| from pathlib import Path | |
| from typing import Dict, List, Tuple | |
| import datasets | |
| from seacrowd.sea_datasets.x_fact.utils.x_fact_utils import \ | |
| load_x_fact_dataset | |
| from seacrowd.utils.configs import SEACrowdConfig | |
| from seacrowd.utils.constants import Tasks | |
| _CITATION = """\ | |
| @inproceedings{gupta2021xfact, | |
| title={{X-FACT: A New Benchmark Dataset for Multilingual Fact Checking}}, | |
| author={Gupta, Ashim and Srikumar, Vivek}, | |
| booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics", | |
| month = jul, | |
| year = "2021", | |
| address = "Online", | |
| publisher = "Association for Computational Linguistics", | |
| } | |
| """ | |
| _DATASETNAME = "x_fact" | |
| _DESCRIPTION = """\ | |
| X-FACT: the largest publicly available multilingual dataset for factual verification of naturally existing realworld claims. | |
| """ | |
| _HOMEPAGE = "https://github.com/utahnlp/x-fact" | |
| _LANGUAGES = [ | |
| 'ara', 'aze', 'ben', 'deu', 'spa', | |
| 'fas', 'fra', 'guj', 'hin', 'ind', | |
| 'ita', 'kat', 'mar', 'nor', 'nld', | |
| 'pan', 'pol', 'por', 'ron', 'rus', | |
| 'sin', 'srp', 'sqi', 'tam', 'tur' | |
| ] | |
| _LOCAL = False | |
| _LICENSE = "MIT" | |
| _URLS = { | |
| "train": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/train.all.tsv", | |
| "validation": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/dev.all.tsv", | |
| "test": { | |
| "in_domain": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/test.all.tsv", | |
| "out_domain": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/ood.tsv", | |
| }, | |
| } | |
| _SUPPORTED_TASKS = [Tasks.FACT_CHECKING] | |
| _SOURCE_VERSION = "1.0.0" | |
| _SEACROWD_VERSION = "2024.06.20" | |
| class XFact(datasets.GeneratorBasedBuilder): | |
| """X-FACT: the largest publicly available multilingual dataset for factual verification of naturally existing realworld claims.""" | |
| SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
| SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | |
| BUILDER_CONFIGS = [ | |
| SEACrowdConfig( | |
| name="x_fact_source", | |
| version=SOURCE_VERSION, | |
| description="x_fact source schema", | |
| schema="source", | |
| subset_id="x_fact", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "x_fact_source" | |
| def _info(self) -> datasets.DatasetInfo: | |
| if self.config.schema == "source": | |
| features = datasets.Features( | |
| { | |
| "language": datasets.Value("string"), | |
| "site": datasets.Value("string"), | |
| "evidence_1": datasets.Value("string"), | |
| "evidence_2": datasets.Value("string"), | |
| "evidence_3": datasets.Value("string"), | |
| "evidence_4": datasets.Value("string"), | |
| "evidence_5": datasets.Value("string"), | |
| "link_1": datasets.Value("string"), | |
| "link_2": datasets.Value("string"), | |
| "link_3": datasets.Value("string"), | |
| "link_4": datasets.Value("string"), | |
| "link_5": datasets.Value("string"), | |
| "claimDate": datasets.Value("string"), | |
| "reviewDate": datasets.Value("string"), | |
| "claimant": datasets.Value("string"), | |
| "claim": datasets.Value("string"), | |
| "label": datasets.Value("string"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": _URLS["train"], | |
| "split": "train", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": _URLS["validation"], | |
| "split": "dev", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.splits.NamedSplit("TEST_IN_DOMAIN"), | |
| gen_kwargs={ | |
| "filepath": _URLS["test"]["in_domain"], | |
| "split": "test_in_domain", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.splits.NamedSplit("TEST_OUT_DOMAIN"), | |
| gen_kwargs={ | |
| "filepath": _URLS["test"]["out_domain"], | |
| "split": "test_out_domain", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | |
| df = load_x_fact_dataset(filepath) | |
| if self.config.schema == "source": | |
| for row in df.itertuples(): | |
| entry = { | |
| "language": row.language, | |
| "site": row.site, | |
| "evidence_1": row.evidence_1, | |
| "evidence_2": row.evidence_2, | |
| "evidence_3": row.evidence_3, | |
| "evidence_4": row.evidence_4, | |
| "evidence_5": row.evidence_5, | |
| "link_1": row.link_1, | |
| "link_2": row.link_2, | |
| "link_3": row.link_3, | |
| "link_4": row.link_4, | |
| "link_5": row.link_5, | |
| "claimDate": row.claimDate, | |
| "reviewDate": row.reviewDate, | |
| "claimant": row.claimant, | |
| "claim": row.claim, | |
| "label": row.label, | |
| } | |
| yield row.index, entry | |