import datasets _CITATION = """\ @misc{deepurlbench2025, author = {Deep Instinct Research Team}, title = {DeepURLBench: A large-scale benchmark for URL classification}, year = {2025}, howpublished = {\\url{https://huggingface.co/datasets/DeepInstinct/DeepURLBench}} } """ _DESCRIPTION = """\ DeepURLBench is a large-scale benchmark for real-world URL classification. It includes two subsets: one with DNS resolution information and one without. """ _HOMEPAGE = "https://huggingface.co/datasets/DeepInstinct/DeepURLBench" _LICENSE = "cc-by-nc-4.0" # If your files are hosted in the root of the repo _URLS = { "with_dns": "https://huggingface.co/datasets/DeepInstinct/DeepURLBench/resolve/main/urls_with_dns.parquet", "without_dns": "https://huggingface.co/datasets/DeepInstinct/DeepURLBench/resolve/main/urls_without_dns.parquet", } class DeepURLBench(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="with_dns", version=VERSION, description="URLs with DNS info"), datasets.BuilderConfig(name="without_dns", version=VERSION, description="URLs without DNS info"), ] def _info(self): if self.config.name == "with_dns": features = datasets.Features({ "url": datasets.Value("string"), "first_seen": datasets.Value("string"), "TTL": datasets.Value("int32"), "label": datasets.Value("string"), "ip_address": datasets.Sequence(datasets.Value("string")), }) else: # without_dns features = datasets.Features({ "url": datasets.Value("string"), "first_seen": datasets.Value("string"), "label": datasets.Value("string"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_file = _URLS[self.config.name] downloaded_file = dl_manager.download_and_extract(data_file) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file})] def _generate_examples(self, filepath): import pandas as pd df = pd.read_parquet(filepath) for idx, row in df.iterrows(): yield idx, row.to_dict()