Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
entity-linking-classification
Languages:
English
Size:
< 1K
License:
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
annotations_creators:
|
| 3 |
+
- expert-generated
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
language_creators:
|
| 7 |
+
- found
|
| 8 |
+
license:
|
| 9 |
+
- other
|
| 10 |
+
multilinguality:
|
| 11 |
+
- monolingual
|
| 12 |
+
paperswithcode_id: acronym-identification
|
| 13 |
+
pretty_name: >-
|
| 14 |
+
Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction
|
| 15 |
+
and Classification in Scientific Papers
|
| 16 |
+
size_categories:
|
| 17 |
+
- 1K<n<10K
|
| 18 |
+
source_datasets: []
|
| 19 |
+
tags:
|
| 20 |
+
- Relation Classification
|
| 21 |
+
- Relation extraction
|
| 22 |
+
- Scientific papers
|
| 23 |
+
- Research papers
|
| 24 |
+
task_categories:
|
| 25 |
+
- text-classification
|
| 26 |
+
task_ids:
|
| 27 |
+
- entity-linking-classification
|
| 28 |
+
train-eval-index:
|
| 29 |
+
- col_mapping:
|
| 30 |
+
labels: tags
|
| 31 |
+
tokens: tokens
|
| 32 |
+
config: default
|
| 33 |
+
splits:
|
| 34 |
+
eval_split: test
|
| 35 |
+
task: text-classification
|
| 36 |
+
task_id: entity_extraction
|
| 37 |
+
---
|
| 38 |
+
# Dataset Card for SemEval2018Task7
|
| 39 |
+
|
| 40 |
+
## Table of Contents
|
| 41 |
+
- [Table of Contents](#table-of-contents)
|
| 42 |
+
- [Dataset Description](#dataset-description)
|
| 43 |
+
- [Dataset Summary](#dataset-summary)
|
| 44 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
| 45 |
+
- [Languages](#languages)
|
| 46 |
+
- [Dataset Structure](#dataset-structure)
|
| 47 |
+
- [Data Instances](#data-instances)
|
| 48 |
+
- [Data Fields](#data-fields)
|
| 49 |
+
- [Data Splits](#data-splits)
|
| 50 |
+
- [Dataset Creation](#dataset-creation)
|
| 51 |
+
- [Curation Rationale](#curation-rationale)
|
| 52 |
+
- [Source Data](#source-data)
|
| 53 |
+
- [Annotations](#annotations)
|
| 54 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
| 55 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
| 56 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
| 57 |
+
- [Discussion of Biases](#discussion-of-biases)
|
| 58 |
+
- [Other Known Limitations](#other-known-limitations)
|
| 59 |
+
- [Additional Information](#additional-information)
|
| 60 |
+
- [Dataset Curators](#dataset-curators)
|
| 61 |
+
- [Licensing Information](#licensing-information)
|
| 62 |
+
- [Citation Information](#citation-information)
|
| 63 |
+
- [Contributions](#contributions)
|
| 64 |
+
|
| 65 |
+
## Dataset Description
|
| 66 |
+
|
| 67 |
+
- **Homepage:** [https://lipn.univ-paris13.fr/~gabor/semeval2018task7/](https://lipn.univ-paris13.fr/~gabor/semeval2018task7/)
|
| 68 |
+
- **Repository:** [https://github.com/gkata/SemEval2018Task7/tree/testing](https://github.com/gkata/SemEval2018Task7/tree/testing)
|
| 69 |
+
- **Paper:** [SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers](https://aclanthology.org/S18-1111/)
|
| 70 |
+
- **Leaderboard:** [https://competitions.codalab.org/competitions/17422#learn_the_details-overview](https://competitions.codalab.org/competitions/17422#learn_the_details-overview)
|
| 71 |
+
- **Size of downloaded dataset files:** 1.93 MB
|
| 72 |
+
|
| 73 |
+
### Dataset Summary
|
| 74 |
+
|
| 75 |
+
Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction and Classification in Scientific Papers.
|
| 76 |
+
The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.
|
| 77 |
+
|
| 78 |
+
The three subtasks are:
|
| 79 |
+
|
| 80 |
+
- Subtask 1.1: Relation classification on clean data
|
| 81 |
+
- In the training data, semantic relations are manually annotated between entities.
|
| 82 |
+
- In the test data, only entity annotations and unlabeled relation instances are given.
|
| 83 |
+
- Given a scientific publication, The task is to predict the semantic relation between the entities.
|
| 84 |
+
|
| 85 |
+
- Subtask 1.2: Relation classification on noisy data
|
| 86 |
+
- Entity occurrences are automatically annotated in both the training and the test data.
|
| 87 |
+
- The task is to predict the semantic
|
| 88 |
+
relation between the entities.
|
| 89 |
+
|
| 90 |
+
- Subtask 2: Metrics for the extraction and classification scenario
|
| 91 |
+
- Evaluation of relation extraction
|
| 92 |
+
- Evaluation of relation classification
|
| 93 |
+
|
| 94 |
+
The Relations types are USAGE, RESULT, MODEL, PART_WHOLE, TOPIC, COMPARISION.
|
| 95 |
+
|
| 96 |
+
The following example shows a text snippet with the information provided in the test data:
|
| 97 |
+
Korean, a \<entity id=”H01-1041.10”>verb final language\</entity>with\<entity id=”H01-1041.11”>overt case markers\</entity>(...)
|
| 98 |
+
- A relation instance is identified by the unique identifier of the entities in the pair, e.g.(H01-1041.10, H01-1041.11)
|
| 99 |
+
- The information to be predicted is the relation class label: MODEL-FEATURE(H01-1041.10, H01-1041.11).
|
| 100 |
+
For details, see the paper https://aclanthology.org/S18-1111/.
|
| 101 |
+
|
| 102 |
+
### Supported Tasks and Leaderboards
|
| 103 |
+
|
| 104 |
+
- **Tasks:** Relation extraction and classification in scientific papers
|
| 105 |
+
- **Leaderboards:** [https://competitions.codalab.org/competitions/17422#learn_the_details-overview](https://competitions.codalab.org/competitions/17422#learn_the_details-overview)
|
| 106 |
+
|
| 107 |
+
### Languages
|
| 108 |
+
|
| 109 |
+
The language in the dataset is English.
|
| 110 |
+
|
| 111 |
+
## Dataset Structure
|
| 112 |
+
|
| 113 |
+
### Data Instances
|
| 114 |
+
|
| 115 |
+
#### subtask_1.1
|
| 116 |
+
- **Size of downloaded dataset files:** 714 KB
|
| 117 |
+
|
| 118 |
+
An example of 'train' looks as follows:
|
| 119 |
+
```json
|
| 120 |
+
{
|
| 121 |
+
"id": "H01-1041",
|
| 122 |
+
"title": "'Interlingua-Based Broad-Coverage Korean-to-English Translation in CCLING'",
|
| 123 |
+
"abstract": 'At MIT Lincoln Laboratory, we have been developing a Korean-to-English machine translation system CCLINC (Common Coalition Language System at Lincoln Laboratory) . The CCLINC Korean-to-English translation system consists of two core modules , language understanding and generation modules mediated by a language neutral meaning representation called a semantic frame . The key features of the system include: (i) Robust efficient parsing of Korean (a verb final language with overt case markers , relatively free word order , and frequent omissions of arguments ). (ii) High quality translation via word sense disambiguation and accurate word order generation of the target language . (iii) Rapid system development and porting to new domains via knowledge-based automated acquisition of grammars . Having been trained on Korean newspaper articles on missiles and chemical biological warfare, the system produces the translation output sufficient for content understanding of the original document.
|
| 124 |
+
"entities": [{'id': 'H01-1041.1', 'char_start': 54, 'char_end': 97},
|
| 125 |
+
{'id': 'H01-1041.2', 'char_start': 99, 'char_end': 161},
|
| 126 |
+
{'id': 'H01-1041.3', 'char_start': 169, 'char_end': 211},
|
| 127 |
+
{'id': 'H01-1041.4', 'char_start': 229, 'char_end': 240},
|
| 128 |
+
{'id': 'H01-1041.5', 'char_start': 244, 'char_end': 288},
|
| 129 |
+
{'id': 'H01-1041.6', 'char_start': 304, 'char_end': 342},
|
| 130 |
+
{'id': 'H01-1041.7', 'char_start': 353, 'char_end': 366},
|
| 131 |
+
{'id': 'H01-1041.8', 'char_start': 431, 'char_end': 437},
|
| 132 |
+
{'id': 'H01-1041.9', 'char_start': 442, 'char_end': 447},
|
| 133 |
+
{'id': 'H01-1041.10', 'char_start': 452, 'char_end': 470},
|
| 134 |
+
{'id': 'H01-1041.11', 'char_start': 477, 'char_end': 494},
|
| 135 |
+
{'id': 'H01-1041.12', 'char_start': 509, 'char_end': 523},
|
| 136 |
+
{'id': 'H01-1041.13', 'char_start': 553, 'char_end': 561},
|
| 137 |
+
{'id': 'H01-1041.14', 'char_start': 584, 'char_end': 594},
|
| 138 |
+
{'id': 'H01-1041.15', 'char_start': 600, 'char_end': 624},
|
| 139 |
+
{'id': 'H01-1041.16', 'char_start': 639, 'char_end': 659},
|
| 140 |
+
{'id': 'H01-1041.17', 'char_start': 668, 'char_end': 682},
|
| 141 |
+
{'id': 'H01-1041.18', 'char_start': 692, 'char_end': 715},
|
| 142 |
+
{'id': 'H01-1041.19', 'char_start': 736, 'char_end': 742},
|
| 143 |
+
{'id': 'H01-1041.20', 'char_start': 748, 'char_end': 796},
|
| 144 |
+
{'id': 'H01-1041.21', 'char_start': 823, 'char_end': 847},
|
| 145 |
+
{'id': 'H01-1041.22', 'char_start': 918, 'char_end': 935},
|
| 146 |
+
{'id': 'H01-1041.23', 'char_start': 981, 'char_end': 997}],
|
| 147 |
+
}
|
| 148 |
+
"relation": [{'label': 3, 'arg1': 'H01-1041.3', 'arg2': 'H01-1041.4', 'reverse': True},
|
| 149 |
+
{'label': 0, 'arg1': 'H01-1041.8', 'arg2': 'H01-1041.9', 'reverse': False},
|
| 150 |
+
{'label': 2, 'arg1': 'H01-1041.10', 'arg2': 'H01-1041.11', 'reverse': True},
|
| 151 |
+
{'label': 0, 'arg1': 'H01-1041.14', 'arg2': 'H01-1041.15', 'reverse': True}]
|
| 152 |
+
|
| 153 |
+
```
|
| 154 |
+
#### Subtask_1.2
|
| 155 |
+
- **Size of downloaded dataset files:** 1.00 MB
|
| 156 |
+
|
| 157 |
+
An example of 'train' looks as follows:
|
| 158 |
+
```json
|
| 159 |
+
{'id': 'L08-1450',
|
| 160 |
+
'title': '\nA LAF/GrAF based Encoding Scheme for underspecified Representations of syntactic Annotations.\n',
|
| 161 |
+
'abstract': 'Data models and encoding formats for syntactically annotated text corpora need to deal with syntactic ambiguity; underspecified representations are particularly well suited for the representation of ambiguousdata because they allow for high informational efficiency. We discuss the issue of being informationally efficient, and the trade-off between efficient encoding of linguistic annotations and complete documentation of linguistic analyses. The main topic of this article is adata model and an encoding scheme based on LAF/GrAF ( Ide and Romary, 2006 ; Ide and Suderman, 2007 ) which provides a flexible framework for encoding underspecified representations. We show how a set of dependency structures and a set of TiGer graphs ( Brants et al., 2002 ) representing the readings of an ambiguous sentence can be encoded, and we discuss basic issues in querying corpora which are encoded using the framework presented here.\n',
|
| 162 |
+
'entities': [{'id': 'L08-1450.4', 'char_start': 0, 'char_end': 3},
|
| 163 |
+
{'id': 'L08-1450.5', 'char_start': 5, 'char_end': 10},
|
| 164 |
+
{'id': 'L08-1450.6', 'char_start': 25, 'char_end': 31},
|
| 165 |
+
{'id': 'L08-1450.7', 'char_start': 61, 'char_end': 64},
|
| 166 |
+
{'id': 'L08-1450.8', 'char_start': 66, 'char_end': 72},
|
| 167 |
+
{'id': 'L08-1450.9', 'char_start': 82, 'char_end': 85},
|
| 168 |
+
{'id': 'L08-1450.10', 'char_start': 92, 'char_end': 100},
|
| 169 |
+
{'id': 'L08-1450.11', 'char_start': 102, 'char_end': 110},
|
| 170 |
+
{'id': 'L08-1450.12', 'char_start': 128, 'char_end': 142},
|
| 171 |
+
{'id': 'L08-1450.13', 'char_start': 181, 'char_end': 194},
|
| 172 |
+
{'id': 'L08-1450.14', 'char_start': 208, 'char_end': 211},
|
| 173 |
+
{'id': 'L08-1450.15', 'char_start': 255, 'char_end': 264},
|
| 174 |
+
{'id': 'L08-1450.16', 'char_start': 282, 'char_end': 286},
|
| 175 |
+
{'id': 'L08-1450.17', 'char_start': 408, 'char_end': 420},
|
| 176 |
+
{'id': 'L08-1450.18', 'char_start': 425, 'char_end': 443},
|
| 177 |
+
{'id': 'L08-1450.19', 'char_start': 450, 'char_end': 453},
|
| 178 |
+
{'id': 'L08-1450.20', 'char_start': 455, 'char_end': 459},
|
| 179 |
+
{'id': 'L08-1450.21', 'char_start': 481, 'char_end': 484},
|
| 180 |
+
{'id': 'L08-1450.22', 'char_start': 486, 'char_end': 490},
|
| 181 |
+
{'id': 'L08-1450.23', 'char_start': 508, 'char_end': 513},
|
| 182 |
+
{'id': 'L08-1450.24', 'char_start': 515, 'char_end': 519},
|
| 183 |
+
{'id': 'L08-1450.25', 'char_start': 535, 'char_end': 537},
|
| 184 |
+
{'id': 'L08-1450.26', 'char_start': 559, 'char_end': 561},
|
| 185 |
+
{'id': 'L08-1450.27', 'char_start': 591, 'char_end': 598},
|
| 186 |
+
{'id': 'L08-1450.28', 'char_start': 611, 'char_end': 619},
|
| 187 |
+
{'id': 'L08-1450.29', 'char_start': 649, 'char_end': 663},
|
| 188 |
+
{'id': 'L08-1450.30', 'char_start': 687, 'char_end': 707},
|
| 189 |
+
{'id': 'L08-1450.31', 'char_start': 722, 'char_end': 726},
|
| 190 |
+
{'id': 'L08-1450.32', 'char_start': 801, 'char_end': 808},
|
| 191 |
+
{'id': 'L08-1450.33', 'char_start': 841, 'char_end': 845},
|
| 192 |
+
{'id': 'L08-1450.34', 'char_start': 847, 'char_end': 852},
|
| 193 |
+
{'id': 'L08-1450.35', 'char_start': 857, 'char_end': 864},
|
| 194 |
+
{'id': 'L08-1450.36', 'char_start': 866, 'char_end': 872},
|
| 195 |
+
{'id': 'L08-1450.37', 'char_start': 902, 'char_end': 910},
|
| 196 |
+
{'id': 'L08-1450.1', 'char_start': 12, 'char_end': 16},
|
| 197 |
+
{'id': 'L08-1450.2', 'char_start': 27, 'char_end': 32},
|
| 198 |
+
{'id': 'L08-1450.3', 'char_start': 72, 'char_end': 80}],
|
| 199 |
+
'relation': [{'label': 1,
|
| 200 |
+
'arg1': 'L08-1450.12',
|
| 201 |
+
'arg2': 'L08-1450.13',
|
| 202 |
+
'reverse': False},
|
| 203 |
+
{'label': 5, 'arg1': 'L08-1450.17', 'arg2': 'L08-1450.18', 'reverse': False},
|
| 204 |
+
{'label': 1, 'arg1': 'L08-1450.28', 'arg2': 'L08-1450.29', 'reverse': False},
|
| 205 |
+
{'label': 3, 'arg1': 'L08-1450.30', 'arg2': 'L08-1450.32', 'reverse': False},
|
| 206 |
+
{'label': 3, 'arg1': 'L08-1450.34', 'arg2': 'L08-1450.35', 'reverse': False},
|
| 207 |
+
{'label': 3, 'arg1': 'L08-1450.36', 'arg2': 'L08-1450.37', 'reverse': True}]}
|
| 208 |
+
[ ]
|
| 209 |
+
|
| 210 |
+
```
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
### Data Fields
|
| 214 |
+
|
| 215 |
+
#### subtask_1_1
|
| 216 |
+
- `id`: the instance id of this abstract, a `string` feature.
|
| 217 |
+
- `title`: the title of this abstract, a `string` feature
|
| 218 |
+
- `abstract`: the abstract from the scientific papers, a `string` feature
|
| 219 |
+
- `entities`: the entity id's for the key phrases, a `list` of entity id's.
|
| 220 |
+
- `id`: the instance id of this sentence, a `string` feature.
|
| 221 |
+
- `char_start`: the 0-based index of the entity starting, an `ìnt` feature.
|
| 222 |
+
- `char_end`: the 0-based index of the entity ending, an `ìnt` feature.
|
| 223 |
+
- `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
|
| 224 |
+
- `label`: the list of relations between the key phrases, a `list` of classification labels.
|
| 225 |
+
- `arg1`: the entity id of this key phrase, a `string` feature.
|
| 226 |
+
- `arg2`: the entity id of the related key phrase, a `string` feature.
|
| 227 |
+
- `reverse`: the reverse is `True` only if reverse is possible otherwise `False`, a `bool` feature.
|
| 228 |
+
|
| 229 |
+
```python
|
| 230 |
+
RELATIONS
|
| 231 |
+
{"":0,"USAGE": 1, "RESULT": 2, "MODEL-FEATURE": 3, "PART_WHOLE": 4, "TOPIC": 5, "COMPARE": 6}
|
| 232 |
+
```
|
| 233 |
+
|
| 234 |
+
#### subtask_1_2
|
| 235 |
+
- `id`: the instance id of this abstract, a `string` feature.
|
| 236 |
+
- `title`: the title of this abstract, a `string` feature
|
| 237 |
+
- `abstract`: the abstract from the scientific papers, a `string` feature
|
| 238 |
+
- `entities`: the entity id's for the key phrases, a `list` of entity id's.
|
| 239 |
+
- `id`: the instance id of this sentence, a `string` feature.
|
| 240 |
+
- `char_start`: the 0-based index of the entity starting, an `ìnt` feature.
|
| 241 |
+
- `char_end`: the 0-based index of the entity ending, an `ìnt` feature.
|
| 242 |
+
- `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
|
| 243 |
+
- `label`: the list of relations between the key phrases, a `list` of classification labels.
|
| 244 |
+
- `arg1`: the entity id of this key phrase, a `string` feature.
|
| 245 |
+
- `arg2`: the entity id of the related key phrase, a `string` feature.
|
| 246 |
+
- `reverse`: the reverse is `True` only if reverse is possible otherwise `False`, a `bool` feature.
|
| 247 |
+
|
| 248 |
+
```python
|
| 249 |
+
RELATIONS
|
| 250 |
+
{"":0,"USAGE": 1, "RESULT": 2, "MODEL-FEATURE": 3, "PART_WHOLE": 4, "TOPIC": 5, "COMPARE": 6}
|
| 251 |
+
```
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
### Data Splits
|
| 255 |
+
|
| 256 |
+
| | | Train| Test |
|
| 257 |
+
|-------------|-----------|------|------|
|
| 258 |
+
| subtask_1_1 | text | 2807 | 3326 |
|
| 259 |
+
| | relations | 1228 | 1248 |
|
| 260 |
+
| subtask_1_2 | text | 1196 | 1193 |
|
| 261 |
+
| | relations | 335 | 355 |
|
| 262 |
+
|
| 263 |
+
## Dataset Creation
|
| 264 |
+
|
| 265 |
+
### Curation Rationale
|
| 266 |
+
|
| 267 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 268 |
+
|
| 269 |
+
### Source Data
|
| 270 |
+
|
| 271 |
+
#### Initial Data Collection and Normalization
|
| 272 |
+
|
| 273 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 274 |
+
|
| 275 |
+
#### Who are the source language producers?
|
| 276 |
+
|
| 277 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 278 |
+
|
| 279 |
+
### Annotations
|
| 280 |
+
|
| 281 |
+
#### Annotation process
|
| 282 |
+
|
| 283 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 284 |
+
|
| 285 |
+
#### Who are the annotators?
|
| 286 |
+
|
| 287 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 288 |
+
|
| 289 |
+
### Personal and Sensitive Information
|
| 290 |
+
|
| 291 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 292 |
+
|
| 293 |
+
## Considerations for Using the Data
|
| 294 |
+
|
| 295 |
+
### Social Impact of Dataset
|
| 296 |
+
|
| 297 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 298 |
+
|
| 299 |
+
### Discussion of Biases
|
| 300 |
+
|
| 301 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 302 |
+
|
| 303 |
+
### Other Known Limitations
|
| 304 |
+
|
| 305 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 306 |
+
|
| 307 |
+
## Additional Information
|
| 308 |
+
|
| 309 |
+
### Dataset Curators
|
| 310 |
+
|
| 311 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 312 |
+
|
| 313 |
+
### Licensing Information
|
| 314 |
+
|
| 315 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 316 |
+
|
| 317 |
+
### Citation Information
|
| 318 |
+
|
| 319 |
+
```
|
| 320 |
+
@inproceedings{gabor-etal-2018-semeval,
|
| 321 |
+
title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers",
|
| 322 |
+
author = {G{\'a}bor, Kata and
|
| 323 |
+
Buscaldi, Davide and
|
| 324 |
+
Schumann, Anne-Kathrin and
|
| 325 |
+
QasemiZadeh, Behrang and
|
| 326 |
+
Zargayouna, Ha{\"\i}fa and
|
| 327 |
+
Charnois, Thierry},
|
| 328 |
+
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
|
| 329 |
+
month = jun,
|
| 330 |
+
year = "2018",
|
| 331 |
+
address = "New Orleans, Louisiana",
|
| 332 |
+
publisher = "Association for Computational Linguistics",
|
| 333 |
+
url = "https://aclanthology.org/S18-1111",
|
| 334 |
+
doi = "10.18653/v1/S18-1111",
|
| 335 |
+
pages = "679--688",
|
| 336 |
+
abstract = "This paper describes the first task on semantic relation extraction and classification in scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.",
|
| 337 |
+
}
|
| 338 |
+
```
|
| 339 |
+
### Contributions
|
| 340 |
+
|
| 341 |
+
Thanks to [@basvoju](https://github.com/basvoju) for adding this dataset.
|