File size: 20,813 Bytes
d0b3489
 
 
a63309e
d0b3489
 
 
 
 
a63309e
 
 
 
 
d0b3489
 
f74a915
 
 
 
a63309e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
---
license: cc-by-4.0
task_categories:
- graph-ml
- tabular-classification
- tabular-regression
language:
- en
tags:
- database-analysis
- graph-similarity
- federated-learning
- schema-matching
- wikidata
size_categories:
- 10B<n<100B
---

# WikiDBGraph Dataset

WikiDBGraph is a comprehensive dataset for database graph analysis, containing structural and semantic properties of 100,000 Wikidata-derived databases. The dataset includes graph representations, similarity metrics, community structures, and various statistical properties designed for federated learning research and database schema matching tasks.

## Dataset Overview

This dataset provides graph-based analysis of database schemas, enabling research in:
- **Database similarity and matching**: Finding structurally and semantically similar databases
- **Federated learning**: Training machine learning models across distributed database pairs
- **Graph analysis**: Community detection, connected components, and structural properties
- **Schema analysis**: Statistical properties of database schemas including cardinality, entropy, and sparsity

### Statistics

- **Total Databases**: 100,000
- **Total Edges**: 17,858,194 (at threshold 0.94)
- **Connected Components**: 6,109
- **Communities**: 6,133
- **Largest Component**: 10,703 nodes
- **Modularity Score**: 0.5366

## Dataset Structure

The dataset consists of 15 files organized into four categories:

### 1. Graph Structure Files

#### `graph_raw_0.94.dgl`
DGL (Deep Graph Library) graph file containing the complete database similarity graph.

**Structure**:
- **Nodes**: 100,000 database IDs
- **Edges**: 17,858,194 pairs with similarity ≥ 0.94
- **Node Data**:
  - `embedding`: 768-dimensional node embeddings (if available)
- **Edge Data**:
  - `weight`: Edge similarity scores (float32)
  - `gt_edge`: Ground truth edge labels (float32)

**Loading**:
```python
import dgl
import torch

# Load the graph
graphs, _ = dgl.load_graphs('graph_raw_0.94.dgl')
graph = graphs[0]

# Access nodes and edges
num_nodes = graph.num_nodes()  # 100000
num_edges = graph.num_edges()  # 17858194

# Access edge data
src, dst = graph.edges()
edge_weights = graph.edata['weight']
edge_labels = graph.edata['gt_edge']

# Access node embeddings (if available)
if 'embedding' in graph.ndata:
    node_embeddings = graph.ndata['embedding']  # shape: (100000, 768)
```

#### `database_embeddings.pt`
PyTorch tensor file containing pre-computed 768-dimensional embeddings for all databases.

**Structure**:
- Tensor shape: `(100000, 768)`
- Data type: float32
- Embeddings generated using BGE (BAAI General Embedding) model

**Loading**:
```python
import torch

embeddings = torch.load('database_embeddings.pt', weights_only=True)
print(embeddings.shape)  # torch.Size([100000, 768])

# Get embedding for specific database
db_idx = 42
db_embedding = embeddings[db_idx]
```

### 2. Edge Files (Database Pair Relationships)

#### `filtered_edges_threshold_0.94.csv`
Main edge list with database pairs having similarity ≥ 0.94.

**Columns**:
- `src` (float): Source database ID
- `tgt` (float): Target database ID
- `similarity` (float): Cosine similarity score [0.94, 1.0]
- `label` (float): Ground truth label (0.0 or 1.0)
- `edge` (int): Edge indicator (always 1)

**Loading**:
```python
import pandas as pd

edges = pd.read_csv('filtered_edges_threshold_0.94.csv')
print(f"Total edges: {len(edges):,}")

# Find highly similar pairs
high_sim = edges[edges['similarity'] >= 0.99]
print(f"Pairs with similarity ≥ 0.99: {len(high_sim):,}")
```

**Example rows**:
```
src       tgt       similarity  label  edge
26218.0   44011.0   0.9896456   0.0    1
26218.0   44102.0   0.9908572   0.0    1
```

#### `edges_list_th0.6713.csv`
Extended edge list with lower similarity threshold (≥ 0.6713).

**Columns**:
- `src` (str): Source database ID (padded format, e.g., "00000")
- `tgt` (str): Target database ID (padded format)
- `similarity` (float): Cosine similarity score [0.6713, 1.0]
- `label` (float): Ground truth label

**Loading**:
```python
import pandas as pd

edges = pd.read_csv('edges_list_th0.6713.csv')

# Database IDs are strings with leading zeros
print(edges['src'].head())  # "00000", "00000", "00000", ...

# Filter by similarity threshold
threshold = 0.90
filtered = edges[edges['similarity'] >= threshold]
```

#### `edge_structural_properties_GED_0.94.csv`
Detailed structural properties for database pairs at threshold 0.94.

**Columns**:
- `db_id1` (int): First database ID
- `db_id2` (int): Second database ID
- `jaccard_table_names` (float): Jaccard similarity of table names [0.0, 1.0]
- `jaccard_columns` (float): Jaccard similarity of column names [0.0, 1.0]
- `jaccard_data_types` (float): Jaccard similarity of data types [0.0, 1.0]
- `hellinger_distance_data_types` (float): Hellinger distance between data type distributions
- `graph_edit_distance` (float): Graph edit distance between schemas
- `common_tables` (int): Number of common table names
- `common_columns` (int): Number of common column names
- `common_data_types` (int): Number of common data types

**Loading**:
```python
import pandas as pd

edge_props = pd.read_csv('edge_structural_properties_GED_0.94.csv')

# Find pairs with high structural similarity
high_jaccard = edge_props[edge_props['jaccard_columns'] >= 0.5]
print(f"Pairs with ≥50% column overlap: {len(high_jaccard):,}")

# Analyze graph edit distance
print(f"Mean GED: {edge_props['graph_edit_distance'].mean():.2f}")
print(f"Median GED: {edge_props['graph_edit_distance'].median():.2f}")
```

#### `distdiv_results.csv`
Distribution divergence metrics for database pairs.

**Columns**:
- `src` (int): Source database ID
- `tgt` (int): Target database ID
- `distdiv` (float): Distribution divergence score
- `overlap_ratio` (float): Column overlap ratio [0.0, 1.0]
- `shared_column_count` (int): Number of shared columns

**Loading**:
```python
import pandas as pd

distdiv = pd.read_csv('distdiv_results.csv')

# Find pairs with low divergence (more similar distributions)
similar_dist = distdiv[distdiv['distdiv'] < 15.0]

# Analyze overlap patterns
high_overlap = distdiv[distdiv['overlap_ratio'] >= 0.3]
print(f"Pairs with ≥30% overlap: {len(high_overlap):,}")
```

#### `all_join_size_results_est.csv`
Estimated join sizes for databases (cardinality estimation).

**Columns**:
- `db_id` (int): Database ID
- `all_join_size` (float): Estimated size of full outer join across all tables

**Loading**:
```python
import pandas as pd

join_sizes = pd.read_csv('all_join_size_results_est.csv')

# Analyze join complexity
print(f"Mean join size: {join_sizes['all_join_size'].mean():.2f}")
print(f"Max join size: {join_sizes['all_join_size'].max():.2f}")

# Large databases (complex joins)
large_dbs = join_sizes[join_sizes['all_join_size'] > 1000]
```

### 3. Node Files (Database Properties)

#### `node_structural_properties.csv`
Comprehensive structural properties for each database schema.

**Columns**:
- `db_id` (int): Database ID
- `num_tables` (int): Number of tables in the database
- `num_columns` (int): Total number of columns across all tables
- `foreign_key_density` (float): Ratio of foreign keys to possible relationships
- `avg_table_connectivity` (float): Average number of connections per table
- `median_table_connectivity` (float): Median connections per table
- `min_table_connectivity` (float): Minimum connections for any table
- `max_table_connectivity` (float): Maximum connections for any table
- `data_type_proportions` (str): JSON string with data type distribution
- `data_types` (str): JSON string with count of each data type
- `wikidata_properties` (int): Number of Wikidata properties used

**Loading**:
```python
import pandas as pd
import json

node_props = pd.read_csv('node_structural_properties.csv')

# Parse JSON columns
node_props['data_type_dist'] = node_props['data_type_proportions'].apply(
    lambda x: json.loads(x.replace("'", '"'))
)

# Analyze database complexity
complex_dbs = node_props[node_props['num_tables'] > 10]
print(f"Databases with >10 tables: {len(complex_dbs):,}")

# Foreign key density analysis
print(f"Mean FK density: {node_props['foreign_key_density'].mean():.4f}")
```

**Example row**:
```
db_id: 88880
num_tables: 2
num_columns: 24
foreign_key_density: 0.0833
avg_table_connectivity: 1.5
data_type_proportions: {'string': 0.417, 'wikibase-entityid': 0.583}
```

#### `data_volume.csv`
Storage size information for each database.

**Columns**:
- `db_id` (str/int): Database ID (may have leading zeros)
- `volume_bytes` (int): Total data volume in bytes

**Loading**:
```python
import pandas as pd

volumes = pd.read_csv('data_volume.csv')

# Convert to more readable units
volumes['volume_mb'] = volumes['volume_bytes'] / (1024 * 1024)
volumes['volume_gb'] = volumes['volume_bytes'] / (1024 * 1024 * 1024)

# Find largest databases
top_10 = volumes.nlargest(10, 'volume_bytes')
print(top_10[['db_id', 'volume_gb']])
```

### 4. Column-Level Statistics

#### `column_cardinality.csv`
Distinct value counts for all columns.

**Columns**:
- `db_id` (str/int): Database ID
- `table_name` (str): Table name
- `column_name` (str): Column name
- `n_distinct` (int): Number of distinct values

**Loading**:
```python
import pandas as pd

cardinality = pd.read_csv('column_cardinality.csv')

# High cardinality columns (potentially good as keys)
high_card = cardinality[cardinality['n_distinct'] > 100]

# Analyze cardinality distribution
print(f"Mean distinct values: {cardinality['n_distinct'].mean():.2f}")
print(f"Median distinct values: {cardinality['n_distinct'].median():.2f}")
```

**Example rows**:
```
db_id  table_name          column_name         n_distinct
6      scholarly_articles  article_title       275
6      scholarly_articles  article_description 197
6      scholarly_articles  pub_med_id          269
```

#### `column_entropy.csv`
Shannon entropy for column value distributions.

**Columns**:
- `db_id` (str): Database ID (padded format)
- `table_name` (str): Table name
- `column_name` (str): Column name
- `entropy` (float): Shannon entropy value [0.0, ∞)

**Loading**:
```python
import pandas as pd

entropy = pd.read_csv('column_entropy.csv')

# High entropy columns (high information content)
high_entropy = entropy[entropy['entropy'] > 3.0]

# Low entropy columns (low diversity)
low_entropy = entropy[entropy['entropy'] < 0.5]

# Distribution analysis
print(f"Mean entropy: {entropy['entropy'].mean():.3f}")
```

**Example rows**:
```
db_id   table_name                    column_name              entropy
00001   descendants_of_john_i         full_name                3.322
00001   descendants_of_john_i         gender                   0.881
00001   descendants_of_john_i         father_name              0.000
```

#### `column_sparsity.csv`
Missing value ratios for all columns.

**Columns**:
- `db_id` (str): Database ID (padded format)
- `table_name` (str): Table name
- `column_name` (str): Column name
- `sparsity` (float): Ratio of missing values [0.0, 1.0]

**Loading**:
```python
import pandas as pd

sparsity = pd.read_csv('column_sparsity.csv')

# Dense columns (few missing values)
dense = sparsity[sparsity['sparsity'] < 0.1]

# Sparse columns (many missing values)
sparse = sparsity[sparsity['sparsity'] > 0.5]

# Quality assessment
print(f"Columns with >50% missing: {len(sparse):,}")
print(f"Mean sparsity: {sparsity['sparsity'].mean():.3f}")
```

**Example rows**:
```
db_id   table_name                      column_name       sparsity
00009   FamousPencilMoustacheWearers   Name              0.000
00009   FamousPencilMoustacheWearers   Biography         0.000
00009   FamousPencilMoustacheWearers   ViafId            0.222
```

### 5. Clustering and Community Files

#### `community_assignment_0.94.csv`
Community detection results using Louvain algorithm.

**Columns**:
- `node_id` (int): Database ID
- `partition` (int): Community/partition ID

**Loading**:
```python
import pandas as pd

communities = pd.read_csv('community_assignment_0.94.csv')

# Analyze community structure
community_sizes = communities['partition'].value_counts()
print(f"Number of communities: {len(community_sizes)}")
print(f"Largest community size: {community_sizes.max()}")

# Get databases in a specific community
community_1 = communities[communities['partition'] == 1]['node_id'].tolist()
```

**Statistics**:
- Total communities: 6,133
- Largest community: 4,825 nodes
- Modularity: 0.5366

#### `cluster_assignments_dim2_sz100_msNone.csv`
Clustering results from dimensionality reduction (e.g., t-SNE, UMAP).

**Columns**:
- `db_id` (int): Database ID
- `cluster` (int): Cluster ID

**Loading**:
```python
import pandas as pd

clusters = pd.read_csv('cluster_assignments_dim2_sz100_msNone.csv')

# Analyze cluster distribution
cluster_sizes = clusters['cluster'].value_counts()
print(f"Number of clusters: {len(cluster_sizes)}")

# Get databases in a specific cluster
cluster_9 = clusters[clusters['cluster'] == 9]['db_id'].tolist()
```

### 6. Analysis Reports

#### `analysis_0.94_report.txt`
Comprehensive text report of graph analysis at threshold 0.94.

**Contents**:
- Graph statistics (nodes, edges)
- Connected components analysis
- Community detection results
- Top components and communities by size

**Loading**:
```python
with open('analysis_0.94_report.txt', 'r') as f:
    report = f.read()
    print(report)
```

**Key Metrics**:
- Total Nodes: 100,000
- Total Edges: 17,858,194
- Connected Components: 6,109
- Largest Component: 10,703 nodes
- Communities: 6,133
- Modularity: 0.5366

## Usage Examples

### Example 1: Finding Similar Database Pairs

```python
import pandas as pd

# Load edges with high similarity
edges = pd.read_csv('filtered_edges_threshold_0.94.csv')

# Find database pairs with similarity > 0.98
high_sim_pairs = edges[edges['similarity'] >= 0.98]
print(f"Found {len(high_sim_pairs)} pairs with similarity ≥ 0.98")

# Get top 10 most similar pairs
top_pairs = edges.nlargest(10, 'similarity')
for idx, row in top_pairs.iterrows():
    print(f"DB {int(row['src'])} ↔ DB {int(row['tgt'])}: {row['similarity']:.4f}")
```

### Example 2: Analyzing Database Properties

```python
import pandas as pd
import json

# Load node properties
nodes = pd.read_csv('node_structural_properties.csv')

# Find complex databases
complex_dbs = nodes[
    (nodes['num_tables'] > 10) & 
    (nodes['num_columns'] > 100)
]

print(f"Complex databases: {len(complex_dbs)}")

# Analyze data type distribution
for idx, row in complex_dbs.head().iterrows():
    db_id = row['db_id']
    types = json.loads(row['data_types'].replace("'", '"'))
    print(f"DB {db_id}: {types}")
```

### Example 3: Loading and Analyzing the Graph

```python
import dgl
import torch
import pandas as pd

# Load DGL graph
graphs, _ = dgl.load_graphs('graph_raw_0.94.dgl')
graph = graphs[0]

# Basic statistics
print(f"Nodes: {graph.num_nodes():,}")
print(f"Edges: {graph.num_edges():,}")

# Analyze degree distribution
in_degrees = graph.in_degrees()
out_degrees = graph.out_degrees()

print(f"Average in-degree: {in_degrees.float().mean():.2f}")
print(f"Average out-degree: {out_degrees.float().mean():.2f}")

# Find highly connected nodes
top_nodes = torch.topk(in_degrees, k=10)
print(f"Top 10 most connected databases: {top_nodes.indices.tolist()}")
```

### Example 4: Federated Learning Pair Selection

```python
import pandas as pd

# Load edges and structural properties
edges = pd.read_csv('filtered_edges_threshold_0.94.csv')
edge_props = pd.read_csv('edge_structural_properties_GED_0.94.csv')

# Merge data
pairs = edges.merge(
    edge_props, 
    left_on=['src', 'tgt'], 
    right_on=['db_id1', 'db_id2'],
    how='inner'
)

# Select pairs for federated learning
# Criteria: high similarity + high column overlap + low GED
fl_candidates = pairs[
    (pairs['similarity'] >= 0.98) &
    (pairs['jaccard_columns'] >= 0.4) &
    (pairs['graph_edit_distance'] <= 3.0)
]

print(f"FL candidate pairs: {len(fl_candidates)}")

# Sample pairs for experiments
sample = fl_candidates.sample(n=100, random_state=42)
```

### Example 5: Column Statistics Analysis

```python
import pandas as pd

# Load column-level statistics
cardinality = pd.read_csv('column_cardinality.csv')
entropy = pd.read_csv('column_entropy.csv')
sparsity = pd.read_csv('column_sparsity.csv')

# Merge on (db_id, table_name, column_name)
merged = cardinality.merge(entropy, on=['db_id', 'table_name', 'column_name'])
merged = merged.merge(sparsity, on=['db_id', 'table_name', 'column_name'])

# Find high-quality columns for machine learning
# Criteria: high cardinality, high entropy, low sparsity
quality_columns = merged[
    (merged['n_distinct'] > 50) &
    (merged['entropy'] > 2.0) &
    (merged['sparsity'] < 0.1)
]

print(f"High-quality columns: {len(quality_columns)}")
```

### Example 6: Community Analysis

```python
import pandas as pd

# Load community assignments
communities = pd.read_csv('community_assignment_0.94.csv')
nodes = pd.read_csv('node_structural_properties.csv')

# Merge to get properties by community
community_props = communities.merge(
    nodes, 
    left_on='node_id', 
    right_on='db_id'
)

# Analyze each community
for comm_id in community_props['partition'].unique()[:5]:
    comm_data = community_props[community_props['partition'] == comm_id]
    print(f"\nCommunity {comm_id}:")
    print(f"  Size: {len(comm_data)}")
    print(f"  Avg tables: {comm_data['num_tables'].mean():.2f}")
    print(f"  Avg columns: {comm_data['num_columns'].mean():.2f}")
```

## Applications

### 1. Federated Learning Research
Use the similarity graph to identify database pairs for federated learning experiments. The high-similarity pairs (≥0.98) are ideal for horizontal federated learning scenarios.

### 2. Schema Matching
Leverage structural properties and similarity metrics for automated schema matching and integration tasks.

### 3. Database Clustering
Use embeddings and community detection results to group similar databases for analysis or optimization.

### 4. Data Quality Assessment
Column-level statistics (cardinality, entropy, sparsity) enable systematic data quality evaluation across large database collections.

### 5. Graph Neural Networks
The DGL graph format is ready for training GNN models for link prediction, node classification, or graph classification tasks.

## Technical Details

### Similarity Computation
- **Method**: BGE (BAAI General Embedding) model for semantic embeddings
- **Metric**: Cosine similarity
- **Thresholds**: Multiple thresholds available (0.6713, 0.94, 0.96)

### Graph Construction
- **Nodes**: Database IDs (0 to 99,999)
- **Edges**: Database pairs with similarity above threshold
- **Edge weights**: Cosine similarity scores
- **Format**: DGL binary format for efficient loading

### Community Detection
- **Algorithm**: Louvain method
- **Modularity**: 0.5366 (indicates well-defined communities)
- **Resolution**: Default parameter

### Data Processing Pipeline
1. Schema extraction from Wikidata databases
2. Semantic embedding generation using BGE
3. Similarity computation across all pairs
4. Graph construction and filtering
5. Property extraction and statistical analysis
6. Community detection and clustering

## Data Format Standards

### Database ID Formats
- **Integer IDs**: Used in most files (0-99999)
- **Padded strings**: Used in some files (e.g., "00000", "00001")
- **Conversion**: `str(db_id).zfill(5)` for integer to padded string

### Missing Values
- Numerical columns: May contain `NaN` or `-0.0`
- String columns: Empty strings or missing entries
- Sparsity column: Explicit ratio of missing values

### Data Types
- `float32`: Similarity scores, weights, entropy
- `float64`: Statistical measures, ratios
- `int64`: Counts, IDs
- `string`: Names, identifiers

## File Size Information

Approximate file sizes:
- `graph_raw_0.94.dgl`: ~2.5 GB
- `database_embeddings.pt`: ~300 MB
- `filtered_edges_threshold_0.94.csv`: ~800 MB
- `edge_structural_properties_GED_0.94.csv`: ~400 MB
- `node_structural_properties.csv`: ~50 MB
- Column statistics CSVs: ~20-50 MB each
- Other files: <10 MB each

## Citation

If you use this dataset in your research, please cite:

```bibtex
@article{wu2025wikidbgraph,
  title={WikiDBGraph: Large-Scale Database Graph of Wikidata for Collaborative Learning},
  author={Wu, Zhaomin and Wang, Ziyang and He, Bingsheng},
  journal={arXiv preprint arXiv:2505.16635},
  year={2025}
}
```

## License

This dataset is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

## Acknowledgments

This dataset is derived from Wikidata and builds upon the WikiDBGraph system for graph-based database analysis and federated learning. We acknowledge the Wikidata community for providing the underlying data infrastructure.