Datasets:
				
			
			
	
			
	
		
			
	
		Tasks:
	
	
	
	
	Token Classification
	
	
	Modalities:
	
	
	
		
	
	Text
	
	
	Sub-tasks:
	
	
	
	
	named-entity-recognition
	
	
	Languages:
	
	
	
		
	
	Spanish
	
	
	Size:
	
	
	
	
	10K - 100K
	
	
	License:
	
	
	
	
	
	
	
| # Loading script for the Cantemist NER dataset. | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @inproceedings{miranda2020named, | |
| title={Named entity recognition, concept normalization and clinical coding: Overview of the cantemist track for cancer text mining in spanish, corpus, guidelines, methods and results}, | |
| author={Miranda-Escalada, A and Farr{\'e}, E and Krallinger, M}, | |
| booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020), CEUR Workshop Proceedings}, | |
| year={2020} | |
| }""" | |
| _DESCRIPTION = """\ | |
| https://temu.bsc.es/cantemist/ | |
| """ | |
| _URL = "https://huggingface.co/datasets/PlanTL-GOB-ES/cantemist-ner/resolve/main/" | |
| # _URL = "./" | |
| _TRAINING_FILE = "train.conll" | |
| _DEV_FILE = "dev.conll" | |
| _TEST_FILE = "test.conll" | |
| class CantemistNerConfig(datasets.BuilderConfig): | |
| """BuilderConfig for Cantemist Ner dataset""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for CantemistNer. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(CantemistNerConfig, self).__init__(**kwargs) | |
| class CantemistNer(datasets.GeneratorBasedBuilder): | |
| """Cantemist Ner dataset.""" | |
| BUILDER_CONFIGS = [ | |
| CantemistNerConfig( | |
| name="CantemistNer", | |
| version=datasets.Version("1.0.0"), | |
| description="CantemistNer dataset"), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "O", | |
| "B-MORFOLOGIA_NEOPLASIA", | |
| "I-MORFOLOGIA_NEOPLASIA", | |
| ] | |
| ) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://temu.bsc.es/cantemist/", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| urls_to_download = { | |
| "train": f"{_URL}{_TRAINING_FILE}", | |
| "dev": f"{_URL}{_DEV_FILE}", | |
| "test": f"{_URL}{_TEST_FILE}", | |
| } | |
| downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| with open(filepath, encoding="utf-8") as f: | |
| guid = 0 | |
| tokens = [] | |
| pos_tags = [] | |
| ner_tags = [] | |
| for line in f: | |
| if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
| if tokens: | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |
| guid += 1 | |
| tokens = [] | |
| ner_tags = [] | |
| else: | |
| # Cantemist tokens are tab separated | |
| splits = line.split("\t") | |
| tokens.append(splits[0]) | |
| ner_tags.append(splits[-1].rstrip()) | |
| # last example | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |