| name: math-comp_eval | |
| num_files: 70 | |
| language: COQ | |
| few_shot_data_path_for_retrieval: null | |
| few_shot_metadata_filename_for_retrieval: null | |
| dfs_data_path_for_retrieval: null | |
| dfs_metadata_filename_for_retrieval: local.meta.json | |
| theorem_cnt: 729 | |
| datasets: | |
| - project: <path-to-repo>/math-comp/ | |
| files: | |
| - path: mathcomp/solvable/frobenius.v | |
| theorems: | |
| - Frobenius_semiregularP | |
| - Frobenius_cent1_ker | |
| - prime_FrobeniusP | |
| - Frobenius_coprime_quotient | |
| - stab_semiprime | |
| - card_support_normedTI | |
| - injm_Frobenius | |
| - path: mathcomp/solvable/abelian.v | |
| theorems: | |
| - pnElemS | |
| - abelemS | |
| - pdiv_p_elt | |
| - exponent_morphim | |
| - rank_witness | |
| - Ohm_cont | |
| - quotient_rank_abelian | |
| - morphim_Mho | |
| - pnElem_prime | |
| - Mho_p_cycle | |
| - abelem_abelian | |
| - Mho0 | |
| - injm_Ohm | |
| - extend_cyclic_Mho | |
| - path: mathcomp/ssreflect/order.v | |
| theorems: | |
| - max_idPl | |
| - max_minr | |
| - eq_meetl | |
| - lexx | |
| - idfun_is_bottom_morphism | |
| - diff_eq0 | |
| - complI | |
| - le_sorted_leq_nth | |
| - anti | |
| - leUr | |
| - joins_sup_seq | |
| - comparable_ltP | |
| - subset_display | |
| - joinIBC | |
| - le_wval | |
| - sort_le_id | |
| - bigminIl | |
| - diffErcompl | |
| - lex1 | |
| - le_path_pairwise | |
| - contra_leN | |
| - enum_rankK | |
| - bigmaxUr | |
| - lt_path_mask | |
| - diffIK | |
| - leUx | |
| - eq_ltLR | |
| - lt_sorted_ltn_nth | |
| - le0x | |
| - le_refl | |
| - compl1 | |
| - lteif_andb | |
| - le_Rank | |
| - comparable_maxC | |
| - opred0 | |
| - incomparable_ltF | |
| - ge_min_id | |
| - ltNge | |
| - enum_set1 | |
| - lt_def | |
| - leBKU | |
| - lteifxx | |
| - lcmnn | |
| - bigmax_sup | |
| - contraTle | |
| - tnth_rcompl | |
| - minAC | |
| - maxxK | |
| - path: mathcomp/algebra/ssralg.v | |
| theorems: | |
| - subrI | |
| - mulIr | |
| - valM | |
| - mulVf | |
| - mulf_div | |
| - and_dnfP | |
| - natr_div | |
| - invr_neq0 | |
| - pair_mul0r | |
| - rpredBr | |
| - ffun_mul_addr | |
| - commrV | |
| - mulrb | |
| - exprAC | |
| - opB | |
| - rpredN | |
| - divIf | |
| - eval_If | |
| - prodr_const_nat | |
| - holds_fsubst | |
| - divfI | |
| - can2_rmorphism | |
| - fieldP | |
| - rmorphMsign | |
| - Frobenius_aut_is_multiplicative | |
| - prodf_div | |
| - Frobenius_aut1 | |
| - mulrBr | |
| - mulr_sumr | |
| - subrKA | |
| - path: mathcomp/algebra/finalg.v | |
| theorems: | |
| - unit_inv_proof | |
| - path: mathcomp/field/algC.v | |
| theorems: | |
| - floorC_itv | |
| - floorCpK | |
| - aut_Cint | |
| - CintEge0 | |
| - algC_invaut_is_rmorphism | |
| - Cint1 | |
| - conjL_K | |
| - rpred_Cint | |
| - mulVf | |
| - aut_Crat | |
| - mul1 | |
| - eqCmodMr | |
| - path: mathcomp/ssreflect/prime.v | |
| theorems: | |
| - partn_part | |
| - logn_div | |
| - max_pdiv_leq | |
| - totient_count_coprime | |
| - divn_count_dvd | |
| - pnatM | |
| - partnX | |
| - eq_in_partn | |
| - dvdn_prime2 | |
| - path: mathcomp/algebra/ssrnum.v | |
| theorems: | |
| - sgr_ge0 | |
| - ger_real | |
| - nneg_addr_closed | |
| - leif_mean_square | |
| - normrX | |
| - pmulrn_rle0 | |
| - ge0_cp | |
| - ltrDr | |
| - a1 | |
| - real_ltr_distlBl | |
| - ReM | |
| - subr_ge0 | |
| - ltrNl | |
| - leN_total | |
| - psumr_eq0 | |
| - ltrn1 | |
| - ler0P | |
| - comparabler0 | |
| - negrE | |
| - sub_ge0 | |
| - divC_Crect | |
| - ltr_nwDr | |
| - realBC | |
| - deg_le2_poly_le0 | |
| - normC_Re_Im | |
| - unitf_gt0 | |
| - ler_norm_sum | |
| - ltr_distlCBl | |
| - ltr_distlC | |
| - monic_Cauchy_bound | |
| - leif_AGM | |
| - invf_nle | |
| - ler_sum_nat | |
| - gerB_real | |
| - lerB_normD | |
| - ltr_pdivrMl | |
| - real_normK | |
| - Im_rootC_ge0 | |
| - ReMil | |
| - realn_mono | |
| - addr_minr | |
| - subr_ge0 | |
| - lt0N | |
| - ltr_sqrt | |
| - ltr_pwDl | |
| - real_oppr_closed | |
| - oppr_max | |
| - poly_ivt | |
| - normfV | |
| - root0C | |
| - mulr_sg_norm | |
| - real_arg_maxP | |
| - oppr_ge0 | |
| - lt_trans | |
| - exprn_odd_lt0 | |
| - Im_i | |
| - real_eqr_norm2 | |
| - deg2_poly_min | |
| - psumr_neq0 | |
| - conjCK | |
| - comparablerE | |
| - realE | |
| - nmulr_rle0 | |
| - path: mathcomp/ssreflect/fintype.v | |
| theorems: | |
| - negb_exists | |
| - eq_liftF | |
| - ordS_inj | |
| - injF_onto | |
| - extremum_inP | |
| - card_bool | |
| - pickP | |
| - eq_proper_r | |
| - subset_catr | |
| - split_subproof | |
| - ltn_unsplit | |
| - proper_sub | |
| - cast_ord_comp | |
| - eq_proper | |
| - canF_eq | |
| - fintype_le1P | |
| - lshift_subproof | |
| - unsplitK | |
| - exists_eqP | |
| - arg_maxnP | |
| - forall_inPn | |
| - exists_inPP | |
| - proper_irrefl | |
| - cardUI | |
| - path: mathcomp/algebra/matrix.v | |
| theorems: | |
| - tr_submxrow | |
| - mxtrace_block | |
| - mul_mxrow_mxdiag | |
| - mxOver_mul_subproof | |
| - map_col' | |
| - block_mxEur | |
| - diag_mx_is_diag | |
| - comm_mx1 | |
| - perm_mxEsub | |
| - drsubmxEsub | |
| - mulmx_rsub | |
| - diag_mx_is_semi_additive | |
| - col_mxEd | |
| - mxcolP | |
| - const_mx_is_semi_additive | |
| - det_scalar | |
| - is_scalar_mxP | |
| - map2_xrow | |
| - submxcolK | |
| - mul_mxblock_mxdiag | |
| - mul_delta_mx_0 | |
| - tr_diag_mx | |
| - scalemx_eq0 | |
| - mulmx1_min | |
| - col_mxrow | |
| - invmx1 | |
| - tr_tperm_mx | |
| - mxrow_recl | |
| - path: mathcomp/ssreflect/ssrnat.v | |
| theorems: | |
| - leq_pmul2r | |
| - ltnS | |
| - ltn_half_double | |
| - ltnW_nhomo | |
| - addBnAC | |
| - subSn | |
| - uphalf_half | |
| - minnE | |
| - double_pred | |
| - leq_mono | |
| - leq_add2r | |
| - eqn_exp2l | |
| - multE | |
| - leqW_nmono | |
| - ex_maxn_subproof | |
| - ltn_ind | |
| - leqW_mono | |
| - leq_psubRL | |
| - addnBC | |
| - addnCB | |
| - halfK | |
| - geq_uphalf_double | |
| - odd_halfK | |
| - maxn_idPl | |
| - contra_not_ltn | |
| - nat_irrelevance | |
| - leqn0 | |
| - ubnPgeq | |
| - leq_subCr | |
| - ltn_sub2lE | |
| - leq_sub2l | |
| - leq_add | |
| - addSn | |
| - path: mathcomp/character/mxrepresentation.v | |
| theorems: | |
| - card_linear_irr | |
| - rfix_mxP | |
| - mx_rsim_refl | |
| - mxtrace_sub_fact_mod | |
| - sum_mxsimple_direct_compl | |
| - irr_mx_sum | |
| - rstabs_group_set | |
| - val_genJmx | |
| - rstab_map | |
| - Clifford_simple | |
| - mx_iso_simple | |
| - gen_satP | |
| - in_submod_eq0 | |
| - rcent_sub | |
| - in_gen0 | |
| - subSocle_semisimple | |
| - rfix_morphim | |
| - morphpre_mx_irr | |
| - mxmodule_quo | |
| - principal_comp_key | |
| - irr_reprK | |
| - dom_hom_invmx | |
| - submod_mx_faithful | |
| - eqg_mx_irr | |
| - gen_mulDr | |
| - val_factmod_module | |
| - mxval_sub | |
| - section_module | |
| - rker_linear | |
| - gen_mx_faithful | |
| - rconj_mxE | |
| - gen_mulA | |
| - mx_rsim_in_submod | |
| - simple_Socle | |
| - path: mathcomp/algebra/poly.v | |
| theorems: | |
| - lreg_size | |
| - map_poly_eq0 | |
| - deg2_poly_factor | |
| - leq_sizeP | |
| - derivnN | |
| - scale_polyE | |
| - size_poly_leq0P | |
| - comm_poly0 | |
| - coef_prod_XsubC | |
| - coefN | |
| - root1 | |
| - size_poly_eq0 | |
| - coefMX | |
| - drop_poly_eq0 | |
| - add_polyC | |
| - map_poly_eq0_id0 | |
| - hornerM | |
| - map_comp_poly | |
| - size_poly_leq0 | |
| - comp_polyA | |
| - deriv_is_linear | |
| - drop_polyD | |
| - coef_sumMXn | |
| - horner_coef | |
| - lead_coefXaddC | |
| - closed_nonrootP | |
| - coef_add_poly | |
| - size_Msign | |
| - closed_field_poly_normal | |
| - polyC_exp | |
| - take_polyMXn | |
| - derivZ | |
| - lead_coef_map_id0 | |
| - polyOverP | |
| - rreg_lead0 | |
| - deg2_poly_root2 | |
| - size_mulX | |
| - path: mathcomp/solvable/gseries.v | |
| theorems: | |
| - quotient_maximal | |
| - subnormalEr | |
| - maximal_eqJ | |
| - minnormal_maxnormal | |
| - simpleP | |
| - sub_setIgr | |
| - minnormal_exists | |
| - morphpre_maximal_eq | |
| - path: mathcomp/character/mxabelem.v | |
| theorems: | |
| - sub_rowg_mx | |
| - rowg_group_set | |
| - rowg1 | |
| - rVabelemJmx | |
| - path: mathcomp/solvable/sylow.v | |
| theorems: | |
| - card_Syl_mod | |
| - nilpotent_pcore_Hall | |
| - Sylow_Jsub | |
| - path: mathcomp/character/character.v | |
| theorems: | |
| - cfMod_lin_char | |
| - cfRepr_map | |
| - cfDprodl_irr | |
| - xcfun_rE | |
| - Cnat_cfdot_char | |
| - eq_sum_nth_irr | |
| - cfker_Ind_irr | |
| - dprod_IirrC | |
| - cfun_irr_sum | |
| - dprodl_Iirr_eq0 | |
| - inv_dprod_IirrK | |
| - cfdotC_char | |
| - max_cfRepr_norm_scalar | |
| - tprod1 | |
| - sdprod_Iirr_inj | |
| - constt_Ind_Res | |
| - cfdot_aut_irr | |
| - irr_repr_lin_char | |
| - xcfun_annihilate | |
| - sum_norm_irr_quo | |
| - pgroup_cyclic_faithful | |
| - path: mathcomp/algebra/polydiv.v | |
| theorems: | |
| - reducible_cubic_root | |
| - dvd0pP | |
| - mup_geq | |
| - eqpW | |
| - lc_expn_scalp_neq0 | |
| - gdcop_recP | |
| - gcd0p | |
| - divp_addl_mul_small | |
| - divp_eq0 | |
| - gdcop_rec_map | |
| - eqp_rtrans | |
| - modp_eq0P | |
| - ltn_rmodp | |
| - eq_rdvdp | |
| - eqp_sym | |
| - gcdp_mulr | |
| - eqp_root | |
| - dvdpNr | |
| - size_gcd1p | |
| - cubic_irreducible | |
| - path: mathcomp/character/inertia.v | |
| theorems: | |
| - constt_Inertia_bijection | |
| - cfConjg_irr | |
| - inertia_mod_pre | |
| - inertia_quo | |
| - cfConjgMod_norm | |
| - prime_invariant_irr_extendible | |
| - inertia_bigdprod | |
| - path: mathcomp/algebra/intdiv.v | |
| theorems: | |
| - eqz_div | |
| - coprimez_pexpr | |
| - gcdzz | |
| - modz0 | |
| - gcdz0 | |
| - zprimitive_eq0 | |
| - eqz_modDl | |
| - dvdz_exp2l | |
| - dvdz_zmod_closed | |
| - dvdz_lcml | |
| - modzMr | |
| - lcmz0 | |
| - ltz_mod | |
| - coprimezXl | |
| - dvdz_contents | |
| - gcd1z | |
| - mulz_divCA_gcd | |
| - path: mathcomp/fingroup/morphism.v | |
| theorems: | |
| - morphpreK | |
| - isog_sym | |
| - morphpreT | |
| - trivial_isog | |
| - morphim0 | |
| - morphicP | |
| - factmE | |
| - morphpre_subcent | |
| - ker_trivg_morphim | |
| - misom_isog | |
| - ker_trivm | |
| - morphimK | |
| - morphpre_gen | |
| - injm_ifactm | |
| - sub_morphpre_im | |
| - eq_homgl | |
| - morphimGI | |
| - path: mathcomp/solvable/burnside_app.v | |
| theorems: | |
| - F_s23 | |
| - Sd1_inj | |
| - r05_inv | |
| - S3_inv | |
| - sh_inv | |
| - S1_inv | |
| - rot_r1 | |
| - path: mathcomp/algebra/ssrint.v | |
| theorems: | |
| - pmulrz_rlt0 | |
| - nexpIrz | |
| - PoszD | |
| - exp0rz | |
| - mulrz_eq0 | |
| - coefMrz | |
| - intP | |
| - leqifD_dist | |
| - mulzS | |
| - mulz2 | |
| - addSnz | |
| - scaler_int | |
| - distnDr | |
| - expN1r | |
| - mulrzBl_nat | |
| - rpredXsign | |
| - path: mathcomp/field/fieldext.v | |
| theorems: | |
| - module_baseVspace | |
| - divp_polyOver | |
| - subfx_scaler1r | |
| - mem_vspaceOver | |
| - path: mathcomp/solvable/commutator.v | |
| theorems: | |
| - derg0 | |
| - der_char | |
| - commMG | |
| - quotient_cents2r | |
| - path: mathcomp/algebra/rat.v | |
| theorems: | |
| - mul1q | |
| - mul_subdefA | |
| - rat_field_theory | |
| - ltrq0 | |
| - QintP | |
| - path: mathcomp/solvable/maximal.v | |
| theorems: | |
| - nilpotent_Fitting | |
| - card_p3group_extraspecial | |
| - Fitting_max | |
| - FittingJ | |
| - Aut_extraspecial_full | |
| - path: mathcomp/field/galois.v | |
| theorems: | |
| - dim_fixed_galois | |
| - kHomP | |
| - normalFieldP | |
| - kHom_inv | |
| - kHom1 | |
| - normalFieldf | |
| - kAHomP | |
| - path: mathcomp/ssreflect/div.v | |
| theorems: | |
| - coprime_sym | |
| - edivnP | |
| - modnXm | |
| - modn_dvdm | |
| - dvdn_sub | |
| - leq_trunc_div | |
| - eqn_mod_dvd | |
| - divnBr | |
| - dvdn_subr | |
| - coprime_pexpl | |
| - modnB | |
| - leq_divRL | |
| - dvdn_lcml | |
| - lcmnC | |
| - path: mathcomp/solvable/primitive_action.v | |
| theorems: | |
| - n_act_is_action | |
| - path: mathcomp/fingroup/automorphism.v | |
| theorems: | |
| - char1 | |
| - autE | |
| - charY | |
| - injm_Aut | |
| - injm_conj | |
| - Aut_group_set | |
| - morphic_aut | |
| - path: mathcomp/algebra/mxpoly.v | |
| theorems: | |
| - integral_horner | |
| - horner_mx_diag | |
| - char_poly_trace | |
| - map_horner_mx | |
| - diagonalizable_forPex | |
| - map_char_poly_mx | |
| - algebraic_inv | |
| - algebraic_add | |
| - comm_horner_mx2 | |
| - conjmxM | |
| - eval_mxvec | |
| - conjumx | |
| - horner_mx_uconjC | |
| - mx_inv_horner0 | |
| - simmxW | |
| - conj0mx | |
| - coef_rVpoly | |
| - split_diagA | |
| - path: mathcomp/field/falgebra.v | |
| theorems: | |
| - sub1_agenv | |
| - cent_centerv | |
| - subX_agenv | |
| - prodvDr | |
| - amull_is_linear | |
| - lfun_mulRVr | |
| - algidr | |
| - centerv_sub | |
| - path: mathcomp/ssreflect/path.v | |
| theorems: | |
| - subseq_path | |
| - iota_sorted | |
| - sorted_ltn_index_in | |
| - rot_to_arc | |
| - eq_fpath | |
| - trajectS | |
| - path_min_sorted | |
| - shortenP | |
| - sort_stable | |
| - perm_merge | |
| - mem2lr_splice | |
| - sorted_map | |
| - homo_sort_map | |
| - cycle_prev | |
| - map_path | |
| - take_path | |
| - sorted_sort | |
| - prev_rotr | |
| - mem2rf | |
| - allrel_merge | |
| - arc_rot | |
| - sorted_subseq_sort_in | |
| - path: mathcomp/ssreflect/bigop.v | |
| theorems: | |
| - big_rec2 | |
| - big_nseq_cond | |
| - big_distrr | |
| - big_nat_recl | |
| - big_orE | |
| - big_nat1_eq | |
| - big_ord1_eq | |
| - sig_big_dep_idem | |
| - big_ord_narrow_cond_leq | |
| - big_enum_rank_cond | |
| - le_big_ord_cond | |
| - reindex_omap | |
| - big_nat | |
| - big_cat | |
| - addm0 | |
| - path: mathcomp/ssreflect/choice.v | |
| theorems: | |
| - tagged_hasChoice | |
| - seq_hasChoice | |
| - path: mathcomp/algebra/mxalgebra.v | |
| theorems: | |
| - mulmx_max_rank | |
| - row_base0 | |
| - rowV0Pn | |
| - row_freePn | |
| - qidmx_eq1 | |
| - addmx_sub | |
| - summx_sub_sums | |
| - proj_mx_proj | |
| - eqmx_rowsub_comp | |
| - genmxE | |
| - genmxP | |
| - binary_mxsum_proof | |
| - kermx_eq0 | |
| - rV_eqP | |
| - stableNmx | |
| - mulmx_sub | |
| - path: mathcomp/ssreflect/fingraph.v | |
| theorems: | |
| - finv_inj_in | |
| - fcycle_undup | |
| - sym_connect_sym | |
| - roots_root | |
| - findex0 | |
| - orbit_rot_cycle | |
| - cycle_orbit_in | |
| - adjunction_n_comp | |
| - connect0 | |
| - eq_froot | |
| - path: mathcomp/solvable/hall.v | |
| theorems: | |
| - coprime_comm_pcore | |
| - Hall_Jsub | |
| - path: mathcomp/solvable/extraspecial.v | |
| theorems: | |
| - card_isog8_extraspecial | |
| - pX1p2_pgroup | |
| - path: mathcomp/solvable/extremal.v | |
| theorems: | |
| - def_q | |
| - generators_2dihedral | |
| - normal_rank1_structure | |
| - odd_not_extremal2 | |
| - path: mathcomp/algebra/vector.v | |
| theorems: | |
| - memv_add | |
| - span_bigcat | |
| - zero_lfunE | |
| - mul_mxof | |
| - comp_lfunDl | |
| - seq1_free | |
| - lker0_compfV | |
| - cat_free | |
| - lfunP | |
| - seq1_basis | |
| - lfun_addN | |
| - vspace_modr | |
| - capvA | |
| - path: mathcomp/algebra/ring_quotient.v | |
| theorems: | |
| - prime_idealrM | |
| - path: mathcomp/solvable/cyclic.v | |
| theorems: | |
| - quotient_generator | |
| - ker_eltm | |
| - prime_cyclic | |
| - path: mathcomp/fingroup/gproduct.v | |
| theorems: | |
| - extprod_mul1g | |
| - cprod_card_dprod | |
| - injm_cprodm | |
| - bigcprod_card_dprod | |
| - pprodmEl | |
| - morphim_coprime_sdprod | |
| - dprodW | |
| - sdprodmEr | |
| - subcent_dprod | |
| - divgr_id | |
| - morphim_bigcprod | |
| - injm_dprodm | |
| - pprod1g | |
| - im_sdprodm1 | |
| - path: mathcomp/field/separable.v | |
| theorems: | |
| - base_separable | |
| - separable_prod_XsubC | |
| - base_inseparable | |
| - separable_inseparable_element | |
| - separable_generator_maximal | |
| - separable_add | |
| - dvdp_separable | |
| - path: mathcomp/ssreflect/generic_quotient.v | |
| theorems: | |
| - enc_mod_rel_is_equiv | |
| - pi_morph2 | |
| - pi_mono1 | |
| - path: mathcomp/fingroup/action.v | |
| theorems: | |
| - dvdn_orbit | |
| - actbyE | |
| - actby_is_groupAction | |
| - morph_astabs | |
| - perm_faithful | |
| - astabsD | |
| - actpermK | |
| - ract_is_groupAction | |
| - actK | |
| - modact_coset_astab | |
| - actsP | |
| - orbit_inv_in | |
| - gacentE | |
| - act1 | |
| - atransR | |
| - reindex_acts | |
| - gactM | |
| - subgacent1E | |
| - card_orbit_in_stab | |
| - gactJ | |
| - atrans_acts_card | |
| - path: mathcomp/character/integral_char.v | |
| theorems: | |
| - irr_gring_center | |
| - path: mathcomp/solvable/alt.v | |
| theorems: | |
| - rfd_morph | |
| - simple_Alt5 | |
| - card_Alt | |
| - path: mathcomp/algebra/fraction.v | |
| theorems: | |
| - equivf_sym | |
| - path: mathcomp/solvable/center.v | |
| theorems: | |
| - center_ncprod | |
| - center_prod | |
| - path: mathcomp/algebra/interval.v | |
| theorems: | |
| - leBSide | |
| - itv_joinKI | |
| - itv_leEmeet | |
| - itv_split1U | |
| - path: mathcomp/ssreflect/binomial.v | |
| theorems: | |
| - fact_split | |
| - ffact_gt0 | |
| - ffactnSr | |
| - bin_factd | |
| - path: mathcomp/algebra/qpoly.v | |
| theorems: | |
| - poly_of_size_mod | |
| - qpoly_scale1l | |
| - qpoly_scaleDl | |
| - irreducibleP | |
| - path: mathcomp/field/algnum.v | |
| theorems: | |
| - Aint_subring_exists | |
| - Qn_aut_exists | |
| - path: mathcomp/solvable/nilpotent.v | |
| theorems: | |
| - lcn_subS | |
| - ucn_id | |
| - TI_center_nil | |
| - meet_center_nil | |
| - injm_nil | |
| - quotient_nil | |
| - path: mathcomp/algebra/zmodp.v | |
| theorems: | |
| - Zp_mulVz | |
| - Zp_group_set | |
| - Fp_Zcast | |
| - path: mathcomp/field/closed_field.v | |
| theorems: | |
| - rmulpT | |
| - path: mathcomp/algebra/polyXY.v | |
| theorems: | |
| - swapXY_X | |
| - path: mathcomp/field/qfpoly.v | |
| theorems: | |
| - qlogp_lt | |
| - path: mathcomp/solvable/finmodule.v | |
| theorems: | |
| - fmodM | |
| - fmod_addrC | |
| - fmvalK | |
| - mulg_exp_card_rcosets | |
| - path: mathcomp/character/vcharacter.v | |
| theorems: | |
| - vcharP | |
| - zcharD1E | |
| - orthogonal_span | |
| - dirr_inj | |
| - path: mathcomp/solvable/jordanholder.v | |
| theorems: | |
| - acompsP | |
| - maxainv_proper | |
| - maxainv_asimple_quo | |
| - path: mathcomp/algebra/archimedean.v | |
| theorems: | |
| - lt_succ_floor | |
| - natr_norm_int | |
| - trunc1 | |
| - ceil_floor | |
| - norm_natr | |
| - floorN | |
| - prod_truncK | |
| - int_num0 | |
| - path: mathcomp/field/finfield.v | |
| theorems: | |
| - primeChar_abelem | |
| - primeChar_scale1 | |
| - primeChar_scaleAl | |
| - path: mathcomp/fingroup/perm.v | |
| theorems: | |
| - porbitP | |
| - porbit_setP | |
| - preim_permV | |
| - path: mathcomp/fingroup/quotient.v | |
| theorems: | |
| - rcoset_kercosetP | |
| - path: mathcomp/ssreflect/ssrbool.v | |
| theorems: | |
| - if_implyb | |
| - path: mathcomp/ssreflect/finfun.v | |
| theorems: | |
| - supportE | |