| """Program Synthesis dataset from dreamcoder. https://github.com/ellisk42/ec""" | |
| from random import choice, shuffle | |
| import datasets | |
| from dreamcoder.domains.text.makeTextTasks import makeTasks as textMakeTasks | |
| from dreamcoder.domains.list.main import main as listMakeTasks | |
| _DESCRIPTION = """\ | |
| Generated program synthesis datasets used to train dreamcoder. | |
| """ | |
| _FEATURES = datasets.Features( | |
| { | |
| "description": datasets.Value("string"), | |
| "input": datasets.Value("string"), | |
| "output": datasets.Value("string"), | |
| "types": datasets.Value("string") | |
| } | |
| ) | |
| _HOMEPAGE = "https://github.com/ellisk42/ec" | |
| _LICENSE = "MIT License" | |
| _MAX_STEPS = 10 | |
| class infIterator: | |
| def __init__(self, make_mthd): | |
| self.make_mthd = make_mthd | |
| self.i = None | |
| def reset(self): | |
| tasks = self.make_mthd() | |
| rows = [] | |
| for task in tasks: | |
| base = { | |
| 'types': str(task.request), | |
| "description": task.name, | |
| } | |
| for (inp, outp) in task.examples: | |
| rows.append(dict(input=str(inp), output=str(outp), **base)) | |
| shuffle(rows) | |
| self.rows = rows | |
| self.i = 0 | |
| def step(self): | |
| if self.i is None: | |
| self.reset() | |
| row = self.rows[self.i] | |
| self.i += 1 | |
| if self.i >= len(self.rows): | |
| self.reset() | |
| return row | |
| class ProgramSynthesis(datasets.GeneratorBasedBuilder): | |
| """Program Synthesis dataset from dreamcoder.""" | |
| VERSION = datasets.Version("1.1.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig(name="text", version=VERSION, description="Text tasks."), | |
| datasets.BuilderConfig(name="list", version=VERSION, description="List tasks."), | |
| datasets.BuilderConfig(name="all", version=VERSION, description="All tasks at once."), | |
| ] | |
| DEFAULT_CONFIG_NAME = "all" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=_FEATURES, | |
| supervised_keys=("input", "output"), | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| ), | |
| ] | |
| def _generate_examples(self): | |
| task_samples = { | |
| 'text': infIterator(textMakeTasks), | |
| 'list': infIterator(listMakeTasks) | |
| } | |
| ks = list(task_samples.keys()) | |
| for key in range(_MAX_STEPS): | |
| if self.config.name == 'all': | |
| dataset_type = choice(ks) | |
| else: | |
| dataset_type = self.config.name | |
| yield key, task_samples[dataset_type].step() | |