Update README.md
Browse files
README.md
CHANGED
|
@@ -108,36 +108,24 @@ Beam_0_Data.h5
|
|
| 108 |
You can load the dataset with the following lines of code.
|
| 109 |
|
| 110 |
```python
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
})
|
| 130 |
-
|
| 131 |
-
# load structures metadata for 1st patient
|
| 132 |
-
structureset_metadata = load_dataset("json", data_files=dataset[0]['structureset_metadata'])
|
| 133 |
-
print(structureset_metadata)
|
| 134 |
-
|
| 135 |
-
DatasetDict({
|
| 136 |
-
train: Dataset({
|
| 137 |
-
features: ['name', 'volume_cc', 'dicom_structure_name', 'fraction_of_vol_in_calc_box', 'structure_mask_3d_File'],
|
| 138 |
-
num_rows: 9
|
| 139 |
-
})
|
| 140 |
-
})
|
| 141 |
|
| 142 |
```
|
| 143 |
|
|
@@ -157,14 +145,3 @@ The original imaging data was processed by the authors of this repository by:
|
|
| 157 |
- Adding benchmark plans using in-house automated treatment planning system **ECHO**.
|
| 158 |
- Storing the data in the standardized [PortPy](https://github.com/PortPy/PortPy) data format for research and educational purposes.
|
| 159 |
|
| 160 |
-
|
| 161 |
-
# Reference <a name="Reference"></a>
|
| 162 |
-
If you find our work useful in your research or if you use parts of this code please cite our [AAPM'23 abstract](https://aapm.confex.com/aapm/2023am/meetingapp.cgi/Paper/4208) :
|
| 163 |
-
```
|
| 164 |
-
@article{jhanwar2023portpy,
|
| 165 |
-
title={Portpy: An Open-Source Python Package for Planning and Optimization in Radiation Therapy Including Benchmark Data and Algorithms},
|
| 166 |
-
author={Jhanwar, Gourav and Tefagh, Mojtaba and Taasti, Vicki T and Alam, Sadegh R and Tuomaala, Seppo and Nadeem, Saad and Zarepisheh, Masoud},
|
| 167 |
-
journal={AAPM 65th Annual Meeting & Exhibition},
|
| 168 |
-
year={2023}
|
| 169 |
-
}
|
| 170 |
-
```
|
|
|
|
| 108 |
You can load the dataset with the following lines of code.
|
| 109 |
|
| 110 |
```python
|
| 111 |
+
#!pip install portpy (# Install portpy )
|
| 112 |
+
import portpy.photon as pp
|
| 113 |
+
|
| 114 |
+
# Use PortPy DataExplorer class to explore and download PortPy data from HuggingFace. Please modify 'local_download_dir' in case
|
| 115 |
+
# if you want to download data to custom local directory
|
| 116 |
+
data = pp.DataExplorer(hf_repo_id="PortPy-Project/PortPy_Dataset", local_download_dir=r'../hugging_face_data')
|
| 117 |
+
|
| 118 |
+
# display overview of the patients available in portpy
|
| 119 |
+
data.display_list_of_patients()
|
| 120 |
+
|
| 121 |
+
#pick up a patient to create a treament plan
|
| 122 |
+
data.patient_id = 'Lung_Patient_16'
|
| 123 |
+
|
| 124 |
+
# download data for the given patient
|
| 125 |
+
data.filter_and_download_hf_dataset()
|
| 126 |
+
|
| 127 |
+
# display patient metadata
|
| 128 |
+
data.display_patient_metadata()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
```
|
| 131 |
|
|
|
|
| 145 |
- Adding benchmark plans using in-house automated treatment planning system **ECHO**.
|
| 146 |
- Storing the data in the standardized [PortPy](https://github.com/PortPy/PortPy) data format for research and educational purposes.
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|