Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -25,23 +25,24 @@ XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Languag
|
|
| 25 |
|
| 26 |
<p align="center">
|
| 27 |
<a href="https://arxiv.org/abs/2510.15148">
|
| 28 |
-
<img src="https://img.shields.io/badge/Paper-
|
| 29 |
</a>
|
| 30 |
<a href="https://xingruiwang.github.io/projects/XModBench/">
|
| 31 |
-
<img src="https://img.shields.io/badge/Website-
|
| 32 |
</a>
|
| 33 |
<a href="https://huggingface.co/datasets/RyanWW/XModBench">
|
| 34 |
-
<img src="https://img.shields.io/badge/Dataset-
|
| 35 |
</a>
|
| 36 |
<a href="https://github.com/XingruiWang/XModBench">
|
| 37 |
-
<img src="https://img.shields.io/badge/Code-
|
| 38 |
</a>
|
| 39 |
<a href="https://opensource.org/licenses/MIT">
|
| 40 |
-
<img src="https://img.shields.io/badge/License-MIT-
|
| 41 |
</a>
|
| 42 |
</p>
|
| 43 |
|
| 44 |
|
|
|
|
| 45 |
XModBench is a comprehensive benchmark designed to evaluate the cross-modal capabilities and consistency of omni-language models. It systematically assesses model performance across multiple modalities (text, vision, audio) and various cognitive tasks, revealing critical gaps in current state-of-the-art models.
|
| 46 |
|
| 47 |
### Key Features
|
|
|
|
| 25 |
|
| 26 |
<p align="center">
|
| 27 |
<a href="https://arxiv.org/abs/2510.15148">
|
| 28 |
+
<img src="https://img.shields.io/badge/Arxiv-Paper-b31b1b.svg" alt="Paper">
|
| 29 |
</a>
|
| 30 |
<a href="https://xingruiwang.github.io/projects/XModBench/">
|
| 31 |
+
<img src="https://img.shields.io/badge/Website-Page-0a7aca?logo=globe&logoColor=white" alt="Website">
|
| 32 |
</a>
|
| 33 |
<a href="https://huggingface.co/datasets/RyanWW/XModBench">
|
| 34 |
+
<img src="https://img.shields.io/badge/Huggingface-Dataset-FFD21E?logo=huggingface" alt="Dataset">
|
| 35 |
</a>
|
| 36 |
<a href="https://github.com/XingruiWang/XModBench">
|
| 37 |
+
<img src="https://img.shields.io/badge/Github-Code-181717?logo=github&logoColor=white" alt="GitHub Repo">
|
| 38 |
</a>
|
| 39 |
<a href="https://opensource.org/licenses/MIT">
|
| 40 |
+
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="License: MIT">
|
| 41 |
</a>
|
| 42 |
</p>
|
| 43 |
|
| 44 |
|
| 45 |
+
|
| 46 |
XModBench is a comprehensive benchmark designed to evaluate the cross-modal capabilities and consistency of omni-language models. It systematically assesses model performance across multiple modalities (text, vision, audio) and various cognitive tasks, revealing critical gaps in current state-of-the-art models.
|
| 47 |
|
| 48 |
### Key Features
|