string_split = tag_string.split('"')
|
| 140 |
+
if len(tag_string_split)>1:
|
| 141 |
+
current_tag_id= tag_string.split('"')[1]
|
| 142 |
+
current_tag_starting_pos = len(final_string)
|
| 143 |
+
|
| 144 |
+
else:
|
| 145 |
+
if parsing_tag!=True:
|
| 146 |
+
final_string = final_string + i
|
| 147 |
+
else:
|
| 148 |
+
tag_string = tag_string + i
|
| 149 |
+
|
| 150 |
+
return {"text_data":final_string, "entities":entity_mapping_list}
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class Semeval2018Task7(datasets.GeneratorBasedBuilder):
|
| 155 |
+
"""
|
| 156 |
+
Semeval2018Task7 is a dataset for semantic relation extraction and classification in scientific paper abstracts
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
VERSION = datasets.Version("1.1.0")
|
| 160 |
+
|
| 161 |
+
BUILDER_CONFIGS = [
|
| 162 |
+
datasets.BuilderConfig(name="Subtask_1_1", version=VERSION,
|
| 163 |
+
description="Relation classification on clean data"),
|
| 164 |
+
datasets.BuilderConfig(name="Subtask_1_2", version=VERSION,
|
| 165 |
+
description="Relation classification on noisy data"),
|
| 166 |
+
|
| 167 |
+
]
|
| 168 |
+
DEFAULT_CONFIG_NAME = "Subtask_1_1"
|
| 169 |
+
|
| 170 |
+
def _info(self):
|
| 171 |
+
class_labels = ["","USAGE", "RESULT", "MODEL-FEATURE", "PART_WHOLE", "TOPIC", "COMPARE"]
|
| 172 |
+
features = datasets.Features(
|
| 173 |
+
{
|
| 174 |
+
"id": datasets.Value("string"),
|
| 175 |
+
"title": datasets.Value("string"),
|
| 176 |
+
"abstract": datasets.Value("string"),
|
| 177 |
+
"entities": [
|
| 178 |
+
{
|
| 179 |
+
"id": datasets.Value("string"),
|
| 180 |
+
"char_start": datasets.Value("int32"),
|
| 181 |
+
"char_end": datasets.Value("int32")
|
| 182 |
+
}
|
| 183 |
+
],
|
| 184 |
+
"relation": [
|
| 185 |
+
{
|
| 186 |
+
"label": datasets.ClassLabel(names=class_labels),
|
| 187 |
+
"arg1": datasets.Value("string"),
|
| 188 |
+
"arg2": datasets.Value("string"),
|
| 189 |
+
"reverse": datasets.Value("bool")
|
| 190 |
+
}
|
| 191 |
+
]
|
| 192 |
+
}
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
return datasets.DatasetInfo(
|
| 196 |
+
# This is the description that will appear on the datasets page.
|
| 197 |
+
description=_DESCRIPTION,
|
| 198 |
+
# This defines the different columns of the dataset and their types
|
| 199 |
+
features=features, # Here we define them above because they are different between the two configurations
|
| 200 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 201 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 202 |
+
# supervised_keys=("sentence", "label"),
|
| 203 |
+
# Homepage of the dataset for documentation
|
| 204 |
+
homepage=_HOMEPAGE,
|
| 205 |
+
# License for the dataset if available
|
| 206 |
+
license=_LICENSE,
|
| 207 |
+
# Citation for the dataset
|
| 208 |
+
citation=_CITATION,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
def _split_generators(self, dl_manager):
|
| 212 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 213 |
+
|
| 214 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 215 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 216 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 217 |
+
urls = _URLS[self.config.name]
|
| 218 |
+
downloaded_files = dl_manager.download(urls)
|
| 219 |
+
print(downloaded_files)
|
| 220 |
+
|
| 221 |
+
return [
|
| 222 |
+
datasets.SplitGenerator(
|
| 223 |
+
name=datasets.Split.TRAIN,
|
| 224 |
+
# These kwargs will be passed to _generate_examples
|
| 225 |
+
gen_kwargs={
|
| 226 |
+
"relation_filepath": downloaded_files['train']["relations"],
|
| 227 |
+
"text_filepath": downloaded_files['train']["text"],
|
| 228 |
+
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
),
|
| 232 |
+
datasets.SplitGenerator(
|
| 233 |
+
name=datasets.Split.TEST,
|
| 234 |
+
# These kwargs will be passed to _generate_examples
|
| 235 |
+
gen_kwargs={
|
| 236 |
+
"relation_filepath": downloaded_files['test']["relations"],
|
| 237 |
+
"text_filepath": downloaded_files['test']["text"],
|
| 238 |
+
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
)]
|
| 242 |
+
|
| 243 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 244 |
+
def _generate_examples(self, relation_filepath, text_filepath):
|
| 245 |
+
|
| 246 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 247 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 248 |
+
with open(relation_filepath, encoding="utf-8") as f:
|
| 249 |
+
relations = []
|
| 250 |
+
text_id_to_relations_map= {}
|
| 251 |
+
for key, row in enumerate(f):
|
| 252 |
+
row_split = row.strip("\n").split("(")
|
| 253 |
+
use_case = row_split[0]
|
| 254 |
+
second_half = row_split[1].strip(")")
|
| 255 |
+
second_half_splits = second_half.split(",")
|
| 256 |
+
size = len(second_half_splits)
|
| 257 |
+
|
| 258 |
+
relation = {
|
| 259 |
+
"label": use_case,
|
| 260 |
+
"arg1": second_half_splits[0],
|
| 261 |
+
"arg2": second_half_splits[1],
|
| 262 |
+
"reverse": True if size == 3 else False
|
| 263 |
+
}
|
| 264 |
+
relations.append(relation)
|
| 265 |
+
|
| 266 |
+
arg_id = second_half_splits[0].split(".")[0]
|
| 267 |
+
if arg_id not in text_id_to_relations_map:
|
| 268 |
+
text_id_to_relations_map[arg_id] = [relation]
|
| 269 |
+
else:
|
| 270 |
+
text_id_to_relations_map[arg_id].append(relation)
|
| 271 |
+
#print("result", text_id_to_relations_map)
|
| 272 |
+
|
| 273 |
+
#for arg_id, values in text_id_to_relations_map.items():
|
| 274 |
+
#print(f"ID: {arg_id}")
|
| 275 |
+
# for value in values:
|
| 276 |
+
# (value)
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
doc2 = ET.parse(text_filepath)
|
| 281 |
+
root = doc2.getroot()
|
| 282 |
+
|
| 283 |
+
for child in root:
|
| 284 |
+
if child.find("title")==None:
|
| 285 |
+
continue
|
| 286 |
+
text_id = child.attrib
|
| 287 |
+
#print("text_id", text_id)
|
| 288 |
+
|
| 289 |
+
if child.find("abstract")==None:
|
| 290 |
+
continue
|
| 291 |
+
title = child.find("title").text
|
| 292 |
+
child_abstract = child.find("abstract")
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
abstract_text_and_entities = reading_entity_data(child.find("abstract"))
|
| 296 |
+
title_text_and_entities = reading_entity_data(child.find("title"))
|
| 297 |
+
|
| 298 |
+
text_relations = []
|
| 299 |
+
if text_id['id'] in text_id_to_relations_map:
|
| 300 |
+
text_relations = text_id_to_relations_map[text_id['id']]
|
| 301 |
+
|
| 302 |
+
yield text_id['id'], {
|
| 303 |
+
"id": text_id['id'],
|
| 304 |
+
"title": title_text_and_entities['text_data'],
|
| 305 |
+
"abstract": abstract_text_and_entities['text_data'],
|
| 306 |
+
"entities": abstract_text_and_entities['entities'] + title_text_and_entities['entities'],
|
| 307 |
+
"relation": text_relations
|
| 308 |
+
}
|