Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
Tags:
cybersecurity
License:
File size: 2,517 Bytes
b8a9b88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import datasets
_CITATION = """\
@misc{deepurlbench2025,
author = {Deep Instinct Research Team},
title = {DeepURLBench: A large-scale benchmark for URL classification},
year = {2025},
howpublished = {\\url{https://huggingface.co/datasets/DeepInstinct/DeepURLBench}}
}
"""
_DESCRIPTION = """\
DeepURLBench is a large-scale benchmark for real-world URL classification.
It includes two subsets: one with DNS resolution information and one without.
"""
_HOMEPAGE = "https://huggingface.co/datasets/DeepInstinct/DeepURLBench"
_LICENSE = "cc-by-nc-4.0"
# If your files are hosted in the root of the repo
_URLS = {
"with_dns": "https://huggingface.co/datasets/DeepInstinct/DeepURLBench/resolve/main/urls_with_dns.parquet",
"without_dns": "https://huggingface.co/datasets/DeepInstinct/DeepURLBench/resolve/main/urls_without_dns.parquet",
}
class DeepURLBench(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="with_dns", version=VERSION, description="URLs with DNS info"),
datasets.BuilderConfig(name="without_dns", version=VERSION, description="URLs without DNS info"),
]
def _info(self):
if self.config.name == "with_dns":
features = datasets.Features({
"url": datasets.Value("string"),
"first_seen": datasets.Value("string"),
"TTL": datasets.Value("int32"),
"label": datasets.Value("string"),
"ip_address": datasets.Sequence(datasets.Value("string")),
})
else: # without_dns
features = datasets.Features({
"url": datasets.Value("string"),
"first_seen": datasets.Value("string"),
"label": datasets.Value("string"),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_file = _URLS[self.config.name]
downloaded_file = dl_manager.download_and_extract(data_file)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file})]
def _generate_examples(self, filepath):
import pandas as pd
df = pd.read_parquet(filepath)
for idx, row in df.iterrows():
yield idx, row.to_dict()
|