|  | """ | 
					
						
						|  | SEA Crowd Data Loader for SEA MADLAD. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import gzip | 
					
						
						|  | import json | 
					
						
						|  | from typing import Dict, List, Tuple | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | from datasets.download.download_manager import DownloadManager | 
					
						
						|  |  | 
					
						
						|  | from seacrowd.utils import schemas | 
					
						
						|  | from seacrowd.utils.configs import SEACrowdConfig | 
					
						
						|  | from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks | 
					
						
						|  |  | 
					
						
						|  | _CITATION = r""" | 
					
						
						|  | @misc{kudugunta2023madlad400, | 
					
						
						|  | title={MADLAD-400: A Multilingual And Document-Level Large Audited Dataset}, | 
					
						
						|  | author={Sneha Kudugunta and Isaac Caswell and Biao Zhang and Xavier Garcia and Christopher A. Choquette-Choo and Katherine Lee and Derrick Xin and Aditya Kusupati and Romi Stella and Ankur Bapna and Orhan Firat}, | 
					
						
						|  | year={2023}, | 
					
						
						|  | eprint={2309.04662}, | 
					
						
						|  | archivePrefix={arXiv}, | 
					
						
						|  | primaryClass={cs.CL} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | logger = datasets.logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _LANG_CONFIG = { | 
					
						
						|  | "ace": {"name": "Aceh", "source_subset": "ace"}, | 
					
						
						|  | "akb": {"name": "Batak Angkola", "source_subset": "akb"}, | 
					
						
						|  | "ban": {"name": "Bali", "source_subset": "ban"}, | 
					
						
						|  | "bbc": {"name": "Batak Toba", "source_subset": "bbc"}, | 
					
						
						|  | "bew": {"name": "Betawi", "source_subset": "bew"}, | 
					
						
						|  | "btx": {"name": "Batak Karo", "source_subset": "btx"}, | 
					
						
						|  | "ceb": {"name": "Cebuano", "source_subset": "ceb"}, | 
					
						
						|  | "fil": {"name": "Filipino", "source_subset": "fil"}, | 
					
						
						|  | "gor": {"name": "Gorontalo", "source_subset": "gor"}, | 
					
						
						|  | "hil": {"name": "Hiligaynon", "source_subset": "hil"}, | 
					
						
						|  | "iba": {"name": "Iban", "source_subset": "iba"}, | 
					
						
						|  | "ilo": {"name": "Ilocano", "source_subset": "ilo"}, | 
					
						
						|  | "ind": {"name": "Indonesian", "source_subset": "id"}, | 
					
						
						|  | "jav": {"name": "Javanese", "source_subset": "jv"}, | 
					
						
						|  | "kac": {"name": "Jingpho", "source_subset": "kac"}, | 
					
						
						|  | "khm": {"name": "Khmer", "source_subset": "km"}, | 
					
						
						|  | "kxd": {"name": "Brunei", "source_subset": "ms_Arab_BN"}, | 
					
						
						|  | "lao": {"name": "Lao", "source_subset": "lo"}, | 
					
						
						|  | "mad": {"name": "Madura", "source_subset": "mad"}, | 
					
						
						|  | "mak": {"name": "Makasar", "source_subset": "mak"}, | 
					
						
						|  | "meo": {"name": "Kedah Malay", "source_subset": "meo"}, | 
					
						
						|  | "min": {"name": "Minangkabau", "source_subset": "min"}, | 
					
						
						|  | "mkn": {"name": "Kupang Malay", "source_subset": "mkn"}, | 
					
						
						|  | "msa": {"name": "Malay", "source_subset": "ms"}, | 
					
						
						|  | "msi": {"name": "Sabah Malay", "source_subset": "msi"}, | 
					
						
						|  | "mya": {"name": "Burmese", "source_subset": "my"}, | 
					
						
						|  | "nij": {"name": "Ngaju", "source_subset": "nij"}, | 
					
						
						|  | "nut": {"name": "Nung", "source_subset": "nut"}, | 
					
						
						|  | "pag": {"name": "Pangasinan", "source_subset": "pag"}, | 
					
						
						|  | "shn": {"name": "Shan", "source_subset": "shn"}, | 
					
						
						|  | "sun": {"name": "Sunda", "source_subset": "su"}, | 
					
						
						|  | "tet": {"name": "Tetun", "source_subset": "tet"}, | 
					
						
						|  | "tha": {"name": "Thai", "source_subset": "th"}, | 
					
						
						|  | "vie": {"name": "Vietnamese", "source_subset": "vi"}, | 
					
						
						|  | "war": {"name": "Waray-Waray", "source_subset": "war"}, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _N_SHARDS_PER_SPLIT = { | 
					
						
						|  | "ace": 1, | 
					
						
						|  | "akb": 1, | 
					
						
						|  | "ban": 1, | 
					
						
						|  | "bbc": 1, | 
					
						
						|  | "bew": 1, | 
					
						
						|  | "btx": 1, | 
					
						
						|  | "ceb": 1, | 
					
						
						|  | "fil": 1, | 
					
						
						|  | "gor": 1, | 
					
						
						|  | "hil": 1, | 
					
						
						|  | "iba": 1, | 
					
						
						|  | "id": 18, | 
					
						
						|  | "ilo": 1, | 
					
						
						|  | "jv": 1, | 
					
						
						|  | "kac": 1, | 
					
						
						|  | "km": 1, | 
					
						
						|  | "lo": 1, | 
					
						
						|  | "mad": 1, | 
					
						
						|  | "mak": 1, | 
					
						
						|  | "meo": 1, | 
					
						
						|  | "min": 1, | 
					
						
						|  | "mkn": 1, | 
					
						
						|  | "ms": 2, | 
					
						
						|  | "ms_Arab_BN": 1, | 
					
						
						|  | "msi": 1, | 
					
						
						|  | "my": 1, | 
					
						
						|  | "nij": 1, | 
					
						
						|  | "nut": 1, | 
					
						
						|  | "pag": 1, | 
					
						
						|  | "shn": 1, | 
					
						
						|  | "su": 1, | 
					
						
						|  | "tet": 1, | 
					
						
						|  | "th": 21, | 
					
						
						|  | "vi": 32, | 
					
						
						|  | "war": 1, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | _LOCAL = False | 
					
						
						|  | _LANGUAGES = list(_LANG_CONFIG.keys()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _DATASETNAME = "sea_madlad" | 
					
						
						|  | _DESCRIPTION = r""" | 
					
						
						|  | SEA MADLAD is a subset of MADLAD-400 (Multilingual Audited Dataset: Low-resource And Document-level), which is a document-level multilingual dataset based on Common Crawl. | 
					
						
						|  | SEA MADLAD only filters the language of the "clean" subset, which covers 36 languages indigenous to SEA from 419 languages in total. | 
					
						
						|  | As a result, some of SEA lang codes aren't available in this version because those belongs to the languages whose decision was to "remove from its clean version" based on MADLAD auditing process. | 
					
						
						|  | MADLAD uses all snapshots of CommonCrawl available as of August 1, 2022. | 
					
						
						|  | The primary advantage of this dataset over similar datasets is that it is more multilingual, it is audited and more highly filtered, and it is document-level. | 
					
						
						|  | The main disadvantage is also its strength -- being more filtered, it may lack the recall needed for some applications. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://huggingface.co/datasets/allenai/MADLAD-400" | 
					
						
						|  | _LICENSE = Licenses.CC_BY_4_0.value | 
					
						
						|  |  | 
					
						
						|  | _URL = "https://huggingface.co/datasets/allenai/MADLAD-400/resolve/ecd71297d60c1eb996cd3d7c44c60ad5b55adfc6/data/{language}/{language}_{split}_{index:04d}.jsonl.gz" | 
					
						
						|  |  | 
					
						
						|  | _SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] | 
					
						
						|  | _SOURCE_VERSION = "1.0.0" | 
					
						
						|  | _SEACROWD_VERSION = "2024.06.20" | 
					
						
						|  |  | 
					
						
						|  | CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def conform_init_config(): | 
					
						
						|  | """Assertion Function for Instantiated Configs""" | 
					
						
						|  | if len(_LANGUAGES) == 0: | 
					
						
						|  | raise AssertionError("No Languages detected from config!") | 
					
						
						|  | if len(CONFIG_SUFFIXES_FOR_TASK) != len(_SUPPORTED_TASKS): | 
					
						
						|  | raise AssertionError("Config prefixes don't matched in terms of `len` with `_SUPPORTED_TASKS`!") | 
					
						
						|  | if len(CONFIG_SUFFIXES_FOR_TASK) == 0: | 
					
						
						|  | raise AssertionError("Config prefixes and `_SUPPORTED_TASKS` have `len` of 0!") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | conform_init_config() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def construct_configs_on_langs(languages: list = None) -> List[SEACrowdConfig]: | 
					
						
						|  | """ | 
					
						
						|  | The function `construct_configs` constructs a list of SEACrowdConfig objects based on the provided | 
					
						
						|  | languages or a default language, and returns the list. | 
					
						
						|  |  | 
					
						
						|  | input: | 
					
						
						|  | languages (list, default None): The `languages` parameter is a list that specifies the languages for which the | 
					
						
						|  | configurations need to be constructed. If no languages are provided (value=None), the first value in language config | 
					
						
						|  | will be used. | 
					
						
						|  | output: | 
					
						
						|  | a list of `SEACrowdConfig` objects based on instantiated init variables | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config_list = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | version, config_name_prefix = _SOURCE_VERSION, "source" | 
					
						
						|  | config_list += [ | 
					
						
						|  | SEACrowdConfig( | 
					
						
						|  | name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}", | 
					
						
						|  | version=datasets.Version(version), | 
					
						
						|  | description=f"{_DATASETNAME} {config_name_prefix} schema for language code {_LANG}", | 
					
						
						|  | schema=f"{config_name_prefix}", | 
					
						
						|  | subset_id=_LANG, | 
					
						
						|  | ) | 
					
						
						|  | for _LANG in languages | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | version, config_name_prefix = _SEACROWD_VERSION, "seacrowd" | 
					
						
						|  | for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS: | 
					
						
						|  | config_list += [ | 
					
						
						|  | SEACrowdConfig( | 
					
						
						|  | name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}_{config_name_suffix}", | 
					
						
						|  | version=datasets.Version(version), | 
					
						
						|  | description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name} and language code {_LANG}", | 
					
						
						|  | schema=f"{config_name_prefix}_{config_name_suffix}", | 
					
						
						|  | subset_id=_LANG, | 
					
						
						|  | ) | 
					
						
						|  | for _LANG in languages | 
					
						
						|  | ] | 
					
						
						|  | return config_list | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SEAMADLADDataset(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """SEA MADLAD dataset, subsetted from https://huggingface.co/datasets/allenai/MADLAD-400""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = construct_configs_on_langs(_LANGUAGES) | 
					
						
						|  |  | 
					
						
						|  | def _info(self) -> datasets.DatasetInfo: | 
					
						
						|  | _config_schema_name = self.config.schema | 
					
						
						|  | logger.info(f"Received schema name: {self.config.schema}") | 
					
						
						|  |  | 
					
						
						|  | if _config_schema_name == "source": | 
					
						
						|  | features = datasets.Features({"text": datasets.Value("string")}) | 
					
						
						|  |  | 
					
						
						|  | elif _config_schema_name == "seacrowd_ssp": | 
					
						
						|  | features = schemas.ssp_features | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: | 
					
						
						|  |  | 
					
						
						|  | _lang = _LANG_CONFIG[self.config.subset_id]["source_subset"] | 
					
						
						|  | _split = "clean" | 
					
						
						|  | _data_list = [_URL.format(language=_lang, split=_split, index=idx) for idx in range(_N_SHARDS_PER_SPLIT[_lang])] | 
					
						
						|  |  | 
					
						
						|  | filepaths = dl_manager.download(_data_list) | 
					
						
						|  |  | 
					
						
						|  | return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths})] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, filepaths) -> Tuple[int, Dict]: | 
					
						
						|  | _config_schema_name = self.config.schema | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | id_ = 0 | 
					
						
						|  | for filepath in filepaths: | 
					
						
						|  | logger.info("generating examples from = %s", filepath) | 
					
						
						|  | with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: | 
					
						
						|  | for line in f: | 
					
						
						|  | if line: | 
					
						
						|  | example = json.loads(line) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if _config_schema_name == "source": | 
					
						
						|  | yield id_, {colname: example[colname] for colname in self.info.features} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif _config_schema_name == "seacrowd_ssp": | 
					
						
						|  | yield id_, {"id": id_, "text": example["text"]} | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") | 
					
						
						|  |  | 
					
						
						|  | id_ += 1 | 
					
						
						|  |  |