| name: math-comp_train | |
| num_files: 75 | |
| language: COQ | |
| few_shot_data_path_for_retrieval: null | |
| few_shot_metadata_filename_for_retrieval: null | |
| dfs_data_path_for_retrieval: null | |
| dfs_metadata_filename_for_retrieval: local.meta.json | |
| theorem_cnt: 11381 | |
| datasets: | |
| - project: <path-to-repo>/math-comp/ | |
| files: | |
| - path: mathcomp/solvable/abelian.v | |
| theorems: | |
| - trivg_exponent | |
| - abelian_type_dvdn_sorted | |
| - Ohm_leq | |
| - abelem_Ohm1P | |
| - expg_exponent | |
| - TI_Ohm1 | |
| - rankJ | |
| - abelian_splits | |
| - isog_abelem | |
| - morphim_pElem | |
| - nElem1P | |
| - rank_Ohm1 | |
| - pnElem0 | |
| - rankS | |
| - pElemP | |
| - nElem0 | |
| - Ohm1Eexponent | |
| - p_rank_Ohm1 | |
| - rank_pgroup | |
| - pmaxElemS | |
| - is_abelemP | |
| - p_rank_pmaxElem_exists | |
| - exponent_witness | |
| - p_rank_dprod | |
| - abelian_type_dprod_homocyclic | |
| - morphim_rank_abelian | |
| - quotient_p_rank_abelian | |
| - dprod_exponent | |
| - abelem_cyclic | |
| - isog_rank | |
| - cprod_abelem | |
| - Ohm1_id | |
| - abelian_type_gt1 | |
| - morphim_LdivT | |
| - card_pnElem | |
| - isog_homocyclic | |
| - p_rankS | |
| - injm_pnElem | |
| - card_p1Elem | |
| - Ohm1_homocyclicP | |
| - morphim_Ohm | |
| - quotient_pnElem | |
| - eq_abelian_type_isog | |
| - abelian_type_sorted | |
| - p_rank_Hall | |
| - max_card_abelian | |
| - p_rank_p'quotient | |
| - isog_Mho | |
| - abelian_type_pgroup | |
| - LdivT_J | |
| - Ohm1Eprime | |
| - OhmEabelian | |
| - nElemS | |
| - abelem_Ohm1 | |
| - Mho1 | |
| - Mho_leq | |
| - pnElemP | |
| - quotient_LdivT | |
| - p_rank1 | |
| - nElemP | |
| - quotient_grank | |
| - exponent_quotient | |
| - abelemP | |
| - sub_Ldiv | |
| - Ohm1_eq1 | |
| - isog_abelem_card | |
| - rank_gt0 | |
| - fin_lmod_char_abelem | |
| - abelem_order_p | |
| - injm_rank | |
| - p_rank_le_logn | |
| - Ohm_dprod | |
| - pnElemPcard | |
| - pElemJ | |
| - pnat_exponent | |
| - rank_abelian_pgroup | |
| - injm_pElem | |
| - p_rank_le_rank | |
| - cyclic_abelem_prime | |
| - p_rank_gt0 | |
| - dprod_abelem | |
| - Ohm_Mho_homocyclic | |
| - injm_abelem | |
| - OhmS | |
| - pmaxElem_exists | |
| - pi_of_exponent | |
| - card_p1Elem_p2Elem | |
| - quotient_Ldiv | |
| - pmaxElem_LdivP | |
| - abelem_pgroup | |
| - OhmJ | |
| - Ohm0 | |
| - exponent_injm | |
| - grank_abelian | |
| - nElemI | |
| - pmaxElemP | |
| - partn_exponentS | |
| - abelian_type_subproof | |
| - injm_pmaxElem | |
| - abelem1 | |
| - abelem_homocyclic | |
| - Mho_sub | |
| - OhmPredP | |
| - exponent_isog | |
| - Mho_dprod | |
| - isog_Ohm | |
| - p_rank_witness | |
| - quotient_pElem | |
| - injm_nElem | |
| - exponent1 | |
| - exponentS | |
| - exponentP | |
| - trivg_Mho | |
| - Ohm_char | |
| - LdivJ | |
| - p_rankJ | |
| - Mho_normal | |
| - p_rankElem_max | |
| - size_abelian_type | |
| - Ohm_sub | |
| - cyclic_pgroup_dprod_trivg | |
| - quotient_abelem | |
| - pElemI | |
| - rank_abelem | |
| - nt_pnElem | |
| - exponent_Hall | |
| - isog_abelian_type | |
| - card_p1Elem_pnElem | |
| - dprod_homocyclic | |
| - exponent_cyclic | |
| - morphim_grank | |
| - morphim_abelem | |
| - LdivP | |
| - pmaxElemJ | |
| - Ohm_p_cycle | |
| - injm_Ldiv | |
| - cprod_exponent | |
| - p_rank_abelian | |
| - abelian_structure | |
| - abelemE | |
| - morphim_p_rank_abelian | |
| - MhoE | |
| - p1ElemE | |
| - Ohm1_abelem | |
| - fin_Fp_lmod_abelem | |
| - rank1 | |
| - Ohm_normal | |
| - homocyclic1 | |
| - Ohm1_cent_max | |
| - p2Elem_dprodP | |
| - morphim_pnElem | |
| - exponent_gt0 | |
| - group_Ldiv | |
| - p_rank_Sylow | |
| - prime_abelem | |
| - morphim_Ldiv | |
| - sub_LdivT | |
| - MhoJ | |
| - exponent_dvdn | |
| - Mho_cprod | |
| - Mho_char | |
| - Ohm_id | |
| - logn_le_p_rank | |
| - exponent_dprod_homocyclic | |
| - mul_card_Ohm_Mho_abelian | |
| - cycle_abelem | |
| - injm_p_rank | |
| - dvdn_exponent | |
| - pElemS | |
| - pnElemI | |
| - grank_min | |
| - OhmE | |
| - abelemJ | |
| - abelem_splits | |
| - grank_witness | |
| - Mho_p_elt | |
| - pnElemE | |
| - isog_p_rank | |
| - meet_Ohm1 | |
| - abelem_pnElem | |
| - pnElemJ | |
| - MhoEabelian | |
| - Ohm1_cyclic_pgroup_prime | |
| - rank_Sylow | |
| - abelian_type_abelem | |
| - rank_geP | |
| - homocyclic_Ohm_Mho | |
| - p_rank_quotient | |
| - abelian_type_homocyclic | |
| - MhoS | |
| - logn_quotient | |
| - card_homocyclic | |
| - abelian_exponent_gen | |
| - exponentJ | |
| - def_pnElem | |
| - isog_grank | |
| - is_abelem_pgroup | |
| - fin_ring_char_abelem | |
| - exponent_cycle | |
| - count_logn_dprod_cycle | |
| - abelian_rank1_cyclic | |
| - Mho_cont | |
| - piOhm1 | |
| - p_rank_geP | |
| - injm_grank | |
| - path: mathcomp/algebra/mxalgebra.v | |
| theorems: | |
| - mxrank_cap_compl | |
| - eqmxMfull | |
| - rowV0P | |
| - ltmx_irrefl | |
| - adds0mx | |
| - map_capmx_gen | |
| - addsmx_nop0 | |
| - cent_mx_ideal | |
| - mxrank_sum_leqif | |
| - mxrank0 | |
| - stablemxN | |
| - row_free_castmx | |
| - map_row_base | |
| - mulsmxDl | |
| - map_row_ebase | |
| - ltmx1 | |
| - capmx_eq_norm | |
| - mxrank_mul_ker | |
| - mxrankS | |
| - mxrankE | |
| - diffmxE | |
| - map_capmx | |
| - eqmxMfree | |
| - ltmxErank | |
| - eq_row_full | |
| - row_sub | |
| - sub_capmx | |
| - summx_sub | |
| - eqmx_conform | |
| - matrix_modr | |
| - row_fullP | |
| - mxrankM_maxr | |
| - capmx_idPl | |
| - cap0mx | |
| - mxrank_opp | |
| - logn_card_GL_p | |
| - mxrank_adds_leqif | |
| - rank_leq_row | |
| - map_submx | |
| - mulsmx_subP | |
| - stablemx0 | |
| - negb_row_free | |
| - stablemx_sums | |
| - mxring_id_uniq | |
| - sub_daddsmx | |
| - rank_ltmx | |
| - sub_addsmxP | |
| - eqmx_col | |
| - mxrank_fullrowsub | |
| - sub_dsumsmx | |
| - mxrank_ker | |
| - eqmx_eq0 | |
| - capmx_norm_eq | |
| - row_subP | |
| - capmxC | |
| - nary_mxsum_proof | |
| - addsmx_addKl | |
| - genmx_id | |
| - rowsub_comp_sub | |
| - sub_ltmx_trans | |
| - genmx_cap | |
| - addsmx_nop_eq0 | |
| - addsmx_compl_full | |
| - mxdirect_addsP | |
| - maxrowsub_free | |
| - mxrankMfree | |
| - mulsmxS | |
| - sub_rVP | |
| - lt1mx | |
| - eq_maxrowsub | |
| - row_full_unit | |
| - stablemxC | |
| - rank_rV | |
| - proj_mx_sub | |
| - center_mxP | |
| - fullrankfun_inj | |
| - addsmx_addKr | |
| - capmx_diff | |
| - sumsmx_subP | |
| - eqmxMunitP | |
| - mulsmxA | |
| - card_GL | |
| - mulmxKpV | |
| - stablemx_unit | |
| - memmx1 | |
| - mulmxP | |
| - eqmxP | |
| - lt0mx | |
| - center_mx_sub | |
| - inj_row_free | |
| - addsmx_idPr | |
| - eq_genmx | |
| - rowsub_sub | |
| - mxdirect_adds_center | |
| - proj_mx_compl_sub | |
| - row_full_inj | |
| - eq_row_base | |
| - eqmx_stable | |
| - mulmx_coker | |
| - row_subPn | |
| - genmx_sums | |
| - eq_rank_unitmx | |
| - addmx_sub_adds | |
| - submx_full | |
| - genmx_diff | |
| - rank_diag_block_mx | |
| - addsmx_nop_id | |
| - submx_rowsub | |
| - eqmx_sym | |
| - memmx_addsP | |
| - genmx0 | |
| - addsmxE | |
| - submx_refl | |
| - submxElt | |
| - ltmxE | |
| - capmx1 | |
| - capmx_idPr | |
| - submxMl | |
| - addsmxS | |
| - map_genmx | |
| - fullrowsub_full | |
| - lt_eqmx | |
| - mulmx1_min_rank | |
| - eqmx_rank | |
| - row_full_castmx | |
| - capmx_nopP | |
| - stablemxD | |
| - sub_sumsmxP | |
| - memmx0 | |
| - mxdirect_trivial | |
| - row_base_free | |
| - mxrank_tr | |
| - eqmx_scale | |
| - mxrank_disjoint_sum | |
| - mxrank_injP | |
| - maxrowsub_full | |
| - mxrank_leqif_sup | |
| - sub0mx | |
| - row_free_map | |
| - addsmx_diff_cap_eq | |
| - capmxMr | |
| - adds0mx_id | |
| - adds_eqmx | |
| - mem0mx | |
| - map_cokermx | |
| - pinvmx_full | |
| - mxrank_map | |
| - memmx_map | |
| - mulsmxP | |
| - eigenvalueP | |
| - kermx0 | |
| - mulsmx0 | |
| - eigenvectorP | |
| - mxdirect_sumsE | |
| - capmxSr | |
| - mulmx0_rank_max | |
| - add_proj_mx | |
| - submx0 | |
| - mxdirect_sums_center | |
| - nz_row_sub | |
| - complete_unitmx | |
| - scalar_mx_cent | |
| - map_center_mx | |
| - mulmxKp | |
| - eigenvalue_map | |
| - cokermx_eq0 | |
| - eqmx_opp | |
| - map_kermx | |
| - eqmx_sums | |
| - eq_fullrowsub | |
| - col_mx_sub | |
| - card_GL_1 | |
| - capmx0 | |
| - stablemxM | |
| - sub_kermxP | |
| - sumsmx_sup | |
| - muls0mx | |
| - eqmxMr | |
| - eq_row_sub | |
| - mxdirect_sumsP | |
| - mulVpmx | |
| - mxring_idP | |
| - mulsmxDr | |
| - mxrank1 | |
| - Gaussian_elimination_map | |
| - stable0mx | |
| - capmxE | |
| - sub_bigcapmxP | |
| - cap1mx | |
| - eqmx_refl | |
| - mxdirect_sums_recP | |
| - row_full_map | |
| - mxrank_scale_nz | |
| - mxrank_coker | |
| - row_free_inj | |
| - rV_subP | |
| - map_pinvmx | |
| - map_cent_mx | |
| - mxdirect_sum_eigenspace | |
| - cent_mx_fun_is_linear | |
| - mxrank_gen | |
| - cent_mxP | |
| - mulmxKV_ker | |
| - row_freeP | |
| - mxdirect_delta | |
| - rank_col_mx0 | |
| - scalemx_sub | |
| - comm_mx_stable | |
| - mxrank_delta | |
| - mxdirect_addsE | |
| - submx_trans | |
| - map_col_base | |
| - rank_copid_mx | |
| - comm_mx_stable_ker | |
| - capTmx | |
| - capmx_nop_id | |
| - map_eigenspace | |
| - stableCmx | |
| - eqmx0 | |
| - sub_qidmx | |
| - addsmx_sub | |
| - eqmx_sum_nop | |
| - capmx_normP | |
| - stablemx_row_base | |
| - mxdirectEgeq | |
| - memmx_sumsP | |
| - map_mulsmx | |
| - pinvmx_free | |
| - addsmxSr | |
| - rank_mxdiag | |
| - stableDmx | |
| - eqmx_rowsub_comp_perm | |
| - has_non_scalar_mxP | |
| - rank_col_0mx | |
| - capmxSl | |
| - mulmx_ebase | |
| - addsmx0_id | |
| - addsmxC | |
| - row_free_unit | |
| - ltmx_trans | |
| - genmx1 | |
| - genmx_bigcap | |
| - ltmx_sub_trans | |
| - mem_mulsmx | |
| - proj_mx_0 | |
| - maxrankfun_inj | |
| - map_eqmx | |
| - capmxA | |
| - qidmx_cap | |
| - mxrankM_maxl | |
| - eqmx_rowsub | |
| - stablemx_full | |
| - sumsmxMr | |
| - cap_eqmx | |
| - comm_mx_stable_eigenspace | |
| - mxdirectE | |
| - fullrowsub_free | |
| - submxMr | |
| - bigcapmx_inf | |
| - memmx_subP | |
| - mxrank_leqif_eq | |
| - addsmxMr | |
| - mulmxVp | |
| - map_col_ebase | |
| - fullrowsub_unit | |
| - rank_row_mx0 | |
| - submx0null | |
| - eqmx_cast | |
| - matrix_modl | |
| - ltmx0 | |
| - mxdirectP | |
| - sub_sums_genmxP | |
| - mxrank_add | |
| - addsmx_idPl | |
| - card_GL_2 | |
| - ltmxW | |
| - eigenspaceP | |
| - cent_mx_ring | |
| - mxrank_Frobenius | |
| - diffmxSl | |
| - sub_kermx | |
| - submxMfree | |
| - row_ebase_unit | |
| - mxrank_mul_min | |
| - genmx_witnessP | |
| - memmx_eqP | |
| - sumsmxS | |
| - capmx_witnessP | |
| - map_complmx | |
| - addsmx0 | |
| - mxrank_scale | |
| - sub_capmx_gen | |
| - submxE | |
| - muls_eqmx | |
| - sub1mx | |
| - capmx_compl | |
| - proj_mx_id | |
| - cent_rowP | |
| - rank_row_0mx | |
| - eqmx_trans | |
| - mulmx_free_eq0 | |
| - submxP | |
| - addsmxSl | |
| - capmxT | |
| - sumsmxMr_gen | |
| - col_leq_rank | |
| - submx1 | |
| - eqmx0P | |
| - ltmxEneq | |
| - mxrank_unit | |
| - map_diffmx | |
| - genmx_adds | |
| - rank_pid_mx | |
| - map_addsmx | |
| - path: mathcomp/algebra/matrix.v | |
| theorems: | |
| - map_col_mx | |
| - det0 | |
| - scalemx_inj | |
| - mx11_scalar | |
| - mxcol_const | |
| - mxcol_sum | |
| - unitmx1 | |
| - trmxK | |
| - lin1_mx_key | |
| - row_mxEl | |
| - map_mx_key | |
| - mxsize_recl | |
| - eq_mxdiag | |
| - mul_mxcol_mxrow | |
| - mul_row_block | |
| - col_permM | |
| - mxrow0 | |
| - mxrowD | |
| - mxvecE | |
| - colsub_comp | |
| - row_usubmx | |
| - mx_vec_lin | |
| - scalar_mx_sum_delta | |
| - map2_usubmx | |
| - scale1mx | |
| - det_inv | |
| - map2_col_perm | |
| - mxtrace_is_scalar | |
| - map_mxN | |
| - map2_row_mx | |
| - mul_scalar_mx | |
| - add_row_mx | |
| - unitmxE | |
| - mx0_is_diag | |
| - map_xcol | |
| - delta_mx_rshift | |
| - map2_row | |
| - col_mxblock | |
| - mxtrace_mxblock | |
| - col'_eq | |
| - col_mx_key | |
| - map2_mxsub | |
| - tr_scalar_mx | |
| - mxblockEh | |
| - row_mx0 | |
| - determinant_alternate | |
| - mul_rVP | |
| - submxblockB | |
| - trmx_adj | |
| - row_mxKr | |
| - col_rsubmx | |
| - map2_1mx | |
| - mxsub_comp | |
| - mxcolB | |
| - mx_rV_lin | |
| - map_mx_id_in | |
| - trmx_delta | |
| - mulVmx | |
| - scalar_mx_block | |
| - trmx_drsub | |
| - is_perm_mx_tr | |
| - mulmx_is_scalable | |
| - addmx_key | |
| - map_tperm_mx | |
| - det_mulmx | |
| - eq_castmx | |
| - scale_scalar_mx | |
| - map2_lsubmx | |
| - scalar_mx_is_additive | |
| - tr_col | |
| - mulmxN | |
| - mulmx_colsub | |
| - is_diag_block_mx | |
| - map_row_mx | |
| - mul_pid_mx | |
| - mxcol_recu | |
| - scalemxAr | |
| - usubmxEsub | |
| - mxsub_mul | |
| - mxvec_cast | |
| - diag_mx_sum_delta | |
| - cast_col_mx | |
| - mulNmx | |
| - mulmxBl | |
| - rowE | |
| - map2_conform_mx | |
| - trmx_const | |
| - invmx_out | |
| - xcolE | |
| - mulmx1 | |
| - submxblockK | |
| - mxblock_recul | |
| - rowP | |
| - xcol_const | |
| - perm_mxV | |
| - diag_const_mx | |
| - row_mxsub | |
| - mulKVmx | |
| - mul_rV_lin | |
| - colP | |
| - comm_mx_sym | |
| - map_mxsub | |
| - col_mx_eq0 | |
| - tr_row_mx | |
| - xrowEsub | |
| - flatmxOver | |
| - rowsubE | |
| - det_diag | |
| - map_mxZ | |
| - mxblockD | |
| - mul_vec_lin_row | |
| - rsubmxEsub | |
| - tr_row' | |
| - map_ursubmx | |
| - trmx_usub | |
| - row_mx_key | |
| - mul_delta_mx | |
| - diag_mx_is_linear | |
| - invmx_scalar | |
| - mxOver_opp_subproof | |
| - cormen_lup_correct | |
| - mul_block_col | |
| - row_rowsub | |
| - eq_mxsub | |
| - delta_mx_dshift | |
| - pid_mx_row | |
| - scalemxDl | |
| - rowK | |
| - curry_mxvec_bij | |
| - map_lin1_mx | |
| - block_mxEdr | |
| - map_mxB | |
| - comm_mxB | |
| - lift0_perm_eq0 | |
| - castmxKV | |
| - mxOverM | |
| - map2_col_mx | |
| - scale_col_mx | |
| - map2_mxC | |
| - col_mxsub | |
| - idmxE | |
| - mxtrace_scalar | |
| - is_perm_mxMr | |
| - mul_row_col | |
| - tr_submxblock | |
| - submxK | |
| - lift0_perm0 | |
| - col_mxdiag | |
| - map2_mxvec | |
| - trmx_cast | |
| - map_row_perm | |
| - block_mx0 | |
| - eq_mxcol | |
| - mul_diag_mx | |
| - mul_xcol | |
| - mxcolN | |
| - map_drsubmx | |
| - map2_vec_mx | |
| - map2_mx0 | |
| - mxOverZ | |
| - opp_row_mx | |
| - block_mxEul | |
| - const_mx_key | |
| - col_perm_const | |
| - vec_mx_eq0 | |
| - scalemxDr | |
| - map2_mxA | |
| - intro_unitmx | |
| - map2_ursubmx | |
| - tr_mxrow | |
| - trmx1 | |
| - col_colsub | |
| - map2_mx1 | |
| - row1 | |
| - map_mxM | |
| - row'Kd | |
| - mxblock0 | |
| - GL_VxE | |
| - opp_block_mx | |
| - mul_rowsub_mx | |
| - col'_const | |
| - tr_mxcol | |
| - map2_rsubmx | |
| - is_diag_trmx | |
| - mxEmxrow | |
| - scalemxAl | |
| - tr_pid_mx | |
| - submxrow_matrix | |
| - eq_rowsub | |
| - trigmx_ind | |
| - mul_mxrow_mxblock | |
| - block_mxEdl | |
| - submxrowD | |
| - row_permEsub | |
| - adjZ | |
| - map2_mx_left | |
| - expand_det_row | |
| - det_lblock | |
| - map_col_perm | |
| - is_scalar_mx_is_diag | |
| - ursubmxEsub | |
| - col_eq | |
| - row_mxrow | |
| - rowsub_comp | |
| - vsubmxK | |
| - lift0_perm_lift | |
| - mxblockK | |
| - mulmx_sum_row | |
| - mxOverS | |
| - mxOver_diagE | |
| - mulmxDr | |
| - tr_xrow | |
| - col_mxEu | |
| - map_scalar_mx | |
| - mxrowP | |
| - cast_row_mx | |
| - matrix_key | |
| - mx0_is_trig | |
| - det_tr | |
| - rowEsub | |
| - cormen_lup_upper | |
| - diagsqmx_ind | |
| - map2_mx_key | |
| - mul_mx_row | |
| - tr_row | |
| - is_trig_mxblockP | |
| - GL_ME | |
| - mul_mxdiag_mxcol | |
| - GL_unitmx | |
| - block_mx_eq0 | |
| - mul_mxdiag_mxblock | |
| - mxdiagN | |
| - tr_perm_mx | |
| - mul_mxrow | |
| - mxsub_id | |
| - mxtrace_is_semi_additive | |
| - mxsub_ffun | |
| - row_perm1 | |
| - mul_mx_scalar | |
| - is_diag_mxP | |
| - submxcol_sum | |
| - mxcol_mul | |
| - row_mx_eq0 | |
| - mx0_is_scalar | |
| - is_scalar_mx_is_trig | |
| - mxrowN | |
| - tr_col' | |
| - castmx_comp | |
| - is_perm_mxMl | |
| - map_lin_mx | |
| - mx11_is_diag | |
| - eq_block_mx | |
| - lin_mulmx_is_linear | |
| - addNmx | |
| - mxrow_const | |
| - mul_pid_mx_copid | |
| - opp_col_mx | |
| - trmx0 | |
| - trmx_mxsub | |
| - row_mxA | |
| - mxvec_delta | |
| - delta_mx_key | |
| - col_mx0 | |
| - rV0Pn | |
| - mxdiagD | |
| - is_diag_mxEtrig | |
| - unitmxZ | |
| - mxcol0 | |
| - map_mxD | |
| - map_usubmx | |
| - eq_mxblockP | |
| - row_permM | |
| - tr_block_mx | |
| - map2_trmx | |
| - invmx_block_diag | |
| - col_perm_key | |
| - mulmx1_unit | |
| - dsubmxEsub | |
| - comm_mxM | |
| - summxE | |
| - scale_block_mx | |
| - ulsubmx_diag | |
| - mul_delta_mx_cond | |
| - add_block_mx | |
| - eq_in_map_mx | |
| - col0 | |
| - mul_dsub_mx | |
| - map2_xcol | |
| - unitmx_mul | |
| - vec_mxK | |
| - mxtraceD | |
| - trmx_mul | |
| - map2_mxDl | |
| - trmxV | |
| - cV0Pn | |
| - col'Kl | |
| - mxOver_scalarE | |
| - cofactor_map_mx | |
| - mul_mxblock | |
| - mxOver_add_subproof | |
| - mxOver_constE | |
| - pid_mx_col | |
| - mxblockEv | |
| - mxvec_indexP | |
| - all_comm_mx1 | |
| - map_copid_mx | |
| - mul_adj_mx | |
| - map_diag_mx | |
| - block_mxKdl | |
| - mxblock_recu | |
| - mxsub_ffunl | |
| - pid_mx_minh | |
| - unitmx_inv | |
| - conform_castmx | |
| - mxOverP | |
| - mxsub_const | |
| - submxrowN | |
| - mxrowB | |
| - scalemxA | |
| - mxdiagB | |
| - col'_col_mx | |
| - col_lsubmx | |
| - map_pid_mx | |
| - map_mx_id | |
| - submxcol_matrix | |
| - cofactorZ | |
| - col1 | |
| - map2_dlsubmx | |
| - is_trig_mxP | |
| - is_trig_block_mx | |
| - col_permE | |
| - delta_mx_lshift | |
| - eq_row_mx | |
| - xrowE | |
| - mxsubcr | |
| - mxdiag0 | |
| - scalemx_const | |
| - comm_mxN | |
| - copid_mx_id | |
| - trmx_inv | |
| - vec_mx_delta | |
| - mxOver_const | |
| - mx1_sum_delta | |
| - eq_map2_mx | |
| - submxcolN | |
| - row_mx_const | |
| - map_mx_eq0 | |
| - lift0_permK | |
| - col_const | |
| - pid_mx_id | |
| - all_comm_mxP | |
| - pid_mx_block | |
| - row_const | |
| - ulsubmxEsub | |
| - block_mxKul | |
| - scalar_mx_key | |
| - colKr | |
| - comm_mxE | |
| - delta_mx_ushift | |
| - row_mxdiag | |
| - row_diag_mx | |
| - comm1mx | |
| - diagmx_ind | |
| - scalar_mx_is_diag | |
| - row_permE | |
| - det_mx11 | |
| - swizzle_mx_is_semi_additive | |
| - col_mxA | |
| - comm_mx_refl | |
| - ursubmx_trig | |
| - is_diag_mxblock | |
| - trmx_mul_rev | |
| - scalar_mx_is_multiplicative | |
| - map_mx_is_scalar | |
| - mul_mxblock_mxrow | |
| - mxcolK | |
| - xrow_const | |
| - submxcol0 | |
| - castmx_id | |
| - submxrow0 | |
| - eq_map_mx | |
| - map_mx_is_multiplicative | |
| - scalar_mxM | |
| - mxvec_eq0 | |
| - mulmx1C | |
| - usubmx_key | |
| - tr_col_mx | |
| - mxsub_ffunr | |
| - col_permEsub | |
| - mulmx0 | |
| - submxblockN | |
| - map_const_mx | |
| - trmx_dlsub | |
| - trmx_dsub | |
| - mxsub_ind | |
| - map_mx_adj | |
| - submxblockEv | |
| - mulmx_lsub | |
| - col_mxKd | |
| - map2_ulsubmx | |
| - mulmxA | |
| - pid_mx_minv | |
| - colsub_cast | |
| - submxblockEh | |
| - row_perm_const | |
| - unitmx_tr | |
| - row_eq | |
| - all_comm_mx2P | |
| - block_mxEh | |
| - mul_copid_mx_pid | |
| - scalar_mxC | |
| - map_row | |
| - submxrow_sum | |
| - eq_colsub | |
| - castmx_sym | |
| - submxblock_diag | |
| - mul_col_perm | |
| - submxrowB | |
| - map_lsubmx | |
| - col_mxcol | |
| - block_mxEv | |
| - row'_const | |
| - is_perm_mxP | |
| - comm_mxP | |
| - mxcolD | |
| - mulmx_diag | |
| - matrix_eq0 | |
| - map2_0mx | |
| - diag_mx_comm | |
| - mxrowK | |
| - castmxK | |
| - eq_col_mx | |
| - mul_rV_lin1 | |
| - colKl | |
| - drsubmx_diag | |
| - perm_mxM | |
| - row'_eq | |
| - flatmx0 | |
| - map_block_mx | |
| - eq_mxcolP | |
| - all_comm_mx_cons | |
| - trace_map_mx | |
| - map_conform_mx | |
| - ringmx_ind | |
| - mul_submxrow | |
| - map2_const_mx | |
| - comm_mx_scalar | |
| - det_map_mx | |
| - mul_col_row | |
| - eq_mxrow | |
| - trmx_lsub | |
| - map_mx_inv | |
| - detM | |
| - submxblock0 | |
| - expand_det_col | |
| - comm0mx | |
| - card_mx | |
| - rowKd | |
| - tr_xcol | |
| - pid_mx_key | |
| - castmxEsub | |
| - lsubmxEsub | |
| - row'_row_mx | |
| - row0 | |
| - swizzle_mx_is_additive | |
| - rowKu | |
| - submxblock_sum | |
| - oppmx_key | |
| - map_dsubmx | |
| - map2_dsubmx | |
| - col_row_permC | |
| - mxOver0 | |
| - map2_col' | |
| - dlsubmxEsub | |
| - diag_mxrow | |
| - map_unitmx | |
| - map_mx_comp | |
| - hsubmxK | |
| - pid_mx_1 | |
| - scalar_mx_is_trig | |
| - trace_mx11 | |
| - mulmx_block | |
| - const_mx_is_additive | |
| - map2_mx_right_in | |
| - mxsub_eq_id | |
| - scalar_mx_is_scalar | |
| - mxtrace_is_additive | |
| - detZ | |
| - map_mx1 | |
| - ulsubmx_trig | |
| - block_diag_mx_unit | |
| - mul_row_perm | |
| - mul_vec_lin | |
| - mul1mx | |
| - dsubmx_key | |
| - map_dlsubmx | |
| - diag_mx_row | |
| - cormen_lup_lower | |
| - exp_block_diag_mx | |
| - vec_mx_key | |
| - mxdiag_recl | |
| - map_row' | |
| - eq_mxblock | |
| - map_mx_inj | |
| - row_thin_mx | |
| - xcolEsub | |
| - map2_drsubmx | |
| - map_invmx | |
| - mulKmx | |
| - map2_row_perm | |
| - perm_mx1 | |
| - col_mx_const | |
| - map_mx_unit | |
| - add_col_mx | |
| - mul0mx | |
| - det_mx00 | |
| - mx'_cast | |
| - swizzle_mx_is_scalable | |
| - det_scalar1 | |
| - mxblock_sum | |
| - mul_usub_mx | |
| - is_diag_mxblockP | |
| - eq_mxrowP | |
| - colE | |
| - mxtraceZ | |
| - map_trmx | |
| - mxtrace_tr | |
| - trmx_conform | |
| - is_perm_mxV | |
| - col'Esub | |
| - mxblock_recl | |
| - matrixP | |
| - invmxZ | |
| - mxtrace1 | |
| - nz_row_eq0 | |
| - mxsub_eq_colsub | |
| - row_ind | |
| - mxOver_scalar | |
| - mx11_is_trig | |
| - mxEmxblock | |
| - mulmx_key | |
| - tperm_mxEsub | |
| - map2_mx_right | |
| - unitmx_perm | |
| - mulmxK | |
| - eq_in_map2_mx | |
| - comm_mxD | |
| - map_ulsubmx | |
| - mxvecK | |
| - mxdiagZ | |
| - diag_mx_key | |
| - dlsubmx_diag | |
| - GL_MxE | |
| - det_perm | |
| - mxdiag_sum | |
| - mxsub_eq_rowsub | |
| - GL_1E | |
| - row_mxKl | |
| - map2_block_mx | |
| - col_perm1 | |
| - mxE | |
| - mxvec_dotmul | |
| - lin_mul_row_is_linear | |
| - eq_mxdiagP | |
| - GL_det | |
| - mulmxE | |
| - comm_mx_sum | |
| - row_matrixP | |
| - map2_castmx | |
| - mxEmxcol | |
| - tr_row_perm | |
| - col_id | |
| - trmx_rsub | |
| - map_delta_mx | |
| - map2_col | |
| - is_trig_mxblock | |
| - castmxE | |
| - det0P | |
| - map2_mxDr | |
| - unitr_trmx | |
| - det1 | |
| - row_row_mx | |
| - diag_mxP | |
| - rowsub_cast | |
| - map_col | |
| - det_trig | |
| - det_ublock | |
| - cormen_lup_perm | |
| - comm_scalar_mx | |
| - is_diag_mx_is_trig | |
| - GL_unit | |
| - matrix_sum_delta | |
| - col_flat_mx | |
| - cofactor_tr | |
| - mul_mxrow_mxcol | |
| - mxtrace_mulC | |
| - colEsub | |
| - mul_mx_adj | |
| - diag_mx_is_trig | |
| - submxrowK | |
| - mxtrace_diag | |
| - lift0_mx_perm | |
| - diag_mxC | |
| - scalemx1 | |
| - row'Esub | |
| - trigsqmx_ind | |
| - trmx_eq0 | |
| - scalemx_key | |
| - adjugate_key | |
| - lin_mulmxr_is_linear | |
| - row_mul | |
| - map2_mx_left_in | |
| - mulmx_suml | |
| - is_perm_mx1 | |
| - row_id | |
| - trmx_ulsub | |
| - map_mx0 | |
| - submxblockD | |
| - map_perm_mx | |
| - tr_mxdiag | |
| - pid_mxErow | |
| - mxblock_const | |
| - scale_row_mx | |
| - submxcol_mul | |
| - row_mxEr | |
| - sqmx_ind | |
| - map_mxvec | |
| - castmx_const | |
| - pid_mxEcol | |
| - mulmxKV | |
| - mxsubrc | |
| - detV | |
| - mulmxDl | |
| - mxOver_diag | |
| - GL_VE | |
| - mxtrace0 | |
| - expand_cofactor | |
| - mxrow_sum | |
| - mx_ind | |
| - mulmx_sumr | |
| - mulmxBr | |
| - matrix0Pn | |
| - matrix_nonzero1 | |
| - col'Kr | |
| - row_mxcol | |
| - col_mxKu | |
| - map_vec_mx | |
| - determinant_multilinear | |
| - perm_mx_is_perm | |
| - tr_col_perm | |
| - mulmxnE | |
| - drsubmx_trig | |
| - comm_mxN1 | |
| - diag_mx_is_additive | |
| - mxblockN | |
| - col_col_mx | |
| - mxblockP | |
| - submxcolB | |
| - row_mxblock | |
| - row_sum_delta | |
| - lsubmx_key | |
| - comm_mx0 | |
| - det_Vandermonde | |
| - nonconform_mx | |
| - conform_mx_id | |
| - mxcolEblock | |
| - block_mx_const | |
| - map_rsubmx | |
| - block_mxKur | |
| - rsubmx_key | |
| - trmx_key | |
| - tr_mxblock | |
| - block_mxKdr | |
| - thinmx0 | |
| - mxsub_cast | |
| - pid_mx_0 | |
| - trmx_inj | |
| - mulmxV | |
| - path: mathcomp/ssreflect/order.v | |
| theorems: | |
| - lt_Taggedl | |
| - diffE | |
| - leU2E | |
| - bigmin_inf | |
| - sub_bigmax_seq | |
| - joinxB | |
| - gt_min | |
| - le_sorted_filter | |
| - join0x | |
| - min_minKx | |
| - joinUA | |
| - meetUr | |
| - subset_bigmax | |
| - ltxi_tuplePlt | |
| - rcomplPmeet | |
| - refl | |
| - lcomparable_leP | |
| - comparable_lteifNE | |
| - codiffErcompl | |
| - bigmaxD1 | |
| - compl_joins | |
| - setKIC | |
| - arg_maxP | |
| - refl | |
| - comparable_bigl | |
| - lexU | |
| - lt_def | |
| - meetUl | |
| - leIxr | |
| - orEbool | |
| - le0x | |
| - trans | |
| - meetxx | |
| - enumT | |
| - le0s | |
| - size_enum_ord | |
| - nhomo_ltn_lt_in | |
| - ltxx | |
| - join_cons | |
| - disj_diffr | |
| - lcmE | |
| - lt_def | |
| - sig_bij_on | |
| - trans | |
| - join_idPr | |
| - decnP | |
| - ltn_def | |
| - ltgtP | |
| - trans | |
| - incomparable_eqF | |
| - count_lt_nth | |
| - joinKIC | |
| - diffxB | |
| - meet_eq1 | |
| - eq_minr | |
| - comparable_contra_leq_lt | |
| - le_sig | |
| - joinBI | |
| - contra_not_lt | |
| - comparable_contra_leq_le | |
| - sub_in_bigmax | |
| - complEcodiff | |
| - incn_inP | |
| - enum_setT | |
| - meetUl | |
| - comparable_lteif_minr | |
| - lt_asym | |
| - meetUA | |
| - mono_leif | |
| - eq_le | |
| - rcomplPmeet | |
| - compl_inj | |
| - diffxx | |
| - le_path_filter | |
| - count_lt_ge | |
| - le_meetU | |
| - les0 | |
| - sub_bigmin | |
| - enum_val_inj | |
| - opred_joins | |
| - meetKU | |
| - meetIB | |
| - meet1x | |
| - contra_lt_le | |
| - joinKI | |
| - diffKI | |
| - sort_le_sorted | |
| - bigmin_geP | |
| - meetUl | |
| - rcomplPmeet | |
| - max_r | |
| - maxxx | |
| - meetUl | |
| - comparable_maxl | |
| - comparable_contra_lt_le | |
| - maxEge | |
| - ltxi_cons | |
| - opred1 | |
| - bigmax_eq_arg | |
| - comparable_contraTle | |
| - joinA | |
| - contra_leq_le | |
| - leifP | |
| - le_path_min | |
| - lteifN | |
| - sig2K | |
| - lt_sorted_pairwise | |
| - meet_def_le | |
| - comparable_leNgt | |
| - ltxi0s | |
| - lcomparable_ltP | |
| - joinE | |
| - comparable_min_maxr | |
| - leU2l_le | |
| - botEprodlexi | |
| - nmono_in_leif | |
| - count_lt_le_mem | |
| - minEge | |
| - min_l | |
| - bigmin_le_cond | |
| - le_cons | |
| - bigmax_ge_id | |
| - meetxC | |
| - diffBx | |
| - comparable_arg_maxP | |
| - sub_tprod_lexi | |
| - comparable_ge_max | |
| - inj_homo_lt_in | |
| - lteif_minr | |
| - le_bigmax_ord | |
| - joinxx | |
| - compl_meets | |
| - comparable_contraPle | |
| - joinC | |
| - ge_trans | |
| - comparable_minC | |
| - join_r | |
| - comparable_maxEge | |
| - joinUKC | |
| - anti | |
| - comparable_le_max | |
| - joins_disjoint | |
| - subset_bigmin | |
| - le_bigmax2 | |
| - homo_ltn_lt_in | |
| - comparable_minCA | |
| - comparable_max_idPl | |
| - leU2 | |
| - eqTleif | |
| - lex1 | |
| - comparable_ltgtP | |
| - eq_diff | |
| - leI2 | |
| - ltEnat | |
| - leI2l_le | |
| - joinIKC | |
| - gt_comparable | |
| - le_anti | |
| - eq_joinl | |
| - joinEprod | |
| - comparable_contra_not_le | |
| - minEgt | |
| - max_minl | |
| - anti | |
| - eq_leLR | |
| - leC | |
| - total | |
| - enum_val_nth | |
| - gcdE | |
| - nonincnP | |
| - lexi_pair | |
| - leUx | |
| - comparable_contraFle | |
| - nth_count_le | |
| - idfun_is_join_morphism | |
| - joinBx | |
| - diff1x | |
| - bigmin_idl | |
| - filter_le_nth | |
| - meetUKC | |
| - le_lt_asym | |
| - diffIx | |
| - min_idPl | |
| - lt1x | |
| - refl | |
| - lexUr | |
| - maxElt | |
| - enum_uniq | |
| - leW_mono | |
| - ge_comparable | |
| - lteif_imply | |
| - lt_val | |
| - rcomplEprod | |
| - lt_trans | |
| - lexi_tupleP | |
| - le_anti | |
| - maxKx | |
| - lexUl | |
| - leUl | |
| - trans | |
| - enum_ord | |
| - omorph0 | |
| - bigmin_gtP | |
| - meetUl | |
| - le_Taggedl | |
| - le_bigmin_nat_cond | |
| - leEseq | |
| - lex1 | |
| - lexI | |
| - maxCA | |
| - joinA | |
| - join_idPl | |
| - wlog_lt | |
| - lt_Taggedr | |
| - comparable_sym | |
| - contra_leq_lt | |
| - diffKU | |
| - lexI | |
| - minC | |
| - eqRank | |
| - comparable_maxKx | |
| - lt_max | |
| - le_max | |
| - enum_valP | |
| - lt_min | |
| - bigmax_mkcondl | |
| - nth_enum_ord | |
| - enum_valK | |
| - maxAC | |
| - tnth_meet | |
| - comparable_max_minr | |
| - enum_rank_inj | |
| - omorphI | |
| - joinKI | |
| - le_anti | |
| - le_enum_val | |
| - refl | |
| - eq_bigmax | |
| - joinAC | |
| - bigmax_idr | |
| - sub_prod_lexi | |
| - codiffEprod | |
| - joinUC | |
| - leif_le | |
| - le_bigmin_ord_cond | |
| - meets_total | |
| - comparable_minEgt | |
| - join1x | |
| - bigmin_set1 | |
| - le_trans | |
| - sig_bij | |
| - lt_path_sortedE | |
| - leEsig | |
| - diffUx | |
| - leEseqlexi | |
| - meetEprod | |
| - joinxx | |
| - topEdual | |
| - diffErcompl | |
| - comparable_contra_lt | |
| - bigmax_mkcond | |
| - meetA | |
| - lteif_maxl | |
| - lt_eqF | |
| - tnth_join | |
| - joinIl | |
| - dec_inj | |
| - comparable_contraNlt | |
| - codiffErcompl | |
| - botEtprod | |
| - bigmin_eq_arg | |
| - topEord | |
| - sigK | |
| - bigmax_ltP | |
| - ltx1 | |
| - mask_sort_le | |
| - leEdual | |
| - joinEsubset | |
| - lt_def | |
| - joinCx | |
| - tnth_codiff | |
| - meetEsubset | |
| - lt_leif | |
| - subseq_lt_sorted | |
| - diffKI | |
| - bigmax_le | |
| - lteifNE | |
| - meets_setU | |
| - eq_meetr | |
| - le_def | |
| - le_max_id | |
| - rank_bij | |
| - comparable_maxAC | |
| - leI2E | |
| - meetsP_seq | |
| - neqhead_ltxiE | |
| - subseq_lt_path | |
| - leBRL | |
| - lt_sorted_leq_nth | |
| - lteifF | |
| - diffErcompl | |
| - subseq_le_sorted | |
| - lcomparable_ltgtP | |
| - subseq_le_path | |
| - joinx1 | |
| - meets_inf_seq | |
| - meetKUC | |
| - bigmin_mkcondl | |
| - enum_rank_bij | |
| - count_le_gt | |
| - opred_meets | |
| - rcomplEtprod | |
| - codiffErcompl | |
| - ltrW_lteif | |
| - contra_lt_not | |
| - lt_nsym | |
| - neq_lt | |
| - meetUl | |
| - comparable_contra_ltn_le | |
| - lt_neqAle | |
| - joinA | |
| - bigmin_idr | |
| - gtE | |
| - meet_eq0E_diff | |
| - valI | |
| - ltxI | |
| - bigminUl | |
| - lt_sorted_eq | |
| - sort_lt_sorted | |
| - bigminUr | |
| - inj_homo_lt | |
| - maxEgt | |
| - comparable_ge_min | |
| - comparable_contra_le | |
| - comparable_lt_min | |
| - le_eqVlt | |
| - index_enum_ord | |
| - le_meets | |
| - diff0x | |
| - sub_in_bigmin | |
| - eq_joinr | |
| - set_enum | |
| - comparable_maxxK | |
| - le_bigmax_nat_cond | |
| - rankEsum | |
| - comparable_contraPlt | |
| - valD | |
| - ge_anti | |
| - bigmax_eq_id | |
| - botEsubset | |
| - omorphU | |
| - meetIKC | |
| - diffxU | |
| - inj_nhomo_lt | |
| - leif_trans | |
| - meetKI | |
| - contra_ltF | |
| - joinKU | |
| - meetKU | |
| - lt_rank | |
| - sorted_mask_sort_le | |
| - lt_path_pairwise | |
| - nth_enum_rank_in | |
| - gt_max | |
| - nth_count_gt | |
| - enum_rankK_in | |
| - bigmax_idl | |
| - ltEprod | |
| - comparable_contra_le_lt | |
| - joinsP_seq | |
| - ltEseqlexi | |
| - contra_leF | |
| - leI2r_le | |
| - le_bigmin | |
| - joins_setU | |
| - le_le_trans | |
| - prod_display_unit | |
| - sort_lt_id | |
| - lteif_maxr | |
| - lexI | |
| - meetA | |
| - comparable_minl | |
| - maxEle | |
| - bigmin_split | |
| - leIl | |
| - rcomplPmeet | |
| - maxC | |
| - ltn_def | |
| - rcomplKU | |
| - lt_pair | |
| - eq_leRL | |
| - dvdE | |
| - sub_bigmin_seq | |
| - complK | |
| - rcomplPmeet | |
| - ltW_nhomo_in | |
| - inj_nhomo_lt_in | |
| - omorph_lt | |
| - meet0x | |
| - perm_sort_leP | |
| - diffxI | |
| - leEtprod | |
| - rank_inj | |
| - joinKI | |
| - nmono_leif | |
| - le_min | |
| - complEsubset | |
| - comparable_minAC | |
| - le_enum_rank | |
| - comp_is_bottom_morphism | |
| - joinA | |
| - comparable_lteif_maxl | |
| - ord_display | |
| - joins_min_seq | |
| - lex1 | |
| - le_bigmax | |
| - le_sorted_ltn_nth | |
| - le_sorted_eq | |
| - count_le_nth | |
| - leif_refl | |
| - anti | |
| - sdvdE | |
| - complEbool | |
| - meet_idPr | |
| - le_def | |
| - nth_count_ge | |
| - val1 | |
| - meetUC | |
| - lt_def | |
| - le_gtF | |
| - diffEtprod | |
| - meetBx | |
| - anti | |
| - meetsP | |
| - ltW_homo_in | |
| - meetE | |
| - leBUK | |
| - comparable_minEge | |
| - complEdiff | |
| - meetx1 | |
| - complEcodiff | |
| - disj_leC | |
| - lt_def | |
| - mem_enum | |
| - meet_cons | |
| - comparable_le_min | |
| - joinBIC | |
| - meets_inf | |
| - comparable_arg_minP | |
| - sub_bigmax_cond | |
| - minElt | |
| - meetA | |
| - complEtprod | |
| - joinKI | |
| - incnP | |
| - meetxx | |
| - lteifNF | |
| - topEsubset | |
| - bigminD1 | |
| - bigmaxIr | |
| - gt_def | |
| - nat_display | |
| - lteif_trans | |
| - comparable_minACA | |
| - le_trans | |
| - meets_ge | |
| - Rank1K | |
| - joinC | |
| - contra_le_not | |
| - lt_wval | |
| - comparable_contraTlt | |
| - ltW | |
| - cardT | |
| - leW_mono_in | |
| - le_path_mask | |
| - arg_minP | |
| - eq_Rank | |
| - joinxx | |
| - lteif_anti | |
| - complU | |
| - leIx2 | |
| - join_l | |
| - ge_leif | |
| - lt_sorted_mask | |
| - nth_count_lt | |
| - bigmax_leP | |
| - meet_idPl | |
| - eqhead_ltxiE | |
| - nondecnP | |
| - opredU | |
| - min_minxK | |
| - meetxx | |
| - le_bigmin_nat | |
| - le_comparable | |
| - bigminD | |
| - leEord | |
| - comparable_maxr | |
| - bigmaxD | |
| - meetUl | |
| - meets_seq | |
| - min_maxr | |
| - maxEnat | |
| - maxA | |
| - comparable_min_maxl | |
| - bigminIr | |
| - leBr | |
| - leEbool | |
| - contra_ltn_lt | |
| - homo_ltn_lt | |
| - enum_set0 | |
| - enum_val_bij | |
| - complEdiff | |
| - ltEbool | |
| - botEord | |
| - subset_bigmin_cond | |
| - lexI | |
| - meet_eql | |
| - lexis0 | |
| - bigmax_imset | |
| - join_eq0 | |
| - complEprod | |
| - disjoint_lexUr | |
| - codiffErcompl | |
| - le_mono_in | |
| - totalT | |
| - minACA | |
| - compl0 | |
| - setKUC | |
| - rcomplPjoin | |
| - leIr | |
| - complB | |
| - lex1 | |
| - ltx0 | |
| - joinsP | |
| - rect | |
| - comparable_maxA | |
| - leIx | |
| - leEmeet | |
| - le_sig1 | |
| - leUidr | |
| - cover_leIxr | |
| - le_pair | |
| - meetEtotal | |
| - comparable_eq_maxl | |
| - enum_valK_in | |
| - joinUKI | |
| - comparable_lteif_minl | |
| - joinBKC | |
| - comp_is_nondecreasing | |
| - complEcodiff | |
| - meetUK | |
| - leP | |
| - rank_bij_on | |
| - diffUK | |
| - mono_sorted_enum | |
| - le_bigmax_cond | |
| - sorted_filter_le | |
| - leU2r_le | |
| - wlog_le | |
| - posxP | |
| - minxx | |
| - leNgt | |
| - bigmaxU | |
| - contra_ltT | |
| - joins_min | |
| - lexI | |
| - rcomplKI | |
| - bigmax_split | |
| - leEjoin | |
| - complEdiff | |
| - mono_in_leif | |
| - meetxB | |
| - RankEsum | |
| - lt_sorted_filter | |
| - comparable_leP | |
| - lexi_display | |
| - setTDsym | |
| - bigmaxID | |
| - contra_le_leq | |
| - leUx | |
| - leBLR | |
| - meet_r | |
| - lt_sig | |
| - leCx | |
| - bigmax_set1 | |
| - min_idPr | |
| - trans | |
| - filter_sort_le | |
| - comparable_lteif_maxr | |
| - leW_nmono | |
| - le_trans | |
| - lt_total | |
| - mono_unique | |
| - contra_leT | |
| - le0x | |
| - bigmaxIl | |
| - complEdiff | |
| - bigmax_lt | |
| - contra_le_lt | |
| - le_sorted_mask | |
| - comparable_min_idPr | |
| - joinIr | |
| - opredI | |
| - comparable_minKx | |
| - joinxC | |
| - comparable_max_minl | |
| - ltxi_pair | |
| - leB2 | |
| - idfun_is_top_morphism | |
| - inc_inj | |
| - nondecn_inP | |
| - comparable_ltNge | |
| - complErcompl | |
| - min_r | |
| - le_Taggedr | |
| - le_rank | |
| - subEsubset | |
| - le_total | |
| - refl | |
| - complEcodiff | |
| - leEsubset | |
| - lex0 | |
| - bigmin_imset | |
| - topEtlexi | |
| - lexI | |
| - sub_bigmin_cond | |
| - meetKU | |
| - bigminID | |
| - ltxU | |
| - comparable_minxK | |
| - le_sorted_pairwise | |
| - lteif_minl | |
| - diffEprod | |
| - ltW_nhomo | |
| - bigmin_mkcond | |
| - filter_lt_nth | |
| - eq_enum_rank_in | |
| - comparable_eq_minr | |
| - seqprod_display | |
| - diffx0 | |
| - val0 | |
| - bigmaxUl | |
| - leBC | |
| - lcomparableP | |
| - le0x | |
| - le_anti | |
| - leIidr | |
| - sig_inj | |
| - contra_not_le | |
| - le0x | |
| - omorph1 | |
| - topEprod | |
| - meetEdual | |
| - leEjoin | |
| - contraFle | |
| - joinUK | |
| - ltEdual | |
| - tnth_compl | |
| - meetCx | |
| - ltUx | |
| - lt_comparable | |
| - leEprodlexi | |
| - enum0 | |
| - contra_lt_ltn | |
| - bigminU | |
| - eq_bigmin | |
| - comparable_maxACA | |
| - contra_ltN | |
| - nth_enum_rank | |
| - le_mono | |
| - dec_inj_in | |
| - comparableT | |
| - le_bigmax_nat | |
| - total | |
| - orbE | |
| - setIDv | |
| - ltIx | |
| - comparable_contra_not_lt | |
| - lteifW | |
| - ge_total | |
| - ge_min | |
| - leIxl | |
| - enum_rank_in_inj | |
| - rankE | |
| - lt_def | |
| - minEnat | |
| - botEprod | |
| - contraPle | |
| - comparable_lt_max | |
| - joinEdual | |
| - trans | |
| - lt_geF | |
| - contraFlt | |
| - topEprodlexi | |
| - meetKU | |
| - nth_ord_enum | |
| - nat1E | |
| - sub_bigmax | |
| - meetIK | |
| - ge_antiT | |
| - comparableP | |
| - comp_is_join_morphism | |
| - meets_max_seq | |
| - geE | |
| - joinBK | |
| - joinEtotal | |
| - eq_leif | |
| - leEnat | |
| - lt_path_filter | |
| - ltxi_lehead | |
| - card | |
| - minA | |
| - nth_count_eq | |
| - inc_inj_in | |
| - eq_cardT | |
| - ge_anti | |
| - subEbool | |
| - le_lt_trans | |
| - joinC | |
| - contra_lt | |
| - leEmeet | |
| - le0x | |
| - lt_bigmin | |
| - meetUl | |
| - val_enum_ord | |
| - lteifS | |
| - disjoint_lexUl | |
| - lt0B | |
| - diffErcompl | |
| - ltEord | |
| - disj_le | |
| - comparablexx | |
| - le_bigmax_ord_cond | |
| - seqlexi_display | |
| - eq_minl | |
| - meetUKU | |
| - ltNleif | |
| - le1x | |
| - dvd_display | |
| - leUx | |
| - eqhead_lexiE | |
| - meetKI | |
| - meet_l | |
| - enum_val_bij_in | |
| - leUx | |
| - contra_le_ltn | |
| - comp_is_meet_morphism | |
| - meetx0 | |
| - contra_le | |
| - comparable_minA | |
| - botEtlexi | |
| - contraPlt | |
| - total | |
| - contra_lt_leq | |
| - opredU | |
| - joinKI | |
| - bigmin_le_id | |
| - joinEseq | |
| - meetC | |
| - min_maxl | |
| - disj_diffl | |
| - lt_Rank | |
| - comparable_maxEgt | |
| - meetC | |
| - lexi_lehead | |
| - le_trans | |
| - joins_seq | |
| - Rank2K | |
| - sub_seqprod_lexi | |
| - mem2_sort_le | |
| - lt_le_trans | |
| - lt_sorted_uniq_le | |
| - bigmin_eq_id | |
| - botEnat | |
| - le_path_sortedE | |
| - valU | |
| - sorted_subseq_sort_le | |
| - lt_leAnge | |
| - subset_bigmax_cond | |
| - max_maxxK | |
| - le_bigmin_ord | |
| - comparable_contraNle | |
| - lt0x | |
| - leif_eq | |
| - lexU2 | |
| - rankK | |
| - sigE12 | |
| - minKx | |
| - bigmax_mkcondr | |
| - sorted_filter_ge | |
| - meetKIC | |
| - meetEtprod | |
| - meetxx | |
| - subseq_sort_le | |
| - le0x | |
| - leIidl | |
| - totalU | |
| - ltxis0 | |
| - lt_def | |
| - comparable_contraFlt | |
| - tnth_diff | |
| - ltEtprod | |
| - contra_ltn_le | |
| - joinIB | |
| - meets_max | |
| - nhomo_ltn_lt | |
| - andEbool | |
| - leW_nmono_in | |
| - comparable_minr | |
| - lteifT | |
| - minCA | |
| - leEprod | |
| - bool_display | |
| - contraNlt | |
| - sorted_filter_lt | |
| - eq_maxr | |
| - LatticePred.opred_meets | |
| - le_joins | |
| - bigmin_le | |
| - lt_sorted_uniq | |
| - disj_leC | |
| - andbE | |
| - minxK | |
| - omorph_le | |
| - join_def_le | |
| - meetACA | |
| - botEdual | |
| - eq_ltRL | |
| - le_bigmin2 | |
| - max_l | |
| - ltxi_tupleP | |
| - gt_eqF | |
| - rcomplPjoin | |
| - eq_enum | |
| - anti | |
| - lt_val | |
| - meetC | |
| - topEsig | |
| - rcomplPjoin | |
| - joinx0 | |
| - cardE | |
| - topEtprod | |
| - joinEtprod | |
| - refl | |
| - maxACA | |
| - cover_leIxl | |
| - joinIl | |
| - nat0E | |
| - codiffEtprod | |
| - eq_maxl | |
| - max_maxKx | |
| - joins_le | |
| - lexi0s | |
| - lexC | |
| - joinIK | |
| - sorted_filter_gt | |
| - path: mathcomp/solvable/gfunctor.v | |
| theorems: | |
| - idGfun_closed | |
| - gFmod_cont | |
| - gFgroupset | |
| - gFnormal_trans | |
| - trivGfun_cont | |
| - gFmod_hereditary | |
| - gFunctorS | |
| - morphimF | |
| - injmF_sub | |
| - gFnorm_trans | |
| - gFsub_trans | |
| - injmF | |
| - pcontinuous_is_hereditary | |
| - gFisog | |
| - idGfun_cont | |
| - gFcont | |
| - gFnorm | |
| - gFunctorI | |
| - gFmod_closed | |
| - idGfun_monotonic | |
| - gFchar | |
| - gFnorms | |
| - gFcompS | |
| - gFchar_trans | |
| - gFhereditary | |
| - continuous_is_iso_continuous | |
| - gFiso_cont | |
| - gFcomp_cont | |
| - gFnormal | |
| - gFid | |
| - gFcomp_closed | |
| - gF1 | |
| - gFisom | |
| - pmorphimF | |
| - pcontinuous_is_continuous | |
| - path: mathcomp/ssreflect/ssrnat.v | |
| theorems: | |
| - expnS | |
| - addnK | |
| - lt0b | |
| - ltn_subCl | |
| - ltn0 | |
| - eq_binP | |
| - ltn_sqr | |
| - addnn | |
| - contra_leqF | |
| - mono_leqif | |
| - eqSS | |
| - ltn_predRL | |
| - minnSS | |
| - ltnSE | |
| - sqrnD_sub | |
| - leq_nmono | |
| - eq_ex_maxn | |
| - gtn_max | |
| - leq_eqVlt | |
| - ltn_Sdouble | |
| - addnBCA | |
| - ltn_pmul2r | |
| - half_leq | |
| - ltn_exp2l | |
| - maxnSS | |
| - minnMl | |
| - leqW | |
| - anti_leq | |
| - subnBAC | |
| - doubleS | |
| - odd_geq | |
| - add1n | |
| - subnDr | |
| - addn4 | |
| - gtn_half_double | |
| - iter_muln | |
| - leq_mul2l | |
| - doubleE | |
| - half_bit_double | |
| - leq_addr | |
| - addn_eq0 | |
| - leq_total | |
| - subnAC | |
| - ltn_predK | |
| - addn_eq1 | |
| - muln_eq0 | |
| - leqP | |
| - ltn_neqAle | |
| - iter_succn | |
| - mulnAC | |
| - addnE | |
| - expn_eq0 | |
| - subnCBA | |
| - iter_addn_0 | |
| - eqn_add2l | |
| - leq_sqr | |
| - minKn | |
| - ltnNge | |
| - eqnP | |
| - eq_iterop | |
| - doubleD | |
| - addSnnS | |
| - addn_negb | |
| - muln_gt0 | |
| - leq_subCl | |
| - doubleK | |
| - leq_exp2r | |
| - leq_add2l | |
| - nat_of_mul_pos | |
| - contraTltn | |
| - subDnCAC | |
| - ltn_psubLR | |
| - prednK | |
| - muln0 | |
| - eqnE | |
| - ltn_sub2l | |
| - minn_maxl | |
| - decn_inj_in | |
| - expnAC | |
| - addE | |
| - ltn_pfact | |
| - addnAC | |
| - uphalf_leq | |
| - subDnAC | |
| - expIn | |
| - leq_sub | |
| - mulSnr | |
| - oddB | |
| - addn_maxr | |
| - contra_ltn | |
| - maxn_minr | |
| - subSS | |
| - exp1n | |
| - leq_subRL | |
| - ubnPleq | |
| - minn_idPl | |
| - ltnW | |
| - mulnDl | |
| - leq_pmull | |
| - addnBAC | |
| - ltn_add2l | |
| - contra_leqN | |
| - ltnNleqif | |
| - leqif_eq | |
| - leq_exp2l | |
| - posnP | |
| - double_eq0 | |
| - leq_sub2rE | |
| - oddE | |
| - anti_geq | |
| - inj_homo_ltn_in | |
| - maxnAC | |
| - subn1 | |
| - inj_homo_ltn | |
| - ltP | |
| - leqNgt | |
| - nat_of_add_bin | |
| - expnMn | |
| - iter_muln_1 | |
| - addnI | |
| - addBnA | |
| - leq_fact | |
| - ex_maxnP | |
| - leqif_mul | |
| - ltn_subRL | |
| - ltn_min | |
| - odd_uphalfK | |
| - eq_leq | |
| - lt0n | |
| - maxnn | |
| - mulnDr | |
| - ltn_subrR | |
| - addn_minl | |
| - iteropS | |
| - nat_semi_morph | |
| - ltnP | |
| - eqn_pmul2r | |
| - contra_ltnN | |
| - ltn_subLR | |
| - minnK | |
| - leqSpred | |
| - mulnn | |
| - minn_idPr | |
| - addnCA | |
| - eq_ex_minn | |
| - factS | |
| - even_halfK | |
| - leqif_refl | |
| - expnM | |
| - doubleB | |
| - oddD | |
| - subn_minl | |
| - ltn_psubCl | |
| - max0n | |
| - addn_maxl | |
| - subn0 | |
| - geq_minr | |
| - iter_in | |
| - nat_of_mul_bin | |
| - subn_maxl | |
| - contra_leq_ltn | |
| - find_ex_minn | |
| - ltn_addl | |
| - leq_pfact | |
| - halfD | |
| - oddX | |
| - expE | |
| - ltngtP | |
| - leq_min | |
| - ltn_double | |
| - addn1 | |
| - add3n | |
| - leq_uphalf_double | |
| - muln1 | |
| - leq_sub2r | |
| - nat_AGM2 | |
| - minn_maxr | |
| - geq_leqif | |
| - eqb0 | |
| - expnE | |
| - plusE | |
| - double0 | |
| - leq_mul2r | |
| - exp0n | |
| - eq_leqif | |
| - iter_predn | |
| - expnSr | |
| - minnACA | |
| - subnBl_leq | |
| - add2n | |
| - expn0 | |
| - neq0_lt0n | |
| - addnBl_leq | |
| - addnCBA | |
| - eqn_add2r | |
| - eqn_exp2r | |
| - subn_eq0 | |
| - iterX | |
| - muln_eq1 | |
| - subnK | |
| - ltn_fact | |
| - oddS | |
| - iterM | |
| - leqifP | |
| - leqW_mono_in | |
| - ltn_mul2r | |
| - addnBA | |
| - minusE | |
| - minnA | |
| - minnCA | |
| - leq_sub2lE | |
| - factE | |
| - mulnb | |
| - add4n | |
| - contra_not_leq | |
| - iteriS | |
| - mulnACA | |
| - ltn_sub2rE | |
| - eqn_sub2rE | |
| - addnACl | |
| - nat_Cauchy | |
| - maxnMr | |
| - gtn_eqF | |
| - maxn0 | |
| - even_uphalfK | |
| - leq_half_double | |
| - leq_maxl | |
| - lt0n_neq0 | |
| - contraFleq | |
| - contra_ltn_not | |
| - oddN | |
| - leqif_trans | |
| - doubleMl | |
| - oddb | |
| - uphalfE | |
| - fact_geq | |
| - homo_ltn | |
| - eqn_leq | |
| - uphalf_gt0 | |
| - leq_addl | |
| - iterS | |
| - addnBr_leq | |
| - addnS | |
| - ltn_Pmulr | |
| - ltn_expl | |
| - subnDAC | |
| - iter_addn | |
| - nat_of_binK | |
| - mulnC | |
| - incn_inj_in | |
| - addn2 | |
| - ltn_trans | |
| - mulnA | |
| - ltn_addr | |
| - ltn_pexp2l | |
| - eqn0Ngt | |
| - iterSr | |
| - doubleE | |
| - ltn_exp2r | |
| - ltn_pmul2l | |
| - decn_inj | |
| - leq_double | |
| - maxnCA | |
| - incn_inj | |
| - mulnS | |
| - homo_leq | |
| - sqrn_gt0 | |
| - fact_gt0 | |
| - mulnBr | |
| - maxnC | |
| - contra_leq_not | |
| - leq_subrR | |
| - gtn_neqAge | |
| - addnBn | |
| - odd_ltn | |
| - nat_of_exp_bin | |
| - subnDl | |
| - eqb1 | |
| - contraPltn | |
| - iter_fix | |
| - eqn_pmul2l | |
| - homo_ltn_in | |
| - contraFltn | |
| - inj_nhomo_ltn_in | |
| - subnKC | |
| - leq_pexp2l | |
| - subn_if_gt | |
| - lt_irrelevance | |
| - maxnK | |
| - leqnSn | |
| - ltn_add2r | |
| - odd_double | |
| - eqn_sub2lE | |
| - maxKn | |
| - sub1b | |
| - subnSK | |
| - ltnW_homo | |
| - eq_iteri | |
| - ltn_mul | |
| - maxnE | |
| - contraNleq | |
| - leq_b1 | |
| - ltn_predL | |
| - leq_maxr | |
| - geq_half_double | |
| - maxnACA | |
| - mulnBl | |
| - bin_of_natK | |
| - eqn_mul2r | |
| - nat_of_succ_pos | |
| - ltnn | |
| - subSKn | |
| - addn0 | |
| - ubnPeq | |
| - muln2 | |
| - expnD | |
| - expn1 | |
| - eqn_sqr | |
| - odd_double_half | |
| - maxn_idPr | |
| - ltn_eqF | |
| - double_gt0 | |
| - ex_minnP | |
| - maxnA | |
| - subSnn | |
| - leq_mul | |
| - ltn_subrL | |
| - addnABC | |
| - maxnMl | |
| - subDnCA | |
| - subKn | |
| - fact0 | |
| - leq_psubCr | |
| - maxn_minl | |
| - mulnCA | |
| - ltn_uphalf_double | |
| - subnDA | |
| - contra_ltnF | |
| - nat_semi_ring | |
| - leq_nmono_in | |
| - subnBr_leq | |
| - ltn_geF | |
| - contraPleq | |
| - minnMr | |
| - subBnAC | |
| - succnK | |
| - ltnSn | |
| - addKn | |
| - leq_max | |
| - leq_ltn_trans | |
| - mulnbl | |
| - addn3 | |
| - ltn_sub2r | |
| - addnACA | |
| - leq_subr | |
| - mulSn | |
| - geq_minl | |
| - leqW_nmono_in | |
| - uphalf_double | |
| - leq_pmul2l | |
| - addnA | |
| - mulnE | |
| - add0n | |
| - ltn_mul2l | |
| - ltnW_nhomo_in | |
| - geq_min | |
| - addnC | |
| - iter_succn_0 | |
| - gtn_uphalf_double | |
| - subn_sqr | |
| - min0n | |
| - contra_leqT | |
| - minn0 | |
| - contraTleq | |
| - addBnCAC | |
| - ltn_leqif | |
| - leq_pred | |
| - addn_min_max | |
| - leq_gtF | |
| - addn_minr | |
| - subn_gt0 | |
| - sub0n | |
| - oddM | |
| - leqnn | |
| - contra_ltn_leq | |
| - le_irrelevance | |
| - eqTleqif | |
| - minnC | |
| - leq_mono_in | |
| - sqrn_inj | |
| - ltnW_homo_in | |
| - succn_inj | |
| - mulnbr | |
| - subnBA | |
| - add_mulE | |
| - minnn | |
| - leq0n | |
| - mul0n | |
| - leq_subLR | |
| - leP | |
| - ltn0Sn | |
| - neq_ltn | |
| - mul1n | |
| - ltn_subCr | |
| - inj_nhomo_ltn | |
| - subnS | |
| - ubnP | |
| - subnn | |
| - addn_gt0 | |
| - contra_leq | |
| - expnI | |
| - addnCAC | |
| - nat_of_add_pos | |
| - contraNltn | |
| - nat_power_theory | |
| - subnE | |
| - eqn_mul2l | |
| - ltn_Pmull | |
| - minnAC | |
| - sqrnB | |
| - expn_gt0 | |
| - odd_gt0 | |
| - addIn | |
| - leq_trans | |
| - leq_Sdouble | |
| - geq_max | |
| - eq_iter | |
| - leqVgt | |
| - path: mathcomp/solvable/nilpotent.v | |
| theorems: | |
| - nilpotentS | |
| - nilpotent1 | |
| - lcn_normalS | |
| - ucn_char | |
| - ucn_sub | |
| - lcn_norm | |
| - quotient_sol | |
| - injm_sol | |
| - der_bigdprod | |
| - lcn_cont | |
| - lcn1 | |
| - ucn_nilpotent | |
| - abelian_nil | |
| - der_bigcprod | |
| - quotient_center_nil | |
| - nil_comm_properl | |
| - lcn_sub | |
| - ucn0 | |
| - morphim_ucn | |
| - isog_nil_class | |
| - nil_class0 | |
| - morphim_nil | |
| - ucn_norm | |
| - lcnSnS | |
| - nilpotent_proper_norm | |
| - sol_der1_proper | |
| - ucnSn | |
| - cyclic_nilpotent_quo_der1_cyclic | |
| - isog_nil | |
| - der_cprod | |
| - der_dprod | |
| - lcnSn | |
| - lcn_char | |
| - series_sol | |
| - nilpotent_sub_norm | |
| - derivedP | |
| - abelian_sol | |
| - centrals_nil | |
| - ucn_lcnP | |
| - ucn_bigcprod | |
| - morphim_lcn | |
| - ucn_normalS | |
| - ucn_normal | |
| - ucn_group_set | |
| - ucn_central | |
| - lcnE | |
| - metacyclic_sol | |
| - bigdprod_nil | |
| - lcn_bigcprod | |
| - ucn_dprod | |
| - lcn_dprod | |
| - ucn_bigdprod | |
| - ucnP | |
| - morphim_sol | |
| - ucn_subS | |
| - nil_class_quotient_center | |
| - ucn_cprod | |
| - nilpotent_sol | |
| - lcn0 | |
| - ucn_nil_classP | |
| - ucn_pmap | |
| - mulg_nil | |
| - nil_class_injm | |
| - solvable1 | |
| - lcn2 | |
| - lcn_sub_leq | |
| - lcnS | |
| - ucn_comm | |
| - nilpotent_class | |
| - nil_class_morphim | |
| - nil_comm_properr | |
| - ucn_sub_geq | |
| - center_nil_eq1 | |
| - cprod_nil | |
| - nil_class1 | |
| - lcn_normal | |
| - lcn_nil_classP | |
| - injm_ucn | |
| - dprod_nil | |
| - lcnP | |
| - lcn_bigdprod | |
| - quotient_ucn_add | |
| - lcn_central | |
| - lcn_cprod | |
| - ucnE | |
| - nilpotent_subnormal | |
| - nil_class_ucn | |
| - ucnSnR | |
| - lcn_group_set | |
| - isog_sol | |
| - path: mathcomp/algebra/fraction.v | |
| theorems: | |
| - pi_opp | |
| - addN_l | |
| - mulC | |
| - pi_mul | |
| - tofracMn | |
| - tofrac_eq0 | |
| - pi_inv | |
| - equivf_def | |
| - equivf_r | |
| - Ratio_numden | |
| - Ratio0 | |
| - tofrac_is_multiplicative | |
| - tofracMNn | |
| - tofrac1 | |
| - addC | |
| - denom_ratioP | |
| - inv0 | |
| - equivf_l | |
| - tofracB | |
| - mulA | |
| - mul1_l | |
| - Ratio_numden | |
| - add0_l | |
| - tofracD | |
| - tofracM | |
| - RatioP | |
| - mul_addl | |
| - equivf_refl | |
| - pi_add | |
| - numer0 | |
| - tofrac_eq | |
| - equivfE | |
| - denom_Ratio | |
| - numer_Ratio | |
| - addA | |
| - tofracXn | |
| - nonzero1 | |
| - tofrac_is_additive | |
| - tofracN | |
| - mulV_l | |
| - path: mathcomp/fingroup/action.v | |
| theorems: | |
| - astab1Js | |
| - actpermM | |
| - orbit_transl | |
| - atrans_dvd_index_in | |
| - orbit_inv | |
| - is_total_action | |
| - astabR | |
| - gacent1 | |
| - qactE | |
| - porbit_actperm | |
| - afix_cycle | |
| - injm_faithful | |
| - sub_astabQ | |
| - setactVin | |
| - contra_orbit | |
| - astabsR | |
| - orbit_sym | |
| - afix_gen_in | |
| - conjG_is_action | |
| - astabs_Aut_isom | |
| - gact_stable | |
| - acts_joing | |
| - afix_actby | |
| - abelian_classP | |
| - actperm_id | |
| - afixS | |
| - quotient_astabQ | |
| - gactX | |
| - comp_is_groupAction | |
| - afixRs_rcosets | |
| - sub_afixRs_norms | |
| - orbit_in_sym | |
| - astab_setact_in | |
| - subset_faithful | |
| - qact_domE | |
| - acts_quotient | |
| - qact_proof | |
| - restr_permE | |
| - astab_norm | |
| - astabs_act | |
| - aperm_is_action | |
| - conj_astabQ | |
| - astabs_mod | |
| - orbit_conjsg_in | |
| - gacent_ract | |
| - setactE | |
| - trans_subnorm_fixP | |
| - orbitE | |
| - orbit_partition | |
| - card_orbit_stab | |
| - comp_is_action | |
| - acts_sum_card_orbit | |
| - astab_comp | |
| - afixJ | |
| - acts_in_orbit | |
| - sub_afixRs_norm | |
| - acts_subnorm_fix | |
| - gacent_actby | |
| - astabsP | |
| - acts_ract | |
| - astabQ | |
| - atrans_supgroup | |
| - card_orbit1 | |
| - astabsJ | |
| - dom_qactJ | |
| - gacentY | |
| - orbit_in_eqP | |
| - actCJV | |
| - acts_gen | |
| - afix_cycle_in | |
| - atrans_acts | |
| - subgroup_transitiveP | |
| - actXin | |
| - astabU | |
| - astab1_set | |
| - amoveK | |
| - act_reprK | |
| - atrans_dvd_in | |
| - astabs_comp | |
| - afix_comp | |
| - sum_card_class | |
| - acts_subnorm_subgacent | |
| - astab_gen | |
| - astabs_range | |
| - acts_sub_orbit | |
| - afix_ract | |
| - orbitJ | |
| - gacentM | |
| - qactJ | |
| - actX | |
| - astabsU | |
| - afixM | |
| - sub_astab1_in | |
| - im_actm | |
| - gacentIdom | |
| - actsI | |
| - modactEcond | |
| - astabP | |
| - im_restr_perm | |
| - mem_setact | |
| - astab_normal | |
| - autactK | |
| - astabs_setact | |
| - card_setact | |
| - astab_subact | |
| - orbit_conjsg | |
| - fixSH | |
| - Cayley_isom | |
| - act_inj | |
| - orbit_stabilizer | |
| - triv_restr_perm | |
| - Aut_in_isog | |
| - restr_perm_isom | |
| - perm_act1P | |
| - astabM | |
| - sub_astab1 | |
| - Cayley_isog | |
| - faithful_isom | |
| - orbit_in_trans | |
| - gacentC | |
| - ker_actperm | |
| - mactE | |
| - astab1Rs | |
| - rcoset_is_action | |
| - astab_sub | |
| - orbit_lcoset | |
| - morph_gacent | |
| - atransPin | |
| - orbitR | |
| - orbitJs | |
| - conjg_is_groupAction | |
| - atrans_acts_in | |
| - orbit_trans | |
| - setactJ | |
| - gacts_range | |
| - morph_astab | |
| - actMin | |
| - orbit_actr | |
| - afixU | |
| - subgacentE | |
| - ract_is_action | |
| - morph_gastab | |
| - orbit_refl | |
| - astabs_subact | |
| - orbit_eq_mem | |
| - afix_subact | |
| - amove_orbit | |
| - astab_act | |
| - actKin | |
| - orbit_lcoset_in | |
| - morphim_actm | |
| - gacentD1 | |
| - morph_gact_irr | |
| - afixMin | |
| - astab1_act_in | |
| - actsD | |
| - gacent_comp | |
| - astabs_quotient | |
| - astab1_act | |
| - Aut_restr_perm | |
| - index_cent1 | |
| - astabsQ | |
| - modact_faithful | |
| - astabs1 | |
| - acts_act | |
| - orbit_rcoset | |
| - qact_is_groupAction | |
| - gacentQ | |
| - card_orbit | |
| - atransP | |
| - group_set_astab | |
| - atransP2in | |
| - injm_Aut_full | |
| - orbit_in_transl | |
| - gacentJ | |
| - card_conjugates | |
| - afixJG | |
| - gacent_cycle | |
| - actsU | |
| - faithfulR | |
| - perm_mact | |
| - astabs_actby | |
| - gactR | |
| - subgroup_transitivePin | |
| - mact_is_action | |
| - atrans_dvd | |
| - astabCin | |
| - modactE | |
| - gacent_gen | |
| - atrans_orbit | |
| - astabsIdom | |
| - afix_mod | |
| - astab1P | |
| - astabC | |
| - val_subact | |
| - acts_char | |
| - orbit_rcoset_in | |
| - sub_act_proof | |
| - astabRs_rcosets | |
| - isom_restr_perm | |
| - astabs_dom | |
| - modact_is_action | |
| - acts_irr_mod | |
| - afix1P | |
| - qactEcond | |
| - astab_mod | |
| - setact_orbit | |
| - restr_perm_commute | |
| - setact_is_action | |
| - group_set_astabs | |
| - gacentU | |
| - gacts_char | |
| - astabIdom | |
| - classes_partition | |
| - restr_perm_on | |
| - card_classes_abelian | |
| - reindex_astabs | |
| - class_formula | |
| - astabsI | |
| - astab_trans_gcore | |
| - sub_astabQR | |
| - Frobenius_Cauchy | |
| - orbitRs | |
| - gactV | |
| - orbitP | |
| - group_set_gacent | |
| - porbitE | |
| - astabQR | |
| - orbit_eqP | |
| - astab_actby | |
| - gacent_mod | |
| - astab_ract | |
| - amove_act | |
| - actmE | |
| - actM | |
| - atransP2 | |
| - acts_qact_dom | |
| - comp_actE | |
| - restr_perm_Aut | |
| - morph_afix | |
| - astab_setact | |
| - ractE | |
| - orbit_morphim_actperm | |
| - acts_orbit | |
| - gact1 | |
| - faithfulP | |
| - afixD1 | |
| - orbit_act_in | |
| - card_orbit_in | |
| - astabs_set1 | |
| - gacentS | |
| - actKV | |
| - actCJ | |
| - orbit_actr_in | |
| - ker_restr_perm | |
| - actmEfun | |
| - astab_range | |
| - astabsD1 | |
| - injm_actm | |
| - astab1J | |
| - autact_is_groupAction | |
| - orbit1P | |
| - acts_irr_mod_astab | |
| - orbit_act | |
| - actby_is_action | |
| - modact_is_groupAction | |
| - astabsC | |
| - ractpermE | |
| - acts_fix_norm | |
| - orbit_transversalP | |
| - astabJ | |
| - modgactE | |
| - astab1 | |
| - injm_Aut_sub | |
| - astab_dom | |
| - actsRs_rcosets | |
| - actsQ | |
| - Aut_sub_fullP | |
| - actpermE | |
| - afix_gen | |
| - acts_dom | |
| - astabS | |
| - gact_out | |
| - afix1 | |
| - SymE | |
| - actmM | |
| - transRs_rcosets | |
| - morph_gastabs | |
| - gacentIim | |
| - acts_subnorm_gacent | |
| - subact_is_action | |
| - im_actperm_Aut | |
| - qact_subdomE | |
| - path: mathcomp/algebra/qpoly.v | |
| theorems: | |
| - in_qpoly_small | |
| - size_lagrange_ | |
| - qpolyCN | |
| - qpolyC0 | |
| - qpoly_mulz1 | |
| - npolypK | |
| - qpolyC_proof | |
| - lagrange_gen | |
| - qpolyCM | |
| - qpolyC_is_multiplicative | |
| - npoly_is_a_poly_of_size | |
| - lagrange_free | |
| - in_qpolyZ | |
| - rVnpolyK | |
| - qpolyCD | |
| - lagrange_sample | |
| - qpoly_intro_unit | |
| - lagrangeE | |
| - mk_monic_neq0 | |
| - mk_monic_X | |
| - card_monic_qpoly | |
| - monic_mk_monic | |
| - mem_npoly_enum | |
| - qpoly_mulA | |
| - poly_of_qpolyZ | |
| - size_mk_monic_gt0 | |
| - nth_npolyX | |
| - qpolyXE | |
| - in_qpoly0 | |
| - npoly_vect_axiom | |
| - poly_of_qpolyD | |
| - npolyP | |
| - in_qpolyM | |
| - coefn_sum | |
| - npoly_rV_K | |
| - npolyp_key | |
| - in_qpoly_multiplicative | |
| - coef_npolyp | |
| - qpoly_scaleDr | |
| - npolyX_gen | |
| - mk_monic_Xn | |
| - qpoly_nontrivial | |
| - qpoly_scaleAl | |
| - card_npoly | |
| - qpoly_scaleAr | |
| - qpolyC_natr | |
| - npoly_enum_uniq | |
| - npoly_submod_closed | |
| - qpoly_inv_out | |
| - size_mk_monic | |
| - card_qpoly | |
| - lagrange_def_sample | |
| - size_npoly0 | |
| - qpolyC_is_additive | |
| - poly_of_qpoly_sum | |
| - lagrange_full | |
| - nth_lagrange | |
| - irreducible_poly_coprime | |
| - size_npoly | |
| - poly_of_qpolyX | |
| - in_qpoly1 | |
| - polyn_is_linear | |
| - npolyX_coords | |
| - npolyX_full | |
| - poly_of_qpolyM | |
| - char_qpoly | |
| - qpoly_scaleA | |
| - npolyX_free | |
| - qpoly_mul_addl | |
| - qpoly_mul_addr | |
| - size_lagrange_def | |
| - size_lagrange | |
| - qpoly_mul1z | |
| - in_qpoly_is_linear | |
| - in_qpolyD | |
| - dim_polyn | |
| - qpoly_mulC | |
| - qpolyCE | |
| - lagrange_coords | |
| - lagrange_key | |
| - qpoly_mulzV | |
| - path: mathcomp/character/inertia.v | |
| theorems: | |
| - norm_inertia | |
| - cfConjg1 | |
| - cfConjg_eqE | |
| - inertia_dprod | |
| - inertia_morph_im | |
| - cfRes_Ind_invariant | |
| - inertia_opp | |
| - cfclass_transr | |
| - Inertia1 | |
| - inertia_mod_quo | |
| - inertia_valJ | |
| - cfConjgDprodr | |
| - cfConjgMorph | |
| - conj_cfConjg | |
| - cfConjgInd_norm | |
| - cfConjgInd | |
| - sub_inertia | |
| - cfConjgRes | |
| - cfRes_prime_irr_cases | |
| - constt_Ind_ext | |
| - Inertia_sub | |
| - conjg_IirrKV | |
| - cfConjg_is_linear | |
| - cfclassInorm | |
| - card_cfclass_Iirr | |
| - inertia_dprodr | |
| - cfclass_inertia | |
| - cfResInd | |
| - cfConjg_char | |
| - inertia_bigdprod_irr | |
| - cfConjgIsom | |
| - dvdn_constt_Res1_irr1 | |
| - cfConjgMnorm | |
| - cfConjgE | |
| - conjg_Iirr_inj | |
| - inertia_bigdprodi | |
| - inertia_injective | |
| - cfAutConjg | |
| - cfConjgMod | |
| - inertia_add | |
| - normal_inertia | |
| - inertia_id | |
| - irr_induced_Frobenius_ker | |
| - sub_Inertia | |
| - sub_inertia_Res | |
| - cfConjgRes_norm | |
| - cfConjg_iso | |
| - cfclass_sym | |
| - extend_to_cfdet | |
| - cfclass1 | |
| - extend_linear_char_from_Sylow | |
| - extend_solvable_coprime_irr | |
| - cfclass_Ind | |
| - cfConjgK | |
| - inertia_sum | |
| - sNG | |
| - cfclass_IirrE | |
| - inertia_irr0 | |
| - reindex_cfclass | |
| - cfConjg_is_multiplicative | |
| - cfConjgQuo_norm | |
| - cfdot_irr_conjg | |
| - cfConjg_eq1 | |
| - inertia_prod | |
| - cfDetConjg | |
| - Clifford_Res_sum_cfclass | |
| - inertia_irr_prime | |
| - extendible_irr_invariant | |
| - inertia0 | |
| - cent_sub_inertia | |
| - conjg_Iirr_eq0 | |
| - eq_cfclass_IirrE | |
| - cfConjgEJ | |
| - invariant_chief_irr_cases | |
| - cfConjgKV | |
| - sub_inertia_Ind | |
| - cfConjgQuo | |
| - inertia_Frobenius_ker | |
| - cfConjg_subproof | |
| - cfConjg_lin_char | |
| - cfConjgBigdprodi | |
| - cfConjg_id | |
| - inertia_scale_nz | |
| - cfConjg_cfuniJ | |
| - conjg_IirrK | |
| - cfclass_uniq | |
| - cfConjgDprodl | |
| - cfConjgEin | |
| - normal_Inertia | |
| - cfclassP | |
| - cent_sub_Inertia | |
| - conjg_IirrE | |
| - cfker_conjg | |
| - inertia_mul | |
| - inertia_dprodl | |
| - cfclass_invariant | |
| - center_sub_Inertia | |
| - inertia_sdprod | |
| - norm_Inertia | |
| - cfConjg_cfun1 | |
| - inertia_dprod_irr | |
| - cfclass_refl | |
| - inertia_scale | |
| - inertiaJ | |
| - cfConjgEout | |
| - conjg_inertia | |
| - constt_Ind_mul_ext | |
| - cfConjgM | |
| - inertia_morph_pre | |
| - group_set_inertia | |
| - inertia1 | |
| - extend_coprime_linear_char | |
| - cfConjgJ1 | |
| - size_cfclass | |
| - constt0_Res_cfker | |
| - cfConjg_cfuni | |
| - cfConjgSdprod | |
| - cfConjgDprod | |
| - cfdot_Res_conjg | |
| - Frobenius_Ind_irrP | |
| - cfConjgBigdprod | |
| - solvable_irr_extendible_from_det | |
| - conjg_Iirr0 | |
| - path: mathcomp/field/galois.v | |
| theorems: | |
| - comp_kHom_img | |
| - fixedPoly_gal | |
| - inAEndK | |
| - gal_oneP | |
| - aut_mem_eqP | |
| - gal_generated | |
| - galNormV | |
| - galM | |
| - kHom_to_gal | |
| - galTrace_fixedField | |
| - gal_kAut | |
| - kHom_extends | |
| - normalFieldS | |
| - galTrace_is_additive | |
| - galNormX | |
| - gal_matrix | |
| - kHom_lrmorphism | |
| - normalField_kAut | |
| - galNorm_gal | |
| - galois_connection_subset | |
| - gal_kHom | |
| - kAut1E | |
| - galK | |
| - galNorm_fixedField | |
| - mem_fixedFieldP | |
| - fixedFieldS | |
| - gal_eqP | |
| - normalField_galois | |
| - limg_gal | |
| - kHomExtend_scalable_subproof | |
| - normalField_cast_eq | |
| - kHomS | |
| - Hilbert's_theorem_90 | |
| - kHom_eq | |
| - gal_reprK | |
| - memv_gal | |
| - kHom_poly_id | |
| - gal_cap | |
| - galoisS | |
| - normalField_isog | |
| - normalField_normal | |
| - kAEnd_norm | |
| - splittingFieldForS | |
| - galois_connection | |
| - normalField_isom | |
| - kHom_root | |
| - kAut_eq | |
| - normalField_root_minPoly | |
| - gal_independent | |
| - galois_fixedField | |
| - mem_galNorm | |
| - kHomExtend_poly | |
| - kHomExtend_id | |
| - gal_AEnd | |
| - fixedField_bound | |
| - k1HomE | |
| - kHom_to_AEnd | |
| - comp_AEndK | |
| - kHom_horner | |
| - gal_mulP | |
| - galS | |
| - splittingPoly | |
| - kAutS | |
| - gal_sgvalK | |
| - kHomExtendP | |
| - comp_AEnd1l | |
| - kAEnd_group_set | |
| - mem_kAut_coset | |
| - inv_is_ahom | |
| - galois_dim | |
| - galV | |
| - gal_is_morphism | |
| - normalField_img | |
| - gal_repr_inj | |
| - normalField_castM | |
| - kHomSr | |
| - fixedFieldP | |
| - gal_id | |
| - root_minPoly_gal | |
| - normalField_ker | |
| - galNorm_prod | |
| - kHom_kAut_sub | |
| - gal_invP | |
| - kHomSl | |
| - gal_independent_contra | |
| - kHom_is_additive | |
| - enum_AEnd | |
| - galois_factors | |
| - fixed_gal | |
| - fixedField_is_aspace | |
| - kHomExtend_val | |
| - galNorm_eq0 | |
| - mem_galTrace | |
| - splitting_galoisField | |
| - kAutf_lker0 | |
| - k1AHom | |
| - eq_galP | |
| - galois_connection_subv | |
| - kHom_is_multiplicative | |
| - galTrace_gal | |
| - splittingFieldP | |
| - galNorm1 | |
| - kHom_dim | |
| - fieldOver_splitting | |
| - normalField_factors | |
| - kHom_root_id | |
| - kHomExtendE | |
| - kAutE | |
| - splitting_field_normal | |
| - gal_conjg | |
| - dim_fixedField | |
| - inv_kHomf | |
| - galNorm0 | |
| - normal_fixedField_galois | |
| - path: mathcomp/field/qfpoly.v | |
| theorems: | |
| - card_primitive_qpoly | |
| - qlogp0 | |
| - plogp0 | |
| - map_fpoly_div_inj | |
| - qX_expK | |
| - qpoly_mulVp | |
| - coprimep_unit | |
| - sh_gt1 | |
| - card_qfpoly | |
| - qpoly_inv0 | |
| - qX_exp_neq0 | |
| - qX_neq0 | |
| - map_poly_div_inj | |
| - qX_in_unit | |
| - powX_eq_mod | |
| - qlogp_eq0 | |
| - qlogp_qX | |
| - primitive_poly_in_qpoly_eq0 | |
| - card_qfpoly_gt1 | |
| - gX_order | |
| - in_qpoly_comp_horner | |
| - qX_order_dvd | |
| - plogp1 | |
| - pred_card_qT_gt0 | |
| - qlogpD | |
| - plogp_div_eq0 | |
| - mk_monicE | |
| - primitive_polyP | |
| - qlogp1 | |
| - qX_exp_inj | |
| - gX_all | |
| - qX_order_card | |
| - plogp_lt | |
| - primitive_mi | |
| - plogp_X | |
| - dvdp_order | |
| - path: mathcomp/solvable/finmodule.v | |
| theorems: | |
| - fmodV | |
| - actsgHG | |
| - fmodX | |
| - act0r | |
| - actr_is_groupAction | |
| - sgG | |
| - transfer_cycle_expansion | |
| - fmod_addrA | |
| - injHGg | |
| - fmod_addNr | |
| - congr_fmod | |
| - actZr | |
| - sum_index_rcosets_cycle | |
| - injHg | |
| - fmodK | |
| - fmval0 | |
| - rcosets_cycle_transversal | |
| - actNr | |
| - injm_fmod | |
| - fmodP | |
| - coprime_abel_cent_TI | |
| - fmodKcond | |
| - actrKV | |
| - actrM | |
| - rcosets_cycle_partition | |
| - Gaschutz_transitive | |
| - transferM | |
| - fmvalN | |
| - actr1 | |
| - fmod_add0r | |
| - fmvalJ | |
| - fmodJ | |
| - actr_is_action | |
| - transfer_indep | |
| - defHGg | |
| - fmod1 | |
| - transfer_morph_subproof | |
| - actrK | |
| - fmvalA | |
| - fmvalJcond | |
| - fmod_inj | |
| - actAr | |
| - fmvalZ | |
| - sXG | |
| - Gaschutz_split | |
| - path: mathcomp/algebra/intdiv.v | |
| theorems: | |
| - dvdzz | |
| - gcd0z | |
| - Gauss_dvdzr | |
| - zprimitive_irr | |
| - modzMl | |
| - dvdpP_rat_int | |
| - gcdz1 | |
| - mulz_modl | |
| - ltz_divRL | |
| - zchinese_mod | |
| - gcdz_idPl | |
| - divz_small | |
| - divzMpl | |
| - modz_ge0 | |
| - divz_abs | |
| - eisenstein | |
| - zchinese_remainder | |
| - dvdz_Pexp2l | |
| - sgz_contents | |
| - size_zprimitive | |
| - zpolyEprim | |
| - gcdzCA | |
| - map_poly_divzK | |
| - modNz_nat | |
| - modz1 | |
| - coprimeNz | |
| - dvdz_lcm | |
| - dvdz_charf | |
| - dvdp_rat_int | |
| - egcdzP | |
| - zprimitiveZ | |
| - modz_absm | |
| - dvdz_exp2r | |
| - expz_min | |
| - Gauss_dvdz | |
| - divz0 | |
| - dvdz_lcmr | |
| - modzDm | |
| - dvdz_mull | |
| - zcontentsZ | |
| - modzDr | |
| - divzMr | |
| - modz_small | |
| - Gauss_dvdzl | |
| - gcdzN | |
| - dvd1z | |
| - divzMl | |
| - lcmz_neq0 | |
| - ltz_ceil | |
| - modzNm | |
| - gcdzDr | |
| - zprimitive_id | |
| - zcontents_primitive | |
| - dvdz_eq | |
| - coprimez_pexpl | |
| - divz_ge0 | |
| - coprimezE | |
| - gcdz_eq0 | |
| - Qint_dvdz | |
| - sgz_lead_primitive | |
| - dvdz_mul2r | |
| - divNz_nat | |
| - gcdzDl | |
| - Gauss_gcdzl | |
| - dvdz0 | |
| - zprimitive0 | |
| - Qnat_dvd | |
| - modzDmr | |
| - zcontentsM | |
| - dvdz_mul2l | |
| - lez_pdiv2r | |
| - size_rat_int_poly | |
| - divzMA | |
| - modz_abs | |
| - gcdz_idPr | |
| - gcdz_modl | |
| - mulzK | |
| - modzMmr | |
| - lez_divRL | |
| - dvdzE | |
| - dvdz_mulr | |
| - divz_eq | |
| - dvdz_gcd | |
| - eqz_modDr | |
| - coprimezP | |
| - dec_Qint_span | |
| - mulKz | |
| - lcm0z | |
| - lez_divLR | |
| - zcontents_monic | |
| - ltz_pmod | |
| - modzDml | |
| - divzMDl | |
| - divzz | |
| - mod0z | |
| - expzB | |
| - divzK | |
| - gcdzMDl | |
| - zchinese_modl | |
| - coprimezMr | |
| - modz_nat | |
| - dvdz_trans | |
| - dvdz_pexp2r | |
| - mulz_modr | |
| - lcmzC | |
| - coprimez_dvdl | |
| - div0z | |
| - dvdzP | |
| - lcmz_ge0 | |
| - divzDr | |
| - gcdzC | |
| - eqz_mod_dvd | |
| - divzMA_ge0 | |
| - modzMm | |
| - eqz_mul | |
| - dvdz1 | |
| - coprimez_sym | |
| - zprimitive_monic | |
| - dvdz_exp | |
| - gcdNz | |
| - mulz_gcdr | |
| - ltz_divLR | |
| - gcdzMr | |
| - gcdzA | |
| - int_Smith_normal_form | |
| - modzDl | |
| - dvd0z | |
| - dvdz_mod0P | |
| - rat_poly_scale | |
| - dvdz_gcdl | |
| - divz_mulAC | |
| - mulz_divA | |
| - polyOver_dvdzP | |
| - modzMml | |
| - gcdzACA | |
| - gcdzAC | |
| - Bezoutz | |
| - dvdz_gcdr | |
| - modzMDl | |
| - lez_div | |
| - mulz_divCA | |
| - dvdz_mul | |
| - zprimitiveM | |
| - Gauss_gcdzr | |
| - divzA | |
| - divzAC | |
| - dvdpP_int | |
| - modzXm | |
| - zcontents0 | |
| - coprimezXr | |
| - modz_mod | |
| - zchinese_modr | |
| - lez_floor | |
| - divzMpr | |
| - modzN | |
| - mulz_gcdl | |
| - zprimitive_min | |
| - gcdz_modr | |
| - divzDl | |
| - divz1 | |
| - zcontents_eq0 | |
| - divz_nat | |
| - coprimezN | |
| - path: mathcomp/algebra/ssralg.v | |
| theorems: | |
| - rmorph_sign | |
| - oppr_eq0 | |
| - pair_mulA | |
| - valZ | |
| - pair_mulC | |
| - rmorph_alg | |
| - lastr_eq0 | |
| - charf'_nat | |
| - mull_fun_is_semi_additive | |
| - raddfZnat | |
| - unitrV | |
| - mulrDr | |
| - exprB | |
| - natrXE | |
| - charf0P | |
| - Frobenius_autMn | |
| - natrDE | |
| - cat_dnfP | |
| - scale_is_scalable | |
| - divalg_closedZ | |
| - prodfV | |
| - ffun_mul_addl | |
| - linearN | |
| - lregM | |
| - sqrrD | |
| - natr_mod_char | |
| - divalg_closedBdiv | |
| - scalarP | |
| - natn | |
| - semiring_closedM | |
| - exprDn_char | |
| - rpred_nat | |
| - subr_sqrDB | |
| - iter_addr | |
| - expr_sum | |
| - fmorph_eq | |
| - scale0r | |
| - unitrX_pos | |
| - dnf_to_rform | |
| - unitrN1 | |
| - unitrX | |
| - mulr1 | |
| - dnf_to_form_qf | |
| - mulr_signM | |
| - rpred_div | |
| - exprBn_comm | |
| - lregMl | |
| - commr_sym | |
| - sum_ffun | |
| - mulr2n | |
| - mulKr | |
| - foldExistsP | |
| - iter_addr_0 | |
| - mulr_natl | |
| - scalerA' | |
| - rregP | |
| - rpredMNn | |
| - mulrDl | |
| - semiringClosedP | |
| - scaler0 | |
| - solP | |
| - natrD | |
| - unitrPr | |
| - eq_sol | |
| - char_lalg | |
| - fmorphV | |
| - mulrI_eq0 | |
| - pair_mulVl | |
| - ffun_addC | |
| - divrr | |
| - mulr1_eq | |
| - scalerBl | |
| - mul0r | |
| - addrNK | |
| - rpredMsign | |
| - submod_closedB | |
| - val1 | |
| - idfun_is_scalable | |
| - rmorphMn | |
| - unitr0 | |
| - eval_Pick | |
| - rmorphD | |
| - scalerAl | |
| - proj_satP | |
| - exprDn | |
| - commrN | |
| - sub0r | |
| - exprNn_char | |
| - size_sol | |
| - scalarAr | |
| - Frobenius_autE | |
| - rpred_sign | |
| - algMixin | |
| - ffun_scale_addl | |
| - mulr_fun_is_semi_additive | |
| - exprZn | |
| - scalable_linear | |
| - addrCA | |
| - pair_addC | |
| - rmorphN | |
| - rpred_prod | |
| - scalerCA | |
| - scaler_prodr | |
| - rmorph_unit | |
| - lalgMixin | |
| - compN1op | |
| - idfun_is_semi_additive | |
| - addr0 | |
| - raddf0 | |
| - scaler_suml | |
| - natr1E | |
| - addNr | |
| - mulrAC | |
| - telescope_prodf | |
| - sumrMnr | |
| - fmorph_eq1 | |
| - lreg1 | |
| - sqrf_eq1 | |
| - expf_eq0 | |
| - prodrMl | |
| - divr1_eq | |
| - exprNn | |
| - natf_neq0 | |
| - mulrnDl | |
| - subr_sqr | |
| - in_algE | |
| - rpred_sum | |
| - mulrI0_lreg | |
| - pair_mulDl | |
| - addNKr | |
| - ffun_mulA | |
| - divr1 | |
| - exprVn | |
| - ffun_scaleA | |
| - addrACA | |
| - charf_prime | |
| - signr_odd | |
| - mulIf | |
| - addrAC | |
| - mul0rn | |
| - addKr | |
| - Frobenius_autX | |
| - bool_fieldP | |
| - can2_linear | |
| - valB | |
| - addrI | |
| - rpredDr | |
| - prodrM_comm | |
| - scaler_unit | |
| - scalerDl | |
| - signrN | |
| - scalarZ | |
| - pair_add0 | |
| - unitrMr | |
| - eq_sat | |
| - mulKf | |
| - invr_out | |
| - prodrN | |
| - rpred_divl | |
| - lregX | |
| - expr0 | |
| - ffun_mul_0l | |
| - sdivr_closedM | |
| - rmorphV | |
| - rpredV | |
| - rmorph1 | |
| - signrZK | |
| - scaler_prod | |
| - subrX1 | |
| - raddfD | |
| - raddf_sum | |
| - rmorph_eq1 | |
| - mulrnDr | |
| - sumr_const_nat | |
| - mulf_eq0 | |
| - scaler_eq0 | |
| - linearMn | |
| - invr_inj | |
| - imaginary_exists | |
| - addrr_char2 | |
| - pairMnE | |
| - raddfZsign | |
| - rreg_neq0 | |
| - rpredMl | |
| - natrB | |
| - exprBn | |
| - submodClosedP | |
| - scalerKV | |
| - subring_closed_semi | |
| - sub_fun_is_additive | |
| - pair_mulVr | |
| - unitrN | |
| - oner_eq0 | |
| - raddfMn | |
| - pair_unitP | |
| - prodf_neq0 | |
| - eqr_oppLR | |
| - sqrrB | |
| - mulr1n | |
| - rpredN1 | |
| - mulVr | |
| - commrN1 | |
| - quantifier_elim_rformP | |
| - add0U | |
| - val0 | |
| - rpred1M | |
| - commrD | |
| - prodrMn_const | |
| - divrr | |
| - can2_semi_additive | |
| - valD | |
| - fpred_divr | |
| - expr1n | |
| - idfun_is_multiplicative | |
| - sqrf_eq0 | |
| - valD | |
| - subr0 | |
| - unitrM_comm | |
| - lregN | |
| - prodr_const | |
| - linearB | |
| - Frobenius_autB_comm | |
| - expr_mod | |
| - pair_mulr0 | |
| - raddf_eq0 | |
| - natrME | |
| - signr_addb | |
| - rev_unitrP | |
| - rpredBl | |
| - mulrn_char | |
| - prodr_undup_exp_count | |
| - invb_out | |
| - Frobenius_autD_comm | |
| - pair_mul1l | |
| - mulrACA | |
| - mulrN1 | |
| - scalerMnr | |
| - additive_linear | |
| - invr_sign | |
| - pair_invr_out | |
| - signr_eq0 | |
| - addIr | |
| - ffun_mul_0r | |
| - prodrMr_comm | |
| - eqr_div | |
| - linearPZ | |
| - rreg1 | |
| - addUA | |
| - pair_scaleAr | |
| - comRingMixin | |
| - qf_evalP | |
| - comp_is_multiplicative | |
| - mulrC | |
| - invr_out | |
| - null_fun_is_semi_additive | |
| - div1r | |
| - mulrnAC | |
| - sumrN | |
| - expfB | |
| - signrE | |
| - addrN | |
| - natr0E | |
| - mulfVK | |
| - telescope_sumr_eq | |
| - divKr | |
| - sqrr_sign | |
| - divIr | |
| - pair_addA | |
| - expr2 | |
| - mulf_neq0 | |
| - mull_fun_is_scalable | |
| - lreg_neq0 | |
| - subr_sqr_1 | |
| - pair_mulDr | |
| - invr1 | |
| - ffun_mulC | |
| - exprD | |
| - opp_is_additive | |
| - mulrS | |
| - commrM | |
| - add_fun_is_semi_additive | |
| - to_rform_rformula | |
| - mulrSr | |
| - mulVb | |
| - eq_eval | |
| - linearZ | |
| - iter_mulr | |
| - mulr_fun_is_scalable | |
| - raddfB | |
| - expr_dvd | |
| - raddfMnat | |
| - addrK_char2 | |
| - rpred0 | |
| - divKf | |
| - mulNr | |
| - unitrE | |
| - mulrnBr | |
| - rmorph_nat | |
| - mulrBl | |
| - unitfE | |
| - linearZZ | |
| - linearD | |
| - prodrMn | |
| - mulrN | |
| - mulrC | |
| - opprD | |
| - lreg_sign | |
| - rpredZeq | |
| - subIr | |
| - mulrNN | |
| - prodf_seq_neq0 | |
| - null_fun_is_scalable | |
| - mul0r | |
| - mulrVK | |
| - subr_eq0 | |
| - charf_eq | |
| - exprMn_n | |
| - mulfI | |
| - unitr1 | |
| - divrI | |
| - mulr_suml | |
| - commr1 | |
| - prodrXr | |
| - ffunMnE | |
| - raddfMNn | |
| - to_rterm_id | |
| - rregX | |
| - linearZ_LR | |
| - eqr_sum_div | |
| - rpredZsign | |
| - ffun_addN | |
| - divr_closedM | |
| - fmorph_char | |
| - Frobenius_autM_comm | |
| - pair_scaleDl | |
| - If_form_rf | |
| - smulr_closedM | |
| - pair_scaleDr | |
| - can2_scalable | |
| - scaler_sign | |
| - prodrMr | |
| - valD | |
| - addf_div | |
| - foldForallP | |
| - rregM | |
| - IdomainMixin | |
| - unitrMl | |
| - mulVKf | |
| - mulrCA | |
| - divring_closedBM | |
| - rpredX | |
| - mulr_sign | |
| - invr_eq1 | |
| - subr_eq | |
| - scaleN1r | |
| - fst_is_scalable | |
| - rpredZnat | |
| - oppr0 | |
| - submod_closedZ | |
| - fpred_divl | |
| - lregP | |
| - id | |
| - rpredDl | |
| - commr_refl | |
| - Frobenius_aut0 | |
| - inv_out | |
| - sub_fun_is_scalable | |
| - subr0_eq | |
| - fpredMl | |
| - exprD1n | |
| - Frobenius_autN | |
| - raddf_inj | |
| - opp_is_scalable | |
| - linearP | |
| - invrN1 | |
| - sol_subproof | |
| - If_form_qf | |
| - addrK | |
| - same_env_sym | |
| - divff | |
| - valM | |
| - raddfN | |
| - scaler_sumr | |
| - raddf0 | |
| - ffun_mul_1l | |
| - rmorphXn | |
| - subring_closedB | |
| - scale_fun_is_scalable | |
| - invrN | |
| - commrB | |
| - valN | |
| - mulrnAl | |
| - subKr | |
| - ffun_scale_addr | |
| - pair_mul1r | |
| - raddfMsign | |
| - mulrA | |
| - mulrK | |
| - pair_scaleAl | |
| - qf_to_dnf_rterm | |
| - add_fun_is_scalable | |
| - eqf_sqr | |
| - scaler_prodl | |
| - subring_closedM | |
| - subrXX | |
| - pair_addN | |
| - commr_nat | |
| - ffun_scale1 | |
| - intro_unit | |
| - divr_closedV | |
| - mulNrn | |
| - sum_ffunE | |
| - semiring_closedD | |
| - sumr_const | |
| - commrX | |
| - invfM | |
| - revrX | |
| - sumrMnl | |
| - Frobenius_aut_is_additive | |
| - telescope_prodr | |
| - scaler_injl | |
| - expr1 | |
| - pair_one_neq0 | |
| - invr_signM | |
| - expr0n | |
| - rmorphismMP | |
| - oner_neq0 | |
| - mulr_natr | |
| - exprS | |
| - sqrrN | |
| - fmorph_eq0 | |
| - scalerBr | |
| - mulr_algl | |
| - exprMn | |
| - addrKA | |
| - sqrrD1 | |
| - natr1 | |
| - mulr_algr | |
| - scalerMnl | |
| - mulVr | |
| - subalgClosedP | |
| - rmorphB | |
| - unitrM | |
| - divr_signM | |
| - signrMK | |
| - invrM | |
| - to_rformP | |
| - subr_char2 | |
| - rmorph_prod | |
| - invr_eq0 | |
| - smulr_closedN | |
| - invrK | |
| - sqrrB1 | |
| - ffun_addA | |
| - prodrMl_comm | |
| - rmorph_comm | |
| - nat1r | |
| - opprB | |
| - rpred_divr | |
| - scalerI | |
| - mulfK | |
| - commr_sum | |
| - rpredD | |
| - unitrP | |
| - subalg_closedBM | |
| - rmorph_eq_nat | |
| - rmorph_char | |
| - linearMNn | |
| - divrNN | |
| - commr0 | |
| - ffun1_nonzero | |
| - mulrnAr | |
| - comm_alg | |
| - divringClosedP | |
| - expr_div_n | |
| - unitr_sdivr_closed | |
| - oppr_char2 | |
| - zmodClosedP | |
| - rpredMn | |
| - telescope_sumr | |
| - sumrB | |
| - rmorph0 | |
| - rregMr | |
| - fmorph_unit | |
| - opprK | |
| - mul1r | |
| - fst_is_semi_additive | |
| - linear_sum | |
| - bin_lt_charf_0 | |
| - raddfD | |
| - in_alg_is_additive | |
| - Pick_form_qf | |
| - subrXX_comm | |
| - commr_prod | |
| - scaler_nat | |
| - mulr0 | |
| - valB | |
| - Frobenius_aut_nat | |
| - fmorph_div | |
| - linear_closedB | |
| - fmorph_inj | |
| - natrM | |
| - zmod_closedD | |
| - val0 | |
| - rpredXN | |
| - linear0 | |
| - mulIr0_rreg | |
| - telescope_prodr_eq | |
| - scalerAr | |
| - divrN | |
| - comp_is_scalable | |
| - comp_is_semi_additive | |
| - expf_neq0 | |
| - mulr0 | |
| - pair_scale1 | |
| - rmorph_div | |
| - N1op | |
| - rpredB | |
| - addKr_char2 | |
| - addr_eq0 | |
| - snd_is_multiplicative | |
| - mulr0 | |
| - snd_is_scalable | |
| - sdivr_closed_div | |
| - subalg_closedZ | |
| - scaleNr | |
| - rpredMr | |
| - rpredBC | |
| - rregN | |
| - qf_to_dnfP | |
| - can2_additive | |
| - ffun_add0 | |
| - ffun_mul_1r | |
| - mulC_mulrV | |
| - commr_sign | |
| - scale1r | |
| - mulrnA | |
| - zmod_closedN | |
| - oppr_inj | |
| - mulN1r | |
| - mulr0n | |
| - rmorphM | |
| - invf_div | |
| - mulrnBl | |
| - snd_is_semi_additive | |
| - subringClosedP | |
| - natr_prod | |
| - charf0 | |
| - quantifier_elim_wf | |
| - mulIr_eq0 | |
| - char0_natf_div | |
| - exprMn_comm | |
| - prodf_eq0 | |
| - commrMn | |
| - valM1 | |
| - eval_tsubst | |
| - expfS_eq1 | |
| - natf0_char | |
| - dvdn_charf | |
| - eq_holds | |
| - addr0_eq | |
| - mulrI | |
| - divring_closed_div | |
| - path: mathcomp/fingroup/gproduct.v | |
| theorems: | |
| - sdprod_isog | |
| - dprodEsd | |
| - sdprodWY | |
| - divgrM | |
| - pprodP | |
| - isog_set1X | |
| - cprodJ | |
| - sdpair1_morphM | |
| - cprod_normal2 | |
| - ker_pprodm | |
| - setX_prod | |
| - dprodYP | |
| - remgr_id | |
| - dprodWY | |
| - injm_pair1g | |
| - dprodWcp | |
| - cprodWC | |
| - cprodE | |
| - bigcprodEY | |
| - sdpairE | |
| - pairg1_morphM | |
| - morphim_sdprodml | |
| - sdpair_act | |
| - pprodWY | |
| - remgrM | |
| - dprodP | |
| - sdprod_mul_proof | |
| - xsdprodm_act | |
| - morphim_pprodmr | |
| - morphim_coprime_dprod | |
| - quotient_pprod | |
| - sdprod_recr | |
| - dprodE | |
| - sdprodm_sub | |
| - sdprod_normal_complP | |
| - morphim_sdprodm | |
| - dprodWsdC | |
| - morphim_dprodmr | |
| - cprodmEl | |
| - actsEsd | |
| - cprodEY | |
| - divgr_eq | |
| - dprod_normal2 | |
| - gacentEsd | |
| - sdprod_context | |
| - dprodmEl | |
| - setX_gen | |
| - im_xsdprodm | |
| - cprod0g | |
| - injm_bigdprod | |
| - mem_dprod | |
| - dprodm_eqf | |
| - subcent_TImulg | |
| - cprod_modr | |
| - cprod_modl | |
| - ker_sdprodm | |
| - im_cprodm | |
| - im_sdprodm | |
| - bigdprodYP | |
| - trivg0 | |
| - setX_dprod | |
| - sdprodm_norm | |
| - sdpair2_morphM | |
| - sdprodWC | |
| - pprodWC | |
| - mem_sdprod | |
| - injm_sdpair1 | |
| - morphim_cprodm | |
| - im_sdpair | |
| - bigcprodWY | |
| - morphim_pairg1 | |
| - morphim_pprodm | |
| - complgC | |
| - dprod_modl | |
| - sdprod_compl | |
| - cprodW | |
| - sdprodmE | |
| - triv_cprod | |
| - quotient_coprime_dprod | |
| - dprodA | |
| - splitsP | |
| - remgrP | |
| - mul0g | |
| - snd_morphM | |
| - sdprod_recl | |
| - injm_sdpair2 | |
| - group_not0 | |
| - isog_setX1 | |
| - cprodC | |
| - morphim_sdprodmr | |
| - isog_dprod | |
| - sdpair_setact | |
| - divgrMl | |
| - bigdprod_card | |
| - sdprod_mul1g | |
| - dprodg1 | |
| - sdprod_mulVg | |
| - sdprodE | |
| - morphim_cprodml | |
| - quotient_sdprodr_isom | |
| - dprodm_cprod | |
| - sdprod_modl | |
| - pprodmM | |
| - quotient_sdprodr_isog | |
| - quotient_coprime_sdprod | |
| - injm_sdprodm | |
| - index_sdprod | |
| - dprodEY | |
| - dprod_modr | |
| - pair1g_morphM | |
| - sdprodJ | |
| - dprod_card | |
| - cprodg1 | |
| - sdprodm_eqf | |
| - dprod1g | |
| - sdprod_modr | |
| - bigdprodWY | |
| - pprodE | |
| - morphim_cprodmr | |
| - bigdprodW | |
| - cprodm_sub | |
| - remgrMid | |
| - sdprodWpp | |
| - sdprod_inv_proof | |
| - index_sdprodr | |
| - ker_dprodm | |
| - reindex_bigcprod | |
| - imset_mulgm | |
| - extprod_mulVg | |
| - injm_dprod | |
| - cprod_ntriv | |
| - morphim_pprod | |
| - sdprodEY | |
| - morphim_cprod | |
| - bigdprodWcp | |
| - pprodmEr | |
| - sdprodP | |
| - sdprod_mulgA | |
| - group0 | |
| - remgrMl | |
| - pprodg1 | |
| - sdprod_sdpair | |
| - mem_divgr | |
| - xsdprodm_dom2 | |
| - injm_xsdprodm | |
| - dprodmEr | |
| - cprodWY | |
| - morphim_pair1g | |
| - morphim_fstX | |
| - bigcprod_coprime_dprod | |
| - sdprodW | |
| - mulgmP | |
| - cprodA | |
| - cprodmEr | |
| - astabEsd | |
| - mem_bigdprod | |
| - pprodW | |
| - extprod_mulgA | |
| - sdprod_card | |
| - dprodWsd | |
| - pprodmE | |
| - im_sdpair_TI | |
| - remgr1 | |
| - cprodmE | |
| - group_setX | |
| - morphim_dprodm | |
| - morphim_coprime_bigdprod | |
| - pprodEY | |
| - mulg0 | |
| - morphim_sndX | |
| - quotient_cprod | |
| - im_sdprodm2 | |
| - cprodm_actf | |
| - dprodmE | |
| - sdprod_isom | |
| - subcent_sdprod | |
| - pprodJ | |
| - cprod1g | |
| - morphim_pprodml | |
| - dprodC | |
| - im_dprodm | |
| - injm_sdprod | |
| - im_sdpair_norm | |
| - mem_remgr | |
| - cprodm_norm | |
| - fst_morphM | |
| - dprodEcp | |
| - sdprodmEl | |
| - injm_pprodm | |
| - sdprod1g | |
| - morphim_dprodml | |
| - ker_cprodm | |
| - path: mathcomp/character/mxrepresentation.v | |
| theorems: | |
| - linear_mxsimple | |
| - eqg_mx_abs_irr | |
| - Clifford_astab1 | |
| - hom_mxmodule | |
| - mxsimpleP | |
| - mx_rsim_abs_irr | |
| - hom_component_mx | |
| - rstabs_submod | |
| - row_gen_sum_mxval | |
| - Wedderburn_min_ideal | |
| - gen_mul1r | |
| - rfix_mx_rstabC | |
| - mxval_is_multiplicative | |
| - mxval_gen1 | |
| - map_group_ring | |
| - map_section_repr | |
| - rkerP | |
| - Clifford_is_action | |
| - val_submodP | |
| - gring_indexK | |
| - rstabs_act | |
| - rstabs_in_gen | |
| - rker_gen | |
| - gen_addA | |
| - morphim_mx_irr | |
| - mx_iso_refl | |
| - rker_map | |
| - submod_mx_repr | |
| - quo_mx_quotient | |
| - mxvalM | |
| - mxmodule_eqg | |
| - rcent_eqg | |
| - mx_faithful_irr_center_cyclic | |
| - hom_mxsemisimple_iso | |
| - mx_reducibleS | |
| - annihilator_mxP | |
| - mxsemisimple_module | |
| - gring_mxA | |
| - rsim_regular_factmod | |
| - rsim_rcons | |
| - norm_sub_rstabs_rfix_mx | |
| - gring_free | |
| - gring_mxJ | |
| - rstab_norm | |
| - rstab_act | |
| - factmod_mx_faithful | |
| - mx_JordanHolder_max | |
| - envelop_mx1 | |
| - gring_opM | |
| - mx_Schur_onto | |
| - rfix_gen | |
| - val_submod_inj | |
| - primitive_root_splitting_abelian | |
| - rfix_factmod | |
| - classg_base_center | |
| - mxsimple_morphim | |
| - rker_factmod | |
| - in_factmod_eq0 | |
| - rfix_morphpre | |
| - Wedderburn_mulmx0 | |
| - mxval_grootXn | |
| - irr_degree_abelian | |
| - kquo_mxE | |
| - rstabs_quo | |
| - val_submodS | |
| - in_submod_module | |
| - irr1_mode | |
| - mxvalV | |
| - val_gen_row | |
| - gen_addC | |
| - mxsimple_eqg | |
| - gen_dim_ex_proof | |
| - quo_repr_coset | |
| - gring_mxK | |
| - map_mxminpoly_groot | |
| - val_genD | |
| - in_genZ | |
| - gen_is_additive | |
| - gring_projE | |
| - rfix_submod | |
| - irr_mode_unit | |
| - reducible_Socle1 | |
| - quo_mx_coset | |
| - Wedderburn_annihilate | |
| - conj_mx_irr | |
| - Clifford_atrans | |
| - rcent_quo | |
| - mxvalN | |
| - val_factmod_inj | |
| - mxsemisimple0 | |
| - mxrank_in_submod | |
| - regular_op_inj | |
| - sG_f'fG | |
| - classg_base_free | |
| - add_sub_fact_mod | |
| - cyclic_mx_module | |
| - map_regular_subseries | |
| - rowval_gen_stable | |
| - val_factmodE | |
| - mx_butterfly | |
| - mx_irr_abelian_linear | |
| - in_genK | |
| - irr_center_scalar | |
| - mem_sub_gring | |
| - mx_JordanHolder | |
| - center_kquo_cyclic | |
| - mxsimple_module | |
| - subg_mx_abs_irr | |
| - gen_addNr | |
| - rsim_regular_series | |
| - rker_subg | |
| - mxmodule_envelop | |
| - mxsimple_semisimple | |
| - rstabs_morphpre | |
| - component_socle | |
| - gring_op_id | |
| - Socle_module | |
| - mxmodule_conj | |
| - Wedderburn_sum | |
| - Clifford_rank_components | |
| - in_gen_row | |
| - mx_faithful_irr_abelian_cyclic | |
| - repr_mxMr | |
| - rstabs_subg | |
| - rank_irr1 | |
| - Wedderburn_sum_id | |
| - rfix_mx_id | |
| - Clifford_component_basis | |
| - Socle_direct | |
| - rker_morphpre | |
| - component_mx_key | |
| - rsim_last | |
| - subg_mx_repr | |
| - addsmx_module | |
| - ker_irr_comp_op | |
| - factmod_mx_repr | |
| - rstab_eqg | |
| - irr_degree_gt0 | |
| - mem_gring_mx | |
| - rstab_morphim | |
| - gring_op1 | |
| - rker_quo | |
| - rcent_map | |
| - gen_mx_irr | |
| - val_submodE | |
| - rker_morphim | |
| - in_submodK | |
| - map_enveloping_algebra_mx | |
| - mx_iso_module | |
| - socle_mem | |
| - quo_mx_irr | |
| - sumsmx_module | |
| - sums_R | |
| - coset_splitting_field | |
| - rstab_group_set | |
| - component_mx_isoP | |
| - repr_mx1 | |
| - rstabs_conj | |
| - eqmx_rstabs | |
| - mx_series_rcons | |
| - subSocle_direct | |
| - repr_mxX | |
| - mxval_inj | |
| - submod_mx_irr | |
| - rcenter_group_set | |
| - mx_rsim_def | |
| - socle_exists | |
| - mxsimple_exists | |
| - eqmx_module | |
| - in_factmod_module | |
| - Wedderburn_closed | |
| - mx_Maschke | |
| - kquo_mx_faithful | |
| - gring_rowK | |
| - irr1_rfix | |
| - socle_simple | |
| - mxval1 | |
| - mxmoduleP | |
| - map_regular_mx | |
| - Wedderburn_subring_center | |
| - irr_repr'_op0 | |
| - morphpre_mx_abs_irr | |
| - val_factmod_eq0 | |
| - mxsimple_abelian_linear | |
| - extend_group_splitting_field | |
| - val_gen0 | |
| - mxsimple_cyclic | |
| - cent_mx_scalar_abs_irr | |
| - Wedderburn_id_mem | |
| - mx_rsim_scalar | |
| - quotient_splitting_field | |
| - not_rsim_op0 | |
| - capmx_subSocle | |
| - mxtrace_dadd_mod | |
| - component_mx_id | |
| - kermx_centg_module | |
| - rstabs_factmod | |
| - val_genK | |
| - rstab_in_gen | |
| - sG_f'fG | |
| - mxval_groot | |
| - mx_rsim_sym | |
| - map_rfix_mx | |
| - mx_faithful_inj | |
| - val_gen_rV | |
| - rstab_sub | |
| - mx_irrP | |
| - mxsimple_subg | |
| - irr_modeM | |
| - splitting_cyclic_primitive_root | |
| - socleP | |
| - gen_mulC | |
| - val_Clifford_act | |
| - val_factmodP | |
| - rfix_eqg | |
| - mx_iso_trans | |
| - rstabs_rowval_gen | |
| - Wedderburn_direct | |
| - mx_irr_map | |
| - reducible_Socle | |
| - max_size_mx_series | |
| - map_mx_faithful | |
| - degree_irr1 | |
| - sum_mxsimple_direct_sub | |
| - op_Wedderburn_id | |
| - Wedderburn_is_id | |
| - genmx_component | |
| - val_submod1 | |
| - rstabs_morphim | |
| - base_free | |
| - eqmx_semisimple | |
| - regular_mx_repr | |
| - in_factmodJ | |
| - map_gring_op | |
| - Clifford_componentJ | |
| - principal_comp_subproof | |
| - nth_map_rVval | |
| - irr_comp_rsim | |
| - Clifford_basis | |
| - socle_can_subproof | |
| - in_genD | |
| - rker_mx_rsim | |
| - Clifford_rstabs_simple | |
| - eqg_repr_proof | |
| - section_eqmx | |
| - map_mx_repr | |
| - in_factmodE | |
| - irr_reprE | |
| - mx_abs_irrP | |
| - cyclic_mxP | |
| - abelian_abs_irr | |
| - mx_Schreier | |
| - mxnonsimpleP | |
| - regular_module_ideal | |
| - nz_row_mxsimple | |
| - group_splitting_field_exists | |
| - Wedderburn_disjoint | |
| - irr_mx_mult | |
| - mx_Schur_inj | |
| - component_mx_semisimple | |
| - rstab_conj | |
| - irr_comp_envelop | |
| - val_factmodS | |
| - rowval_genK | |
| - socle_irr | |
| - capmx_module | |
| - gring_opG | |
| - eqg_mx_faithful | |
| - hom_mxP | |
| - rcent_subg | |
| - submx_in_gen | |
| - rker_normal | |
| - mxmodule_morphpre | |
| - mxtrace_Socle | |
| - repr_mxK | |
| - max_submod_eqmx | |
| - mx_rsim_faithful | |
| - mxtrace_submod1 | |
| - proj_mx_hom | |
| - gen_dim_gt0 | |
| - sat_gen_form | |
| - eval_mulT | |
| - rstab_submod | |
| - card_gen | |
| - cycle_repr_structure | |
| - mx_rsim_iso | |
| - map_reprE | |
| - hom_envelop_mxC | |
| - cyclic_mx_sub | |
| - kermx_hom_module | |
| - Clifford_hom | |
| - map_gring_proj | |
| - DecSocleType | |
| - mx_iso_component | |
| - mxsimple_map | |
| - eval_gen_term | |
| - mxmodule_rowval_gen | |
| - gring_valK | |
| - cyclic_mx_id | |
| - eqmx_rstab | |
| - gring_row_mul | |
| - Socle_iso | |
| - in_genN | |
| - cyclic_mx_eq0 | |
| - in_genJ | |
| - hom_mxsemisimple | |
| - envelop_mxP | |
| - normal_rfix_mx_module | |
| - subSocle_module | |
| - mxval0 | |
| - der1_sub_rker | |
| - mxmodule_form_qf | |
| - mxsemisimple_reducible | |
| - subg_mx_faithful | |
| - Wedderburn_is_ring | |
| - rker_norm | |
| - mx_Schur_inj_iso | |
| - scalar_mx_hom | |
| - mxrank_iso | |
| - rconj_mx_repr | |
| - mxrank_rsim | |
| - mx_series_repr_irr | |
| - rfix_mx_conjsg | |
| - in_factmodsK | |
| - dec_mx_reducible_semisimple | |
| - map_regular_repr | |
| - rfix_subg | |
| - mx_Schur_iso | |
| - submx_in_gen_eq | |
| - gen_mx_repr | |
| - rfix_mxS | |
| - rstabs_sub | |
| - group_closure_closed_field | |
| - Socle_semisimple | |
| - rstab_factmod | |
| - envelop_mx_ring | |
| - mxval_centg | |
| - mx_series_lt | |
| - irr_comp'_op0 | |
| - max_submodP | |
| - mx_rsim_factmod | |
| - gen_ntriv | |
| - mxval_genM | |
| - memmx_cent_envelop | |
| - last_mod | |
| - val_genJ | |
| - morphim_mx_repr | |
| - irr_degreeE | |
| - centgmxP | |
| - irr_mode1 | |
| - nz_socle | |
| - eqmx_iso | |
| - mxvalD | |
| - base_full | |
| - component_mx_def | |
| - rstab_morphpre | |
| - morphim_mx_abs_irr | |
| - in_submodE | |
| - irr_modeX | |
| - PackSocleK | |
| - rank_irr_comp | |
| - rfix_conj | |
| - map_gring_mx | |
| - eval_mxmodule | |
| - mxmodule_map | |
| - linear_irr_comp | |
| - mx_Schur | |
| - mx_JordanHolder_exists | |
| - eval_mxT | |
| - rstab_normal | |
| - val_submod_module | |
| - mxtrace_rsim | |
| - envelop_mxM | |
| - Clifford_astab | |
| - component_mx_disjoint | |
| - mxval_genV | |
| - rconj_mxJ | |
| - hom_component_mx_iso | |
| - rsim_submod1 | |
| - Clifford_iso | |
| - mxtrace_component | |
| - rstabs_eqg | |
| - gen_invr0 | |
| - linear_mx_abs_irr | |
| - mx_reducible_semisimple | |
| - rker_submod | |
| - mx_rsim_trans | |
| - rfix_regular | |
| - gen_dim_ub_proof | |
| - proj_factmodS | |
| - mx_rsim_map | |
| - gen_dim_factor | |
| - repr_mx_unitr | |
| - row_full_dom_hom | |
| - dec_mxsimple_exists | |
| - conj_mx_faithful | |
| - intro_mxsemisimple | |
| - mxsimple_iso_simple | |
| - rstabS | |
| - mxtrace_dsum_mod | |
| - repr_mx_unit | |
| - mxmodule_morphim | |
| - gring_op_mx | |
| - mx_iso_sym | |
| - genK | |
| - mxmodule_subg | |
| - group_closure_field_exists | |
| - rfix_mx_module | |
| - val_submodK | |
| - section_eqmx_add | |
| - repr_mx_free | |
| - map_mx_abs_irr | |
| - in_factmodK | |
| - in_submodJ | |
| - val_genZ | |
| - rstabs_map | |
| - subg_mx_irr | |
| - rstab_subg | |
| - morphim_mxE | |
| - repr_mxV | |
| - rker_eqg | |
| - mx_subseries_module | |
| - rcent_conj | |
| - mxmodule0 | |
| - rker_conj | |
| - quo_mx_repr | |
| - component_mx_iso | |
| - non_linear_gen_reducible | |
| - Clifford_iso2 | |
| - regular_mx_faithful | |
| - gring_opE | |
| - submx_rowval_gen | |
| - rank_Wedderburn_subring | |
| - morphpre_mx_repr | |
| - repr_mxVr | |
| - rsim_regular_submod | |
| - val_submodJ | |
| - mx_abs_irrW | |
| - gring_mxP | |
| - Wedderburn_center | |
| - envelop_mx_id | |
| - valWact | |
| - val_genN | |
| - gen_add0r | |
| - row_hom_mxP | |
| - groupCl | |
| - rsim_irr_comp | |
| - subSocle_iso | |
| - dom_hom_mx_module | |
| - Clifford_Socle1 | |
| - mx_subseries_module' | |
| - gen_mulVr | |
| - semisimple_Socle | |
| - irr_mode_neq0 | |
| - centgmx_map | |
| - val_factmodK | |
| - mxtrace_regular | |
| - rstab_quo | |
| - irr_comp_id | |
| - sum_irr_degree | |
| - centgmx_hom | |
| - addsmx_semisimple | |
| - irr1_repr | |
| - repr_mxKV | |
| - rcent_group_set | |
| - mxrank_in_factmod | |
| - set_nth_map_rVval | |
| - rfix_quo | |
| - sumsmx_semisimple | |
| - mxmodule_trans | |
| - mx_factmod_sub | |
| - mx_rsim_irr | |
| - path: mathcomp/algebra/polydiv.v | |
| theorems: | |
| - dvdp_eq_mul | |
| - ltn_divpr | |
| - divp_eq | |
| - divpK | |
| - size2_dvdp_gdco | |
| - divpD | |
| - dvdp_Pexp2l | |
| - eqp_mull | |
| - coprimep_dvdr | |
| - rmodpZ | |
| - divp_small | |
| - Gauss_dvdp | |
| - modp_eq0 | |
| - rdivp_mull | |
| - divpZr | |
| - size_gcdp1 | |
| - edivp_def | |
| - coprimep_XsubC2 | |
| - divp_eq | |
| - gcdp_mull | |
| - rgdcop0 | |
| - dvdpP | |
| - coprimep_modr | |
| - gcdp_scaler | |
| - eqp_rgdco_gdco | |
| - eqp_trans | |
| - divpp | |
| - egcdp_recP | |
| - coprimepMl | |
| - irredp_neq0 | |
| - rmodp_addl_mul_small | |
| - redivp_key | |
| - mulKp | |
| - dvdp1 | |
| - rdivpDl | |
| - dvd1p | |
| - divpP | |
| - polyXsubCP | |
| - modp_mull | |
| - modpZl | |
| - leq_modp | |
| - Bezout_eq1_coprimepP | |
| - Nrdvdp_small | |
| - dvdp_eq_mul | |
| - eqp_div | |
| - leq_gcdpr | |
| - modNp | |
| - uniq_roots_rdvdp | |
| - modpZr | |
| - take_poly_rmodp | |
| - rdvdp_XsubCl | |
| - eqp_coprimepr | |
| - eqp0 | |
| - eqp_mul2l | |
| - eqp_exp | |
| - modp1 | |
| - dvdp_eq_div | |
| - rdvdpP | |
| - dvdpZl | |
| - map_divp | |
| - divp_modpP | |
| - leq_divp | |
| - egcdpE | |
| - divpKC | |
| - gcdp_eq0 | |
| - rdivp_eq | |
| - dvdp_mul | |
| - gcdpE | |
| - map_modp | |
| - dvdp_exp2l | |
| - mulpK | |
| - divpKC | |
| - divpE | |
| - modp0 | |
| - eqp_modpl | |
| - coprimep_def | |
| - dvdp_subr | |
| - coprimep_comp_poly | |
| - modpP | |
| - mulKp | |
| - eqp_map | |
| - irredp_XaddC | |
| - eq_dvdp | |
| - dvdp_mod | |
| - mupMr | |
| - dvdpE | |
| - mup_XsubCX | |
| - gdcopP | |
| - root_dvdp | |
| - modp_mul | |
| - dvdp_eq | |
| - rdvdp_eqP | |
| - root_bigmul | |
| - divp_mulCA | |
| - eqp_rgcd_gcd | |
| - divpp | |
| - dvdp_mul2r | |
| - divpAC | |
| - dvdp_exp2r | |
| - eqpxx | |
| - dvdp_comp_poly | |
| - mu_prod_XsubC | |
| - eqp_divl | |
| - divpK | |
| - divpE | |
| - divp_dvd | |
| - egcdp0 | |
| - XsubC_dvd | |
| - coprimep_expl | |
| - mup_ltn | |
| - divp_addl_mul | |
| - gcdp_scalel | |
| - dvdp_addr | |
| - edivp_def | |
| - divp_addl_mul_small | |
| - modp_coprime | |
| - dvdp_leq | |
| - dvdp_div_eq0 | |
| - dvdp_eq_div | |
| - rmod0p | |
| - dvdp_prod_XsubC | |
| - dvdp_add_eq | |
| - rdvdp_leq | |
| - polyXsubC_eqp1 | |
| - dvdp_eq | |
| - rgcd0p | |
| - gcdpp | |
| - mup_leq | |
| - eqp_divr | |
| - rdvdpN0 | |
| - rdvdp_mull | |
| - rmodpp | |
| - leq_rmodp | |
| - gdcop0 | |
| - rdvdpp | |
| - eqp_size | |
| - dvdp_exp_XsubCP | |
| - modpP | |
| - polyC_eqp1 | |
| - rdivpDr | |
| - modpZl | |
| - scalp0 | |
| - mulKp | |
| - divp_mulA | |
| - rdivpK | |
| - edivp_redivp | |
| - rmodpN | |
| - coprimep_map | |
| - dvdp_gcd_idl | |
| - coprimep_pexpl | |
| - rdvdp0 | |
| - gdcop_map | |
| - ltn_rmodpN0 | |
| - divpN | |
| - dvdp_gdcor | |
| - eqp_eq | |
| - egcdpP | |
| - mulKp | |
| - modpD | |
| - rmodp1 | |
| - dvdp_eq | |
| - divp_pmul2l | |
| - dvdp_addl | |
| - eqp_gcd | |
| - Gauss_gcdpl | |
| - eqp_mod | |
| - eqp_monic | |
| - rmodp_mull | |
| - ltn_divpl | |
| - ulc_eqpP | |
| - divpD | |
| - dvdpP | |
| - rdiv0p | |
| - gcdp_mul2r | |
| - gcdp_exp | |
| - rmodp_mulml | |
| - root_biggcd | |
| - mulpK | |
| - redivp_eq | |
| - redivp_map | |
| - rdvdp1 | |
| - gcdp0 | |
| - edivp_map | |
| - divpE | |
| - rdvdp_eq | |
| - rgcdp0 | |
| - divp_mulAC | |
| - eqp_gcdr | |
| - divp_mulA | |
| - dvdp_pexp2r | |
| - divpK | |
| - edivp_eq | |
| - rdvd0pP | |
| - coprime1p | |
| - prod_XsubC_eq | |
| - edivpP | |
| - root_gdco | |
| - eq_rdvdp | |
| - dvdp_mulIl | |
| - gcdp_comp_poly | |
| - drop_poly_divp | |
| - drop_poly_rdivp | |
| - Bezout_coprimepP | |
| - coprimepZl | |
| - gcdp_eqp1 | |
| - divp_addl_mul | |
| - coprimep_sym | |
| - dvdp_add | |
| - coprimep_addl_mul | |
| - irredp_XsubC | |
| - modpC | |
| - coprimep_pexpr | |
| - divp0 | |
| - divp_divl | |
| - dvdpZr | |
| - comm_redivpP | |
| - dvdp_map | |
| - divp_eq | |
| - irredp_XsubCP | |
| - mupM | |
| - divpP | |
| - rdivp_eq | |
| - coprimepPn | |
| - mupMl | |
| - div0p | |
| - modp_addl_mul_small | |
| - expp_sub | |
| - dvdp_trans | |
| - dvdp_gcdr | |
| - gcdp_modl | |
| - rmodp_mulmr | |
| - coprimep_XsubC | |
| - redivp_def | |
| - eqp_modpl | |
| - rmodp_small | |
| - coprimep_size_gcd | |
| - modpN | |
| - coprimep0 | |
| - modp_id | |
| - coprimep_root | |
| - eqp_coprimepl | |
| - edivp_key | |
| - dvdp_gcdl | |
| - rmodpp | |
| - divp1 | |
| - rdivp_small | |
| - root_factor_theorem | |
| - scalp_map | |
| - eqp_div_XsubC | |
| - dvdp_gcdlr | |
| - eqpf_eq | |
| - eqpP | |
| - rmodpp | |
| - divp_pmul2l | |
| - leq_divpr | |
| - eqp_gdcol | |
| - coprimepMr | |
| - coprimep_gdco | |
| - take_poly_modp | |
| - gcdp_def | |
| - gcdp_addl | |
| - rdivp_addl_mul_small | |
| - rgcdpE | |
| - coprimepP | |
| - divpKC | |
| - scalpE | |
| - modp_small | |
| - rdvd1p | |
| - gcdp_mul2l | |
| - divpZr | |
| - dvdp_gcd | |
| - mupNroot | |
| - divp_mulCA | |
| - Gauss_dvdpr | |
| - dvdUp | |
| - divp_pmul2r | |
| - coprimepX | |
| - rdivpp | |
| - eqp_divl | |
| - eqp_rmod_mod | |
| - rscalp_small | |
| - eqp01 | |
| - eqp_dvdr | |
| - leq_rdivp | |
| - modpE | |
| - leq_trunc_divp | |
| - gtNdvdp | |
| - rmodp_mull | |
| - root_factor_theorem | |
| - rmodpB | |
| - eqp_mul2r | |
| - rmodp_eq0 | |
| - divpN | |
| - coprimep_dvdl | |
| - divpN0 | |
| - dvdp_mulIr | |
| - divp_divl | |
| - leq_divpl | |
| - gcdp_addr | |
| - dvdp_exp_sub | |
| - dvdp_eqp1 | |
| - Bezout_coprimepPn | |
| - Gauss_gcdpr | |
| - dvdp_eq | |
| - scalpE | |
| - expp_sub | |
| - dvdp_gcd_idr | |
| - eqp_modpr | |
| - root_coprimep | |
| - gcdpC | |
| - mulp_gcdl | |
| - eqpfP | |
| - modp_XsubC | |
| - dvdpP | |
| - eqp_mulr | |
| - rdivp_addl_mul | |
| - modpE | |
| - dvd0p | |
| - redivp_eq | |
| - modpZr | |
| - ltn_modpN0 | |
| - root_gcd | |
| - mod0p | |
| - rdivpp | |
| - eqp_gdcor | |
| - size_divp | |
| - dvdp_subl | |
| - horner_mod | |
| - rdivp_eq | |
| - eqp_dvdl | |
| - divp_mulAC | |
| - dvdpE | |
| - modpp | |
| - rmodpC | |
| - Bezoutp | |
| - rdivp0 | |
| - modpE | |
| - eqp_rdiv_div | |
| - mulpK | |
| - mulp_gcdr | |
| - rcoprimep_coprimep | |
| - rmodp_compr | |
| - divp_pmul2r | |
| - edivpP | |
| - coprimep1 | |
| - modpD | |
| - modp_addl_mul_small | |
| - egcdp_map | |
| - redivpP | |
| - dvdp_size_eqp | |
| - Gauss_dvdpl | |
| - rmodp0 | |
| - uniq_roots_dvdp | |
| - coprime0p | |
| - divpp | |
| - divp_eq | |
| - divpZl | |
| - leq_gcdpl | |
| - dvdp_mul_XsubC | |
| - rdivp1 | |
| - mulpK | |
| - size_poly_eq1 | |
| - rdvdp_mull | |
| - modp_mulr | |
| - coprimep_modl | |
| - dvdpP | |
| - gcdp1 | |
| - dvdp_mul2l | |
| - dvd_eqp_divl | |
| - dvdp_mulr | |
| - eqp_ltrans | |
| - eqp_gcdl | |
| - rdivpK | |
| - divpZl | |
| - dvdpNl | |
| - rmodpD | |
| - scalpE | |
| - ltn_modp | |
| - modpN | |
| - dvdp_sub | |
| - modp_mul | |
| - ucl_eqp_eq | |
| - coprimep_div_gcd | |
| - dvdp0 | |
| - divpAC | |
| - path: mathcomp/solvable/frobenius.v | |
| theorems: | |
| - FrobeniusJ | |
| - partition_class_support | |
| - Frobenius_subl | |
| - Frobenius_reg_compl | |
| - Frobenius_partition | |
| - semiprimeJ | |
| - normedTI_memJ_P | |
| - Frobenius_Ldiv | |
| - regular_norm_coprime | |
| - semiregularS | |
| - Frobenius_ker_dvd_ker1 | |
| - Frobenius_ker_coprime | |
| - Frobenius_index_coprime | |
| - semiregular_prime | |
| - normedTI_S | |
| - partition_normedTI | |
| - FrobeniusJcompl | |
| - Frobenius_context | |
| - semiregular1r | |
| - semiregularJ | |
| - normedTI_J | |
| - semiprimeS | |
| - Frobenius_action_kernel_def | |
| - normedTI_P | |
| - injm_Frobenius_compl | |
| - Frobenius_coprime | |
| - Frobenius_ker_Hall | |
| - Frobenius_subr | |
| - Frobenius_trivg_cent | |
| - FrobeniusJker | |
| - FrobeniusWker | |
| - injm_Frobenius_ker | |
| - Frobenius_kerP | |
| - cent_semiprime | |
| - Frobenius_actionP | |
| - semiregular_sym | |
| - semiregular1l | |
| - regular_norm_dvd_pred | |
| - set_Frobenius_compl | |
| - Frobenius_index_dvd_ker1 | |
| - ltn_odd_Frobenius_ker | |
| - semiprime_regular | |
| - Frobenius_dvd_ker1 | |
| - cent1_normedTI | |
| - FrobeniusWcompl | |
| - injm_Frobenius_group | |
| - Frobenius_reg_ker | |
| - FrobeniusW | |
| - cent_semiregular | |
| - Frobenius_compl_Hall | |
| - path: mathcomp/algebra/archimedean.v | |
| theorems: | |
| - natr_mul_eq1 | |
| - floor1 | |
| - floorX | |
| - conj_natr | |
| - intrKfloor | |
| - sum_truncK | |
| - floorK | |
| - natr_sum_eq1 | |
| - intrEfloor | |
| - trunc0Pn | |
| - floor_itv | |
| - trunc0 | |
| - floorP | |
| - ceilX | |
| - raddfZ_nat | |
| - gt_pred_ceil | |
| - rpredZ_nat | |
| - floor_le | |
| - ceil_itv | |
| - floorD | |
| - truncX | |
| - sqr_intr_ge1 | |
| - floorpK | |
| - norm_intr_ge1 | |
| - truncM | |
| - Rreal_int | |
| - ceil_le | |
| - floor_def | |
| - int_num_subring | |
| - rpred_nat_num | |
| - floor_subproof | |
| - raddfZ_int | |
| - ceil_le_int | |
| - intr_aut | |
| - truncK | |
| - intr_ler_sqr | |
| - intr_nat | |
| - le_ceil | |
| - ceilM | |
| - natr_normK | |
| - intrP | |
| - conj_intr | |
| - ceil0 | |
| - rpredZ_int | |
| - natr_ge0 | |
| - intrEsign | |
| - intrKceil | |
| - natr_exp_even | |
| - truncD | |
| - aut_intr | |
| - trunc_gt0 | |
| - floor0 | |
| - ceilD | |
| - intr_int | |
| - floorpP | |
| - intrEge0 | |
| - rpred_int_num | |
| - ceilN | |
| - Rreal_nat | |
| - ceilK | |
| - ceil1 | |
| - intrEceil | |
| - natr_prod_eq1 | |
| - floorM | |
| - trunc_floor | |
| - natr_aut | |
| - ge_floor | |
| - natr_gt0 | |
| - natrEint | |
| - intr_normK | |
| - path: mathcomp/fingroup/perm.v | |
| theorems: | |
| - perm_onM | |
| - porbitPmin | |
| - permKV | |
| - porbitV | |
| - lift_perm_id | |
| - odd_permV | |
| - odd_mul_tperm | |
| - perm1 | |
| - cast_perm_id | |
| - permS0 | |
| - cast_perm_comp | |
| - perm_onto | |
| - prod_tpermP | |
| - perm_on_id | |
| - tpermV | |
| - odd_perm_prod | |
| - card_porbit_neq0 | |
| - cast_ord_permE | |
| - cast_permE | |
| - porbit_sym | |
| - lift_permV | |
| - perm_oneP | |
| - lift_permM | |
| - tpermC | |
| - porbit_traject | |
| - cast_permK | |
| - perm_on1 | |
| - tpermL | |
| - perm_proof | |
| - tpermK | |
| - perm_onV | |
| - Sym_group_set | |
| - odd_permJ | |
| - tpermR | |
| - tuple_permP | |
| - perm_invP | |
| - im_perm_on | |
| - permX | |
| - card_Sn | |
| - permX_fix | |
| - tpermD | |
| - isom_cast_perm | |
| - eq_porbit_mem | |
| - card_Sym | |
| - tperm_on | |
| - apermE | |
| - iter_porbit | |
| - imset_perm1 | |
| - uniq_traject_porbit | |
| - odd_perm1 | |
| - porbits_mul_tperm | |
| - cast_perm_sym | |
| - tperm2 | |
| - porbitsV | |
| - lift_perm1 | |
| - tpermP | |
| - tperm1 | |
| - tpermJ | |
| - permK | |
| - perm_closed | |
| - cast_permKV | |
| - odd_lift_perm | |
| - im_permV | |
| - permJ | |
| - lift_perm_lift | |
| - cast_perm_morphM | |
| - pvalE | |
| - lift_permK | |
| - card_perm | |
| - odd_permM | |
| - perm_inj | |
| - perm_invK | |
| - permP | |
| - permS01 | |
| - tperm_proof | |
| - permS1 | |
| - mem_porbit | |
| - permM | |
| - permE | |
| - perm_onC | |
| - path: mathcomp/fingroup/morphism.v | |
| theorems: | |
| - morphpreP | |
| - morphpreV | |
| - im_sgval | |
| - injm_morphim_inj | |
| - morphim_ker | |
| - injm_sgval | |
| - morphim_setIpre | |
| - invm_subker | |
| - injm_subcent1 | |
| - morphimGK | |
| - morphimU | |
| - card_im_injm | |
| - mkerr | |
| - morphim_subnorm | |
| - injm_cent1 | |
| - kerP | |
| - morphpreI | |
| - morphim_cent1 | |
| - morphJ | |
| - morphV | |
| - domP | |
| - injm_norms | |
| - morphim_cents | |
| - ker_norm | |
| - mem_morphpre | |
| - morphim_restrm | |
| - ker_injm | |
| - injm_normal | |
| - card_isog | |
| - isog_transr | |
| - eq_in_morphim | |
| - isog_trans | |
| - injm_cent | |
| - invmK | |
| - injm_comp | |
| - isom_isog | |
| - morphpreIim | |
| - sgval_sub | |
| - injm_invm | |
| - morphmE | |
| - morph_injm_eq1 | |
| - dom_ker | |
| - morphimSGK | |
| - morphim_invm | |
| - morphim_trivm | |
| - morphpre_set1 | |
| - morphR | |
| - morphim_eq0 | |
| - isog_subg | |
| - morphimIG | |
| - morphim_abelian | |
| - morphpreSK | |
| - rcoset_kerP | |
| - isogEhom | |
| - injm_subnorm | |
| - morphpre_cent | |
| - idm_isom | |
| - injm_restrm | |
| - morphpreS | |
| - nclasses_isog | |
| - morphpre0 | |
| - invmE | |
| - morphpre_cent1 | |
| - morphim_subcent | |
| - trivm_morphM | |
| - restrmP | |
| - sub_isom | |
| - im_restrm | |
| - morph_dom_groupset | |
| - ker_rcoset | |
| - morphim_class | |
| - injm_abelian | |
| - morphpreD | |
| - morphim_cent | |
| - morphimE | |
| - morphpre_subcent1 | |
| - morphim_invmE | |
| - isog_isom | |
| - morphpreMr | |
| - morphpre_idm | |
| - ker_sgval | |
| - morph1 | |
| - morphim_factm | |
| - classes_morphim | |
| - morphimD1 | |
| - injmP | |
| - eq_morphim | |
| - ker_sub_pre | |
| - ker_ifactm | |
| - morphim_inj | |
| - misomP | |
| - order_injm | |
| - morphim1 | |
| - isom_sub_im | |
| - injm_subg | |
| - morphimDG | |
| - mkerl | |
| - restr_isom_to | |
| - homgP | |
| - morphpre_cent1s | |
| - morphim_norms | |
| - leq_morphim | |
| - morphim_injG | |
| - morphim_set1 | |
| - homg_trans | |
| - morphim_cycle | |
| - morphpre_ifactm | |
| - isog_eq1 | |
| - morphim_isom | |
| - morphim_injm_eq1 | |
| - comp_morphM | |
| - subgmK | |
| - im_invm | |
| - morphpre_normal | |
| - morphimSK | |
| - morphimIim | |
| - restr_isom | |
| - sub_morphpre_injm | |
| - injm_eq | |
| - ker_subg | |
| - injm_factm | |
| - morphimI | |
| - morphpre_inj | |
| - morphimMl | |
| - morphim_cent1s | |
| - injm_cents | |
| - morphpre_subnorm | |
| - morphim_subcent1 | |
| - morphpreMl | |
| - injmD1 | |
| - isogP | |
| - ker_factm_loc | |
| - injm_idm | |
| - morph_prod | |
| - morphimT | |
| - morphpre_factm | |
| - isom_subg | |
| - morphM | |
| - morphimD | |
| - morphim_sub | |
| - im_subg | |
| - ker_restrm | |
| - injmK | |
| - morphpre_restrm | |
| - morphim_idm | |
| - ker_comp | |
| - morphimIdom | |
| - morphimJ | |
| - morphpre_proper | |
| - morphimV | |
| - isomP | |
| - isog_transl | |
| - morphpreIdom | |
| - isom_card | |
| - morphimY | |
| - idm_morphM | |
| - im_idm | |
| - morphim_norm | |
| - morphX | |
| - ker_idm | |
| - morphimP | |
| - isog_abelian | |
| - isom_im | |
| - morphim_subnormG | |
| - injm_proper | |
| - injm_norm | |
| - morphpre_groupset | |
| - homg_refl | |
| - injmI | |
| - morphpre_invm | |
| - injm1 | |
| - morphpre_cents | |
| - sub_isog | |
| - morphim_normG | |
| - restrmEsub | |
| - mem_morphim | |
| - morphpre_norm | |
| - card_injm | |
| - isog_hom | |
| - isog_refl | |
| - eq_homgr | |
| - isom_inj | |
| - injm_factmP | |
| - mker | |
| - ifactmE | |
| - morphim_homg | |
| - im_ifactm | |
| - ker_normal_pre | |
| - morphpreU | |
| - isom_sym | |
| - morphim_gen | |
| - morphim_ifactm | |
| - morphimR | |
| - leq_homg | |
| - morphimS | |
| - morphpreJ | |
| - morphimEsub | |
| - ker_invm | |
| - injm_subcent | |
| - morphimMr | |
| - ker_factm | |
| - sub_morphim_pre | |
| - isom_sgval | |
| - morphim_groupset | |
| - morphpre_norms | |
| - morphpreE | |
| - morphpre_comp | |
| - nclasses_injm | |
| - morphim_comp | |
| - factm_morphM | |
| - injmSK | |
| - ltn_morphim | |
| - ker_normal | |
| - path: mathcomp/fingroup/quotient.v | |
| theorems: | |
| - coset_idr | |
| - quotient_norm | |
| - morphpre_qisom | |
| - card_homg | |
| - injm_qisom | |
| - sub_cosetpre_quo | |
| - homg_quotientS | |
| - quotient_class | |
| - index_injm | |
| - cosetpre_cent1 | |
| - weak_second_isog | |
| - im_qisom_proof | |
| - quotient_cents | |
| - quotient0 | |
| - quotientGI | |
| - quotient_inj | |
| - quotientE | |
| - dvdn_morphim | |
| - quotientMidr | |
| - kercoset_rcoset | |
| - norm_quotient_pre | |
| - im_qisom | |
| - coset_default | |
| - morphim_qisom_inj | |
| - quotient_abelian | |
| - quotientS | |
| - coprime_morph | |
| - ltn_quotient | |
| - qisom_inj | |
| - quotientMr | |
| - card_quotient_subnorm | |
| - second_isog | |
| - inv_quotientN | |
| - index_quotient_eq | |
| - cosetpre_cent | |
| - cosetpreK | |
| - coset_kerl | |
| - divg_normal | |
| - quotient_proper | |
| - third_isog | |
| - quotient1_isom | |
| - quotientMl | |
| - quotientU | |
| - quotient_gen | |
| - coset_norm | |
| - sub_quotient_pre | |
| - third_isom | |
| - val_coset | |
| - quotientJ | |
| - qisom_isog | |
| - coprime_morphl | |
| - index_morphim | |
| - qisom_isom | |
| - cosetpre_proper | |
| - cosetpre_cent1s | |
| - coset_mem | |
| - quotient1 | |
| - qisom_ker_proof | |
| - cosetpre_set1 | |
| - logn_morphim | |
| - quotient_subcent | |
| - cosetP | |
| - im_coset | |
| - trivg_quotient | |
| - quotient_isog | |
| - quotientSK | |
| - cosetpre_subcent | |
| - quotient_norms | |
| - coset_mulP | |
| - card_cosetpre | |
| - quotmE | |
| - coset_one_proof | |
| - mem_repr_coset | |
| - quotient_sub1 | |
| - quotientS1 | |
| - qisomE | |
| - coset1 | |
| - first_isom | |
| - coset_range_mul | |
| - coset_reprK | |
| - quotientD1 | |
| - quotient_subnormG | |
| - first_isog | |
| - quotient_subnorm | |
| - cosetpre_normal | |
| - quotientGK | |
| - first_isog_loc | |
| - imset_coset | |
| - quotient_cent1s | |
| - cosetpre_set1_coset | |
| - qisom_restr_proof | |
| - morphim_qisom | |
| - quotientR | |
| - sub_im_coset | |
| - quotientV | |
| - cosetpreM | |
| - quotientInorm | |
| - coset1_injm | |
| - coset_kerr | |
| - val_coset_prim | |
| - quotm_dom_proof | |
| - quotientSGK | |
| - quotientY | |
| - normal_cosetpre | |
| - ker_coset | |
| - inv_quotientS | |
| - card_morphpre | |
| - coset_invP | |
| - quotientIG | |
| - cosetpre_subcent1 | |
| - dvdn_quotient | |
| - coset_oneP | |
| - coset_morphM | |
| - index_morphpre | |
| - ker_quotm | |
| - repr_coset_norm | |
| - coset_id | |
| - coprime_morphr | |
| - quotient_isom | |
| - quotientD | |
| - coset_range_inv | |
| - index_quotient_ker | |
| - quotientK | |
| - restrm_quotientE | |
| - quotient_homg | |
| - morphim_quotm | |
| - im_quotient | |
| - card_quotient | |
| - quotientT | |
| - val_quotient | |
| - index_cosetpre | |
| - repr_coset1 | |
| - cosetpreSK | |
| - quotientYidr | |
| - index_quotient | |
| - mem_quotient | |
| - card_morphim | |
| - quotient_injG | |
| - quotient_cent1 | |
| - quotient_set1 | |
| - leq_quotient | |
| - first_isom_loc | |
| - injm_quotm | |
| - sub_cosetpre | |
| - cosetpre_gen | |
| - quotientI | |
| - quotm_ker_proof | |
| - quotient_setIpre | |
| - quotient_subcent1 | |
| - quotientDG | |
| - quotient1_isog | |
| - quotientYidl | |
| - quotient_cent | |
| - classes_quotient | |
| - cosetpre_cents | |
| - ker_coset_prim | |
| - quotient_normG | |
| - val_qisom | |
| - char_from_quotient | |
| - quotientYK | |
| - quotientMidl | |
| - quotient_neq1 | |
| - second_isom | |
| - path: mathcomp/ssreflect/fintype.v | |
| theorems: | |
| - existsb | |
| - negb_exists_in | |
| - proper_card | |
| - enumP | |
| - ordS_subproof | |
| - predX_prod_enum | |
| - exists_inPn | |
| - mem_sub_enum | |
| - exists_eq_inP | |
| - eq_rlshift | |
| - eq_card_trans | |
| - lift_max | |
| - bij_on_image | |
| - disjointU | |
| - card2 | |
| - proper_subn | |
| - subxx_hint | |
| - eqfun_inP | |
| - flatten_imageP | |
| - cardC | |
| - f_iinv | |
| - ord_pred_bij | |
| - card_sig | |
| - bumpS | |
| - tag_enumP | |
| - in_iinv_f | |
| - eq_lrshift | |
| - ltn_ord | |
| - subxx | |
| - enum_val_nth | |
| - subset_leq_card | |
| - rev_ord_proof | |
| - subset_cons | |
| - card0 | |
| - ord_pred_subproof | |
| - unit_enumP | |
| - size_enum_ord | |
| - fin_all_exists2 | |
| - image_injP | |
| - enum_default | |
| - card_option | |
| - sub_enum_uniq | |
| - mem_ord_enum | |
| - eq_disjoint | |
| - negb_forall | |
| - exists_inP | |
| - card_gt0P | |
| - forallPP | |
| - disjoint_cat | |
| - card_prod | |
| - inordK | |
| - dinjectiveP | |
| - seq_sub_axiom | |
| - unlift_subproof | |
| - enum_rankK_in | |
| - enum_rank_ord | |
| - leq_ord | |
| - eq_existsb | |
| - cast_ord_inj | |
| - enum_uniq | |
| - f_invF | |
| - void_enumP | |
| - codomP | |
| - eq_disjoint_r | |
| - card_image | |
| - splitK | |
| - invF_f | |
| - subset_catl | |
| - card_uniqP | |
| - codom_val | |
| - eq_disjoint1 | |
| - disjoint0 | |
| - disjoint_has | |
| - eq_card | |
| - sum_enum_uniq | |
| - bumpK | |
| - size_codom | |
| - eq_card | |
| - lift_subproof | |
| - max_card | |
| - card_ord | |
| - card_seq_sub | |
| - enum_ordSr | |
| - leq_bump | |
| - codom_f | |
| - rshift_subproof | |
| - subset_pred1 | |
| - card_gt2P | |
| - pred0P | |
| - subset_all | |
| - eq_lshift | |
| - card_void | |
| - card1 | |
| - cardX | |
| - eq_forallb_in | |
| - ord_predK | |
| - fin_all_exists | |
| - size_image | |
| - seq_subE | |
| - subset_cons2 | |
| - image_f | |
| - ord_enum_uniq | |
| - enum_val_bij | |
| - iinv_f | |
| - canF_invF | |
| - bij_on_codom | |
| - image_iinv | |
| - canF_RL | |
| - subset_eqP | |
| - cast_ord_proof | |
| - card_size | |
| - injectivePn | |
| - cardD1 | |
| - cardT | |
| - pred0Pn | |
| - proper_trans | |
| - preim_iinv | |
| - eq_card0 | |
| - enum_val_bij_in | |
| - extremumP | |
| - uniq_enumP | |
| - count_enumP | |
| - rshift_inj | |
| - lift_eqF | |
| - eq_invF | |
| - subsetP | |
| - lift0 | |
| - mem_image | |
| - mem_iinv | |
| - ordSK | |
| - eq_pick | |
| - imageP | |
| - forallPn | |
| - lshift_inj | |
| - pcan_enumP | |
| - disjointU1 | |
| - filter_subset | |
| - leq_card_in | |
| - forallP | |
| - enum1 | |
| - pre_image | |
| - prod_enumP | |
| - eq_disjoint0 | |
| - disjointWr | |
| - leq_image_card | |
| - seq_sub_pickleK | |
| - nth_codom | |
| - enum_ord0 | |
| - eq_subset_r | |
| - val_ord_enum | |
| - arg_minnP | |
| - fin_pickleK | |
| - eq_enum_rank_in | |
| - eq_rshift | |
| - nth_enum_rank_in | |
| - bumpDl | |
| - existsP | |
| - exists_inb | |
| - lift_inj | |
| - unlift_some | |
| - eq_card1 | |
| - cardU1 | |
| - nth_ord_enum | |
| - sub_ordK | |
| - mem_seq_sub_enum | |
| - option_enumP | |
| - splitP | |
| - disjointW | |
| - subset_leqif_card | |
| - disjoint_sym | |
| - cast_ordK | |
| - properE | |
| - unbumpS | |
| - card_le1P | |
| - fintype1P | |
| - nth_enum_rank | |
| - fintype0 | |
| - sub_ord_proof | |
| - enum_val_inj | |
| - eq_codom | |
| - mask_enum_ord | |
| - card_sum | |
| - card_le1_eqP | |
| - unlift_none | |
| - enum_ordSl | |
| - val_sub_enum | |
| - unbumpDl | |
| - card_sub | |
| - ord_pred_inj | |
| - enum0 | |
| - widen_ord_proof | |
| - map_preim | |
| - rev_ordK | |
| - enum_rank_subproof | |
| - unbumpKcond | |
| - liftK | |
| - enum_valK_in | |
| - inord_val | |
| - seq_sub_default | |
| - mem_sum_enum | |
| - ord_inj | |
| - ordS_bij | |
| - sub_proper_trans | |
| - canF_LR | |
| - rev_ord_inj | |
| - card_gt1P | |
| - card_codom | |
| - subset_trans | |
| - eq_existsb_in | |
| - inj_leq | |
| - card_preim | |
| - enum_rank_bij | |
| - subsetE | |
| - bij_eq_card | |
| - nth_image | |
| - index_enum_ord | |
| - subset_cardP | |
| - inj_card_bij | |
| - codomE | |
| - properP | |
| - enum_rankK | |
| - inj_card_onto | |
| - card1P | |
| - properxx | |
| - image_codom | |
| - eq_card_sub | |
| - card_tagged | |
| - eq_enum | |
| - existsPP | |
| - enumT | |
| - enum_rank_inj | |
| - card0_eq | |
| - image_pred0 | |
| - disjointFl | |
| - eq_card_prod | |
| - canF_sym | |
| - dinjectivePn | |
| - leq_card | |
| - eq_subset | |
| - card_in_image | |
| - eq_cardT | |
| - forall_inPP | |
| - disjoint_cons | |
| - subset_predT | |
| - eq_image | |
| - eqfunP | |
| - unliftP | |
| - card_unit | |
| - mem_enum | |
| - proper_sub_trans | |
| - disjoint_subset | |
| - subset_disjoint | |
| - eq_subxx | |
| - injF_bij | |
| - cardE | |
| - negb_forall_in | |
| - subsetPn | |
| - cast_ord_id | |
| - split_ordP | |
| - cast_ordKV | |
| - neq_bump | |
| - bool_enumP | |
| - mem_card1 | |
| - existsPn | |
| - val_enum_ord | |
| - cardC1 | |
| - unbumpK | |
| - injectiveP | |
| - subset_filter | |
| - iinv_proof | |
| - disjointFr | |
| - map_subset | |
| - leq_bump2 | |
| - ord1 | |
| - subset_cat2 | |
| - enum_valK | |
| - enum_val_ord | |
| - enum_valP | |
| - disjoint1 | |
| - path: mathcomp/ssreflect/bigop.v | |
| theorems: | |
| - sub_le_big_seq_cond | |
| - pair_big_idem | |
| - big_enum_val_cond | |
| - leq_bigmax_seq | |
| - big_ord_narrow_cond | |
| - big_distrl | |
| - big_enum_cond | |
| - big_split_ord | |
| - big_has | |
| - big_ord1_cond | |
| - some_big_AC_mk_monoid | |
| - sum1_count | |
| - big_geq_mkord | |
| - big_ord_narrow | |
| - big_mkcondl_idem | |
| - addmC | |
| - exchange_big_dep | |
| - big_allpairs_idem | |
| - big_nat_rev | |
| - exchange_big_dep_nat | |
| - sum_nat_seq_eq1 | |
| - big_mkcondr | |
| - big_allpairs_dep | |
| - mulmAC | |
| - big_nat_widenl | |
| - oopC_subdef | |
| - le_big_nat_cond | |
| - deprecated_filter_index_enum | |
| - big_ord_recr | |
| - big_cat_idem | |
| - big_nat1_cond_eq | |
| - big_nat_mul | |
| - mulmCA | |
| - partition_big | |
| - bigmax_eq_arg | |
| - sum1_card | |
| - exchange_big_nat_idem | |
| - big_ltn | |
| - mulm1 | |
| - idem_sub_le_big_cond | |
| - mem_index_iota | |
| - big_image_cond | |
| - sum_nat_eq0 | |
| - big_ord_narrow_leq | |
| - prodn_gt0 | |
| - bigA_distr_big_dep | |
| - big_mask_tuple | |
| - big_add1 | |
| - big_mkord | |
| - eq_big_op | |
| - oop1x_subdef | |
| - big_rmcond_in_idem | |
| - big_enum_rank | |
| - eq_big_idx_seq | |
| - mulmACA | |
| - mem_index_enum | |
| - prod_nat_const_nat | |
| - big_rem_AC | |
| - big_rmcond_idem | |
| - eq_bigmax_cond | |
| - bigID_idem | |
| - le_big_nat | |
| - prod_nat_seq_eq1 | |
| - big_map | |
| - foldl_idx | |
| - oopA_subdef | |
| - perm_big_supp_cond | |
| - big_rcons_op | |
| - eq_big_nat | |
| - big_geq | |
| - bigD1 | |
| - bigmax_sup | |
| - sub_le_big | |
| - big_bool | |
| - uniq_sub_le_big | |
| - oACE | |
| - big_condT | |
| - big_rec | |
| - oopx1_subdef | |
| - idem_sub_le_big | |
| - big_nat_cond | |
| - big_allpairs | |
| - big_andE | |
| - uniq_sub_le_big_cond | |
| - leq_sum | |
| - eq_big_idx | |
| - card_bseq | |
| - sig_big_dep | |
| - big_id_idem_AC | |
| - congr_big_nat | |
| - big_seq_cond | |
| - big_nth | |
| - big_split | |
| - mul1m | |
| - big_change_idx | |
| - iteropE | |
| - telescope_sumn_in | |
| - bigmax_leqP | |
| - mulC_dist | |
| - big_undup | |
| - big_mkcond | |
| - big_mask | |
| - big1_idem | |
| - big_rec3 | |
| - pair_bigA_idem | |
| - perm_big | |
| - big_andbC | |
| - big_distr_big_dep | |
| - big1 | |
| - big_AC_mk_monoid | |
| - subset_le_big | |
| - prodn_cond_gt0 | |
| - index_enum_uniq | |
| - leq_prod | |
| - big_cat_nested | |
| - big_image | |
| - opCA | |
| - big_load | |
| - sub_in_le_big | |
| - prod_nat_const | |
| - big_allpairs_dep_idem | |
| - reindex | |
| - mul0m | |
| - big_ind3 | |
| - big_pred0_eq | |
| - big_rmcond | |
| - big_enumP | |
| - expn_sum | |
| - pair_big_dep | |
| - big_pred1_eq_id | |
| - big_cat_nat_idem | |
| - big_enum_val | |
| - exchange_big_idem | |
| - telescope_big | |
| - sum_nat_eq1 | |
| - exchange_big_nat | |
| - pair_big | |
| - big_undup_iterop_count | |
| - sum_nat_const | |
| - exchange_big | |
| - big_flatten | |
| - big_const_nat | |
| - big_cat_nat | |
| - biglcmn_sup | |
| - big_distr_big | |
| - big_pred1_id | |
| - big_ind2 | |
| - big_hasC | |
| - big_map_id | |
| - big_catl | |
| - biggcdn_inf | |
| - reindex_onto | |
| - foldrE | |
| - bigU | |
| - big_distrlr | |
| - mulC_zero | |
| - sum1_size | |
| - mulmDr | |
| - big_const_idem | |
| - big_ind | |
| - prod_nat_seq_neq1 | |
| - sub_le_big_seq | |
| - big_has_cond | |
| - big_filter | |
| - big_ord0 | |
| - prod_nat_seq_eq0 | |
| - eq_big_seq | |
| - big_rev_mkord | |
| - bigmax_leqP_seq | |
| - mulmDl | |
| - big_endo | |
| - big_const_ord | |
| - big_nat1 | |
| - congr_big | |
| - big1_eq | |
| - dvdn_biglcmP | |
| - bigD1_seq | |
| - big_const | |
| - exchange_big_dep_idem | |
| - mulC_id | |
| - mulmA | |
| - sumnE | |
| - big_catr | |
| - sum_nat_seq_eq0 | |
| - big_rmcond_in | |
| - big_id_idem | |
| - leqif_sum | |
| - pair_big_dep_idem | |
| - big_enum | |
| - perm_big_supp | |
| - leq_bigmax_cond | |
| - big_cons | |
| - bigA_distr_big | |
| - big_ord_recl | |
| - foldlE | |
| - reindex_inj | |
| - big_seq1 | |
| - leq_bigmax | |
| - big_mkcondl | |
| - big1_seq | |
| - big_mkcondr_idem | |
| - big_filter_cond | |
| - mulm0 | |
| - prod_nat_seq_neq0 | |
| - sum_nat_const_nat | |
| - eq_bigl_supp | |
| - sum_nat_seq_neq0 | |
| - bigID | |
| - big_rem | |
| - sumnB | |
| - big_ord_widen_cond | |
| - big_ord1 | |
| - big_seq | |
| - addmAC | |
| - big_nat_recr | |
| - big_pred1 | |
| - big_addn | |
| - big_morph | |
| - big_index_uniq | |
| - big_pred0 | |
| - big_ltn_cond | |
| - bigU_idem | |
| - telescope_sumn | |
| - big_ord_widen_leq | |
| - big_pmap | |
| - big_pred1_eq | |
| - big_if | |
| - index_enum_key | |
| - bigmax_sup_seq | |
| - big_only1 | |
| - mulmC | |
| - big_nil | |
| - addmCA | |
| - big_nat_widen | |
| - eq_bigr | |
| - add0m | |
| - pair_bigA | |
| - big_nat1_id | |
| - big_seq1_id | |
| - big_split_idem | |
| - big_nseq | |
| - le_big_ord | |
| - big_all | |
| - big_const_seq | |
| - big_mkcond_idem | |
| - partition_big_idem | |
| - bigD1_ord | |
| - big_ord_widen | |
| - cardD1x | |
| - exchange_big_dep_nat_idem | |
| - path: mathcomp/algebra/rat.v | |
| theorems: | |
| - normr_num_div | |
| - rat_linear | |
| - denq_mulr_sign | |
| - Qint_def | |
| - mulVq | |
| - le_rat0 | |
| - fracq_eq | |
| - sgr_denq | |
| - frac0q | |
| - oppq_frac | |
| - fracq_opt_subdefE | |
| - lerq0 | |
| - invq_frac | |
| - mulqC | |
| - mulq_def | |
| - ler_rat | |
| - ler0q | |
| - coprimeq_den | |
| - mulqA | |
| - divqP | |
| - sgr_scalq | |
| - sgr_numq_div | |
| - norm_ratN | |
| - numqN | |
| - ratzE | |
| - coprime_num_den | |
| - rat0 | |
| - rat_eq | |
| - sgr_numq | |
| - minr_rat | |
| - le_rat0M | |
| - rat_vm_compute | |
| - addq_subdefC | |
| - mulq_addl | |
| - fracqE | |
| - denq_gt0 | |
| - ratzM | |
| - gt_rat0 | |
| - absz_denq | |
| - add0q | |
| - rat_eqE | |
| - is_natE | |
| - lt_ratE | |
| - addq_def | |
| - invq0 | |
| - numq_sign_mul | |
| - Qnat_def | |
| - addq_frac | |
| - truncP | |
| - numqK | |
| - valq_frac | |
| - numq_lt0 | |
| - ratr_is_additive | |
| - ratr_norm | |
| - rpred_rat | |
| - signr_scalq | |
| - mulq_subdefE | |
| - fracq_eq0 | |
| - denqVz | |
| - nonzero1q | |
| - ratzN | |
| - intq_eq0 | |
| - divq_num_den | |
| - rat1 | |
| - ratz_frac | |
| - floor_rat | |
| - fmorph_eq_rat | |
| - numq_div_lt0 | |
| - RatK | |
| - le_ratE | |
| - QnatP | |
| - ltr_rat | |
| - fracq_subproof | |
| - fracqMM | |
| - ltr0q | |
| - denqN | |
| - invq_def | |
| - den_fracq | |
| - numq_int | |
| - numq_ge0 | |
| - valqK | |
| - fracqP | |
| - ge_rat0_norm | |
| - coprimeq_num | |
| - denq_norm | |
| - ratr_int | |
| - le_rat0_anti | |
| - scalq_def | |
| - normr_denq | |
| - denq_lt0 | |
| - is_intE | |
| - addNq | |
| - addqA | |
| - le_rat_total | |
| - denq_eq0 | |
| - numq_eq0 | |
| - ratr_sg | |
| - maxr_rat | |
| - ratr_nat | |
| - subq_ge0 | |
| - mulq_frac | |
| - oppq_def | |
| - ratzD | |
| - addq_subdefA | |
| - mulq_subdefC | |
| - ratr_is_multiplicative | |
| - addq_subdefE | |
| - scalq_eq0 | |
| - ge_rat0 | |
| - lt_rat_def | |
| - numq_gt0 | |
| - fmorph_rat | |
| - val_fracq | |
| - rat_ring_theory | |
| - denq_int | |
| - num_fracq | |
| - fracq_opt_subdef_id | |
| - le_rat0D | |
| - denq_neq0 | |
| - lt_rat0 | |
| - ratP | |
| - ceil_rat | |
| - numqE | |
| - denqP | |
| - path: mathcomp/solvable/alt.v | |
| theorems: | |
| - Alt_index | |
| - rfd_odd | |
| - trivial_Alt_2 | |
| - rgdP | |
| - not_simple_Alt_4 | |
| - Alt_subset | |
| - simple_Alt5_base | |
| - Sym_trans | |
| - Alt_trans | |
| - Alt_normal | |
| - Alt_norm | |
| - Alt_even | |
| - rfd_funP | |
| - rfd_iso | |
| - card_Sym | |
| - aperm_faithful | |
| - rfdP | |
| - path: mathcomp/solvable/cyclic.v | |
| theorems: | |
| - morph_generator | |
| - orderXpnat | |
| - has_prim_root_subproof | |
| - quotient_cyclic | |
| - cyclicY | |
| - morphim_cyclic | |
| - order_inj_cyclic | |
| - Zp_unit_isom | |
| - cyclicP | |
| - expg_cardG | |
| - order_inf | |
| - cyclic_dprod | |
| - field_mul_group_cyclic | |
| - Aut_prime_cyclic | |
| - im_cyclem | |
| - cyclic1 | |
| - Zp_unitmM | |
| - eltmM | |
| - card_Aut_cycle | |
| - totient_gen | |
| - cycle_generator | |
| - order_dvdG | |
| - isog_cyclic | |
| - orderXexp | |
| - eltmE | |
| - cycleMsub | |
| - div_ring_mul_group_cyclic | |
| - sub_cyclic_char | |
| - eq_subG_cyclic | |
| - morph_order | |
| - Aut_cyclic_abelian | |
| - im_Zp_unitm | |
| - cardSg_cyclic | |
| - cyclemM | |
| - Zp_unit_isog | |
| - injm_generator | |
| - im_Zpm | |
| - cycle_cyclic | |
| - cyclicJ | |
| - ZpmM | |
| - metacyclicP | |
| - Euler_exp_totient | |
| - generator_cycle | |
| - Aut_prime_cycle_cyclic | |
| - generator_coprime | |
| - cyclic_abelian | |
| - expgK | |
| - Aut_cycle_abelian | |
| - isog_cyclic_card | |
| - metacyclic1 | |
| - Zp_isom | |
| - injm_cyclem | |
| - cycleM | |
| - orderXgcd | |
| - cyclicS | |
| - nt_prime_order | |
| - sum_totient_dvd | |
| - cyclic_metacyclic | |
| - Zp_isog | |
| - field_unit_group_cyclic | |
| - quotient_cycle | |
| - expg_znat | |
| - orderXdvd | |
| - cyclic_small | |
| - expg_zneg | |
| - im_eltm | |
| - cycle_sub_group | |
| - orderXpfactor | |
| - nt_gen_prime | |
| - eltm_id | |
| - has_prim_root | |
| - orderM | |
| - injm_Zpm | |
| - eq_expg_mod_order | |
| - cyclicM | |
| - units_Zp_cyclic | |
| - injm_eltm | |
| - order_dvdn | |
| - dvdn_prime_cyclic | |
| - metacyclicS | |
| - card_Aut_cyclic | |
| - generator_order | |
| - orderXprime | |
| - injm_cyclic | |
| - cycle_subgroup_char | |
| - sum_ncycle_totient | |
| - path: mathcomp/field/algC.v | |
| theorems: | |
| - Cint_Cnat | |
| - conjL_nt | |
| - Cnat_sum_eq1 | |
| - minCpoly_subproof | |
| - Crat_divring_closed | |
| - eqCmod_refl | |
| - mulA | |
| - sqrtK | |
| - floorCK | |
| - conj_is_semi_additive | |
| - natCK | |
| - floorC0 | |
| - norm_Cint_ge1 | |
| - norm_eq0 | |
| - minCpoly_eq0 | |
| - truncCX | |
| - CratP | |
| - dvdC_zmod | |
| - Creal1 | |
| - algC_invautK | |
| - getCratK | |
| - eqCmod_nat | |
| - Cint_int | |
| - minCpoly_aut | |
| - addA | |
| - LtoC_K | |
| - dvdC0 | |
| - sposD | |
| - algCreal_Im | |
| - eqCmodDr | |
| - dvdC_trans | |
| - truncCK | |
| - eqCmod0_nat | |
| - rpred_Crat | |
| - Creal_Crat | |
| - conjK | |
| - Crat1 | |
| - nz2 | |
| - truncC_def | |
| - Cnat_gt0 | |
| - posJ | |
| - Cnat_norm_Cint | |
| - floorCM | |
| - conj_Cnat | |
| - floorCD | |
| - truncC1 | |
| - dvdCP_nat | |
| - eq_root_is_equiv | |
| - aut_Cnat | |
| - truncCD | |
| - dvdC_mul2l | |
| - mulC | |
| - Creal0 | |
| - rpredZ_Cint | |
| - raddfZ_Cint | |
| - eqCmod_transl | |
| - add0 | |
| - normM | |
| - sposDl | |
| - eqCmod_transr | |
| - truncC0Pn | |
| - zCdivE | |
| - dvdC_mulr | |
| - CnatEint | |
| - Crat_aut | |
| - eqCmodN | |
| - Creal_Cnat | |
| - posE | |
| - Cnat_nat | |
| - minCpoly_monic | |
| - addN | |
| - algC_autK | |
| - Cint_rat | |
| - eqCmodMl0 | |
| - leB | |
| - intCK | |
| - eqCmodDl | |
| - truncC_gt0 | |
| - CintP | |
| - normD | |
| - mul2I | |
| - algCi_subproof | |
| - conj_is_additive | |
| - Cnat_aut | |
| - dvdC_mul2r | |
| - eqCmod0 | |
| - algCrect | |
| - floorCX | |
| - pos_linear | |
| - Cnat0 | |
| - eqCmodm0 | |
| - iJ | |
| - algCreal_Re | |
| - CtoL_inj | |
| - CnatP | |
| - CtoL_K | |
| - eqCmodMr0 | |
| - Cnat_mul_eq1 | |
| - Cint_normK | |
| - conj_is_multiplicative | |
| - size_minCpoly | |
| - conj_Crat | |
| - dvdCP | |
| - Cint0 | |
| - Crat_rat | |
| - CintE | |
| - ratCK | |
| - conj_Cint | |
| - dvdC_refl | |
| - normN | |
| - addC | |
| - Cint_aut | |
| - Cint_ler_sqr | |
| - eqCmodM | |
| - algC_invaut_subproof | |
| - archimedean | |
| - nz2 | |
| - getCrat_subproof | |
| - rpredZ_Cnat | |
| - dvd0C | |
| - mulD | |
| - raddfZ_Cnat | |
| - dvdC_mull | |
| - Cnat_exp_even | |
| - norm_Cnat | |
| - dvdC_int | |
| - rpred_Cnat | |
| - sqrMi | |
| - algC_invaut_is_additive | |
| - minCpolyP | |
| - algebraic | |
| - normE | |
| - conj_subproof | |
| - root_minCpoly | |
| - eqCmod_sym | |
| - nCdivE | |
| - CintEsign | |
| - normK | |
| - CtoL_P | |
| - truncC_itv | |
| - one_nz | |
| - floorC_def | |
| - floorCN | |
| - LtoC_subproof | |
| - sqr_Cint_ge1 | |
| - inv0 | |
| - CtoL_is_additive | |
| - closedFieldAxiom | |
| - Cnat1 | |
| - Cnat_ge0 | |
| - dvdC_nat | |
| - floorC1 | |
| - Creal_Cint | |
| - floorCpP | |
| - conj_nt | |
| - sqrtE | |
| - Crat0 | |
| - path: mathcomp/ssreflect/generic_quotient.v | |
| theorems: | |
| - left_trans | |
| - encModRelP | |
| - pi_DC | |
| - pi_morph1 | |
| - pi_mono2 | |
| - equal_toE | |
| - mpiE | |
| - reprP | |
| - quotW | |
| - encoded_equivP | |
| - eqquotE | |
| - equiv_refl | |
| - sortPx | |
| - reprK | |
| - pi_morph11 | |
| - eq_op_trans | |
| - eqmodP | |
| - equiv_sym | |
| - ereprK | |
| - eqmodP | |
| - eq_lock | |
| - equivQTP | |
| - equiv_rtrans | |
| - encModEquivP | |
| - equiv_ltrans | |
| - canon_id | |
| - piP | |
| - repr_ofK | |
| - pi_CD | |
| - encoded_equivE | |
| - quotP | |
| - encModRelE | |
| - sort_Sub | |
| - eqmodE | |
| - equiv_trans | |
| - encoded_equiv_is_equiv | |
| - eqmodE | |
| - eqquotP | |
| - qreprK | |
| - path: mathcomp/solvable/extraspecial.v | |
| theorems: | |
| - gtype_key | |
| - exponent_pX1p2n | |
| - card_pX1p2n | |
| - DnQ_extraspecial | |
| - isog_pX1p2 | |
| - isog_2extraspecial | |
| - rank_DnQ | |
| - exponent_pX1p2 | |
| - card_pX1p2 | |
| - pX1p2S | |
| - card_DnQ | |
| - DnQ_pgroup | |
| - isog_pX1p2n | |
| - rank_Dn | |
| - DnQ_P | |
| - Q8_extraspecial | |
| - gactP | |
| - Grp_pX1p2 | |
| - pX1p2n_extraspecial | |
| - actP | |
| - isog_2X1p2 | |
| - not_isog_Dn_DnQ | |
| - pX1p2_extraspecial | |
| - Ohm1_extraspecial_odd | |
| - pX1p2id | |
| - pX1p2n_pgroup | |
| - path: mathcomp/algebra/ssrnum.v | |
| theorems: | |
| - gtr_pMr | |
| - ler_nat | |
| - ger_pMl | |
| - lteifNl | |
| - lteifNr0 | |
| - lerDl | |
| - deg_le2_poly_ge0 | |
| - minr_nMr | |
| - rootC_gt0 | |
| - normC_sum_eq1 | |
| - lerN10 | |
| - ltr_wpMn2r | |
| - ler_ndivrMr | |
| - nmulr_llt0 | |
| - trunc_itv | |
| - degpN | |
| - nmulr_lge0 | |
| - deg2_poly_minE | |
| - lteifN2 | |
| - real_lerNnormlW | |
| - sqa2 | |
| - oppr_min | |
| - ler_distlBl | |
| - real_normrEsign | |
| - normr0 | |
| - ler_prod | |
| - natf_div | |
| - normrV | |
| - ler0_norm | |
| - lteif_nM2l | |
| - invCi | |
| - ImMr | |
| - le00 | |
| - mulr_sign_norm | |
| - rootC_ge0 | |
| - ltr0_ge_norm | |
| - invf_nlt | |
| - gtr0_sg | |
| - nat_num1 | |
| - mulrn_wge0 | |
| - rootCK | |
| - oppr_lt0 | |
| - pnatr_eq1 | |
| - ltr_nat | |
| - ImM | |
| - ler_distlDr | |
| - ltrDl | |
| - le0_add | |
| - ltr_pMn2r | |
| - natrK | |
| - conj_Creal | |
| - eqrXn2 | |
| - exprn_odd_le0 | |
| - agt0 | |
| - deg2_poly_factor | |
| - deltam | |
| - lteif_pM2l | |
| - normC2_rect | |
| - sqrtC0 | |
| - real_arg_minP | |
| - r1N | |
| - ler_normr | |
| - ltr_prod | |
| - deg2_poly_noroot | |
| - lerD2r | |
| - maxr_pMl | |
| - normrMsign | |
| - deg2_poly_ge0 | |
| - real_ler_distlCDr | |
| - ler_iXn2l | |
| - normr_real | |
| - ltrD2l | |
| - normr_unit | |
| - real_exprn_even_lt0 | |
| - ltr_pDr | |
| - subr_ge0 | |
| - conjC_ge0 | |
| - nneg_divr_closed | |
| - ler_wpMn2l | |
| - ler_pM2r | |
| - ler0_ge_norm | |
| - deg2_poly_root1 | |
| - deg_le2_poly_delta_le0 | |
| - posrE | |
| - leif_mean_square_scaled | |
| - trunc_subproof | |
| - Im_div | |
| - sqrtrV | |
| - deg2_poly_gt0l | |
| - ltr_distlCDr | |
| - big_real | |
| - subr_gt0 | |
| - real_mono | |
| - ltr1n | |
| - normrN1 | |
| - real_nmono | |
| - ger0_real | |
| - ler10 | |
| - poly_ivt | |
| - eqr_pMn2r | |
| - lef_nV2 | |
| - ger1_real | |
| - mul_conjC_ge0 | |
| - Nreal_ltF | |
| - subr_lteifr0 | |
| - eqr_norm2 | |
| - lerD | |
| - real_ler_distlCBl | |
| - subC_rect | |
| - ler_wnMn2l | |
| - ImE | |
| - exprn_even_gt0 | |
| - real_ler_normlW | |
| - leif_Re_Creal | |
| - ltr0Sn | |
| - invr_gt1 | |
| - ltr0_sqrtr | |
| - lteif_ndivlMr | |
| - real_ltgtP | |
| - imaginaryCE | |
| - ltr_distl | |
| - eqr_nat | |
| - mulr_ege1 | |
| - pmulr_lgt0 | |
| - real_maxNr | |
| - real_nmono_in | |
| - ler0_sqrtr | |
| - lerBlDl | |
| - pmulrn_rgt0 | |
| - leif_AGM_scaled | |
| - real_leif_norm | |
| - conjC_rect | |
| - lteif_norml | |
| - ltr01 | |
| - deg2_poly_le0 | |
| - le0N | |
| - subr_lt0 | |
| - geC0_conj | |
| - ler1n | |
| - sgr_gt0 | |
| - sqrtC_inj | |
| - lerMn2r | |
| - rootC_subproof | |
| - aa4gt0 | |
| - normrEsg | |
| - a4gt0 | |
| - normr_le0 | |
| - pmulrn_lle0 | |
| - real_oppr_max | |
| - deg2_poly_lt0m | |
| - rootC_gt1 | |
| - intrE | |
| - ImV | |
| - sqrtC1 | |
| - conjC1 | |
| - ler_rootC | |
| - leifBRL | |
| - ltr_nnorml | |
| - aneq0 | |
| - le_total | |
| - ler_normlP | |
| - eqC_semipolar | |
| - ler_leVge | |
| - ler_wnM2l | |
| - exprn_even_lt0 | |
| - ltf_nV2 | |
| - ltr0n | |
| - ler_pMn2r | |
| - prod_real | |
| - ltr_nDl | |
| - mulr_gt0 | |
| - real0 | |
| - ltr_eXnr | |
| - nat_num0 | |
| - deg2_poly_lt0r | |
| - gtr_nMr | |
| - aneq0 | |
| - deg2_poly_le0r | |
| - poly_itv_bound | |
| - invf_ngt | |
| - lteif_ndivrMl | |
| - lerD2l | |
| - real_mono_in | |
| - minr_to_max | |
| - real_lteif_norml | |
| - normM | |
| - normr1 | |
| - rootCMr | |
| - real_ltr_distlDr | |
| - sqrtr_gt0 | |
| - conjCN1 | |
| - Creal_Im | |
| - gtrBl | |
| - gtr0_le_norm | |
| - pmulr_rlt0 | |
| - oppr_ge0 | |
| - normM | |
| - nz2 | |
| - lt0_cp | |
| - sqrtC_eq0 | |
| - realNEsign | |
| - nposrE | |
| - deg2_poly_max | |
| - a4gt0 | |
| - lerNnormlW | |
| - nmulr_rge0 | |
| - ler_sqr | |
| - b2a | |
| - pexpIrn | |
| - ler_pMl | |
| - deg2_poly_root1 | |
| - ler_ltB | |
| - ler_nMr | |
| - minrN | |
| - real_ltgt0P | |
| - ltr_prod_nat | |
| - lteif_pdivrMr | |
| - le_total | |
| - ltrN10 | |
| - ler_pMr | |
| - ler_peMr | |
| - int_num1 | |
| - exprn_gt0 | |
| - ltrBrDl | |
| - leif_sum | |
| - sqr_sqrtr | |
| - sgr_norm | |
| - lerBrDl | |
| - normr_nneg | |
| - deltaN | |
| - mulrIn | |
| - sgr0 | |
| - normr0P | |
| - mulr_Nsign_norm | |
| - realN | |
| - ler_wnDl | |
| - deg2_poly_ge0r | |
| - deg2_poly_gt0r | |
| - lteif01 | |
| - mulr_sg_eqN1 | |
| - conjC0 | |
| - pmulr_rle0 | |
| - exprn_even_ge0 | |
| - invf_gt1 | |
| - real_leP | |
| - eq0_norm | |
| - maxNr | |
| - ImMl | |
| - rootC0 | |
| - gt_ge | |
| - normr_prod | |
| - minr_nMl | |
| - real_leif_mean_square | |
| - natrG_neq0 | |
| - ltrB | |
| - Crect | |
| - prodr_gt0 | |
| - invf_le1 | |
| - lteifBrDr | |
| - deltam | |
| - sgrP | |
| - addr_max_min | |
| - degpN | |
| - eqr_normN | |
| - rootC_lt0 | |
| - deg2_poly_root2 | |
| - ler_neMr | |
| - lt_le | |
| - ler_nMn2l | |
| - sgrV | |
| - ler_nV2 | |
| - root1C | |
| - nz2 | |
| - neq0Ci | |
| - mulrn_wlt0 | |
| - leif_0_sum | |
| - signr_le0 | |
| - mulr_le0 | |
| - eqr_norm_id | |
| - nmulrn_rgt0 | |
| - invr_lt0 | |
| - eqr_sqrtC | |
| - deg2_poly_factor | |
| - ler_wpDr | |
| - ltr0_sg | |
| - expr_ge1 | |
| - ltr0_real | |
| - Re_lock | |
| - leN_total | |
| - ltr_iXnr | |
| - leif_pM | |
| - real_addr_minl | |
| - ler_ltD | |
| - sqrtC_ge0 | |
| - ltr_normr | |
| - sqrtCM | |
| - invf_plt | |
| - nnegrE | |
| - real_leif_AGM2 | |
| - invr_gt0 | |
| - lteifD2l | |
| - r2N | |
| - exprn_egt1 | |
| - argCleP | |
| - real_addr_closed | |
| - lteifD2r | |
| - mulrn_wgt0 | |
| - normr_nat | |
| - lerB_dist | |
| - sqrtC_gt0 | |
| - deg2_poly_le0l | |
| - lef_pV2 | |
| - splitr | |
| - deg2_poly_minE | |
| - deg2_poly_lt0 | |
| - nmulr_rgt0 | |
| - ler_wpM2r | |
| - gtr_pMl | |
| - posrE | |
| - ltr_distlDr | |
| - gerBl | |
| - addC_rect | |
| - ler_distD | |
| - sgr_id | |
| - gtr_nMl | |
| - ltr_pM2l | |
| - lern0 | |
| - expr_lt1 | |
| - realB | |
| - leif_normC_Re_Creal | |
| - le00 | |
| - ImMil | |
| - normCBeq | |
| - rootC1 | |
| - int_num_subring | |
| - CrealE | |
| - num_real | |
| - deg2_poly_gt0l | |
| - real_exprn_odd_lt0 | |
| - ltr_nMl | |
| - natf_indexg | |
| - leif_rootC_AGM | |
| - pmulrn_rge0 | |
| - sqrp_eq1 | |
| - leif_nM | |
| - real1 | |
| - addr_ge0 | |
| - neqr0_sign | |
| - invr_ge1 | |
| - real_ler_norm | |
| - lerDr | |
| - ltr_pMr | |
| - ltr_wnDl | |
| - oppr_gt0 | |
| - char_num | |
| - mulr_ge0_le0 | |
| - deg2_poly_gt0r | |
| - invr_ge0 | |
| - leif_pprod | |
| - ltr_normlP | |
| - ler_pdivlMl | |
| - invf_ple | |
| - signr_lt0 | |
| - real_addr_maxr | |
| - real_ler_distl | |
| - normCDeq | |
| - lerNr | |
| - poly_disk_bound | |
| - truncP | |
| - lt0r_neq0 | |
| - pos_divr_closed | |
| - real_ltr_distlCBl | |
| - Creal_ImP | |
| - numNEsign | |
| - ger0_norm | |
| - ltrgt0P | |
| - lteif_normr | |
| - addr_ss_eq0 | |
| - le01 | |
| - ltr_nwDl | |
| - realE | |
| - bigmin_real | |
| - mulr_egt1 | |
| - ler_iXnr | |
| - normCKC | |
| - nz2 | |
| - trunc_def | |
| - natrP | |
| - lerN2 | |
| - ger_pMr | |
| - ltr01 | |
| - naddr_eq0 | |
| - ieexprn_weq1 | |
| - ltr_wnDr | |
| - ler_norm | |
| - sqrtr_ge0 | |
| - deg2_poly_lt0m | |
| - sqrtrM | |
| - ltr_leD | |
| - ler_nnorml | |
| - ltrXn2r | |
| - ltr_ndivrMl | |
| - Nreal_gtF | |
| - deg2_poly_ge0 | |
| - lt0_add | |
| - ReMir | |
| - real_minr_nMr | |
| - gt0_cp | |
| - ler_eXnr | |
| - sgr_def | |
| - ltrr | |
| - rootC_eq1 | |
| - ltr0N1 | |
| - normC_sum_upper | |
| - le0r | |
| - addr_ge0 | |
| - paddr_eq0 | |
| - lerr | |
| - conj_normC | |
| - mulr_ge0 | |
| - pmulrnI | |
| - natrE | |
| - ltrBrDr | |
| - eqNr | |
| - real_addr_maxl | |
| - pmulr_rge0 | |
| - eqC | |
| - ltrn0 | |
| - lteif_pdivrMl | |
| - realn | |
| - lerB_real | |
| - min_real | |
| - pneq0 | |
| - minNr | |
| - numEsign | |
| - le0r | |
| - ltr_wpXn2r | |
| - leif_nat_r | |
| - invr_sg | |
| - boundP | |
| - leif_AGM2_scaled | |
| - real_leNgt | |
| - sqrtC_lt0 | |
| - sgrN | |
| - deg2_poly_ge0l | |
| - gtr0_real | |
| - ReMl | |
| - truncP | |
| - ler_wMn2r | |
| - real_comparable | |
| - rootC_le0 | |
| - ler_niMl | |
| - realEsqr | |
| - lteifBlDl | |
| - ltr_pM2r | |
| - maxr_nMl | |
| - max_real | |
| - leif_AGM2 | |
| - ler_normlW | |
| - normrEsign | |
| - Re_is_additive | |
| - rootC_Re_max | |
| - leifBLR | |
| - rootC_le1 | |
| - rootC_lt1 | |
| - real_ltr_normr | |
| - invC_Crect | |
| - lteifNr | |
| - real_ltP | |
| - ltr_nDr | |
| - deg2_poly_ge0r | |
| - exprn_odd_gt0 | |
| - mulr_ge0_gt0 | |
| - nnegrE | |
| - deg2_poly_lt0l | |
| - realn_mono_in | |
| - ler_pM | |
| - real_minrN | |
| - ler_norml | |
| - ler_distlCDr | |
| - deg2_poly_le0m | |
| - signr_gt0 | |
| - nmulr_lgt0 | |
| - sqr_ge0 | |
| - deg2_poly_factor | |
| - pmulr_rgt0 | |
| - ger_nMr | |
| - ltrD | |
| - norm_conjC | |
| - realn_nmono | |
| - real_ltr_distlCDr | |
| - rectC_mulr | |
| - ltr_distlBl | |
| - ltr_pdivlMr | |
| - ltrMn2r | |
| - realn_nmono_in | |
| - ger0P | |
| - invf_nge | |
| - realV | |
| - ger0_def | |
| - ler_pdivrMl | |
| - midf_lt | |
| - sgr1 | |
| - deg2_poly_root2 | |
| - real_ler_normr | |
| - sqrtr0 | |
| - normr_id | |
| - ler_pV2 | |
| - nmulrn_rge0 | |
| - neg_unity_root | |
| - ltrNr | |
| - ler_weXn2l | |
| - pexpr_eq1 | |
| - real_leif_AGM2_scaled | |
| - real_exprn_odd_ge0 | |
| - deg2_poly_root2 | |
| - ltr_nM2l | |
| - mulrn_eq0 | |
| - sqrCK | |
| - sgr_nat | |
| - sgr_le0 | |
| - le0_cp | |
| - le0_mul | |
| - ltrN2 | |
| - pmulrn_lgt0 | |
| - ltr_normlW | |
| - exprn_ile1 | |
| - ltrNnormlW | |
| - eqr_norml | |
| - ler_eXn2l | |
| - real_maxrN | |
| - real_minr_nMl | |
| - midf_le | |
| - conjCi | |
| - Re_conj | |
| - subr_comparable0 | |
| - eqr_rootC | |
| - ler_pM2l | |
| - deg2_poly_gt0m | |
| - deg2_poly_maxE | |
| - lteif_nM2r | |
| - nmulr_lle0 | |
| - real_ltr_normlP | |
| - invf_pgt | |
| - lteif_pdivlMl | |
| - nonRealCi | |
| - mul_conjC_gt0 | |
| - le_trans | |
| - ler_ndivrMl | |
| - ltr_pV2 | |
| - nmulrn_rle0 | |
| - lerBrDr | |
| - normC_rect | |
| - real_ler_distlDr | |
| - le_def | |
| - invf_ge1 | |
| - Creal_Re | |
| - sum_real | |
| - ltrBlDr | |
| - ltrgtP | |
| - deg2_poly_gt0 | |
| - CrealP | |
| - normr_gt0 | |
| - normC2_Re_Im | |
| - ler_sqrtC | |
| - deg2_poly_factor | |
| - realD | |
| - prodr_ge0 | |
| - real_wlog_ltr | |
| - ltr_leB | |
| - realrM | |
| - ltr_nV2 | |
| - real_ge0P | |
| - ler1_real | |
| - Creal_ReP | |
| - ler_real | |
| - deg2_poly_min | |
| - ltr_pDl | |
| - ler0_def | |
| - deg2_poly_root1 | |
| - ler_distlC | |
| - sgrM | |
| - realEsg | |
| - Im_rect | |
| - real_mulr_sign_norm | |
| - eqrMn2r | |
| - rootCMl | |
| - real_ltr_norml | |
| - Im_is_additive | |
| - deg2_poly_ge0l | |
| - addr_min_max | |
| - mulr_lt0 | |
| - pmulr_lge0 | |
| - ler_peMl | |
| - ltr0_neq0 | |
| - maxrN | |
| - ltr_ndivlMl | |
| - le_normD | |
| - real_wlog_ler | |
| - invC_norm | |
| - pmulr_rgt0 | |
| - comparable0r | |
| - divC_rect | |
| - real_minNr | |
| - exprCK | |
| - pexprn_eq1 | |
| - ler_wpDl | |
| - eqr_sqrt | |
| - CrealJ | |
| - comparabler_trans | |
| - exprn_ege1 | |
| - real_exprn_odd_gt0 | |
| - ler_distlCBl | |
| - real_maxr_nMr | |
| - natr_nat | |
| - sqrtrP | |
| - ltf_pV2 | |
| - conjC_nat | |
| - ler_distl | |
| - ler_addgt0Pl | |
| - realEsign | |
| - ler_piMr | |
| - ger_nMl | |
| - Cauchy_root_bound | |
| - pmulr_llt0 | |
| - normCi | |
| - ltr_pwDr | |
| - ltr_wpDl | |
| - sgr_eq0 | |
| - a2 | |
| - lteif_nnormr | |
| - leifD | |
| - ltr_pM | |
| - exprn_ge0 | |
| - realX | |
| - subr_le0 | |
| - ler_addgt0Pr | |
| - expr_le1 | |
| - ler_wpM2l | |
| - ler0N1 | |
| - real_maxr_nMl | |
| - lteif_ndivlMl | |
| - normC_sum_eq | |
| - xb4 | |
| - real_exprn_even_ge0 | |
| - ler01 | |
| - sqrtCK | |
| - ltr_ndivrMr | |
| - lerP | |
| - lerB | |
| - deg_le2_poly_delta_ge0 | |
| - lteif_pdivlMr | |
| - ltr_pMl | |
| - exprn_ilt1 | |
| - ltr_rootC | |
| - ImMir | |
| - lteif_ndivrMr | |
| - ltrBlDl | |
| - addr_maxr | |
| - real_leVge | |
| - ler_nMl | |
| - rootC_inj | |
| - lteifBrDl | |
| - ltW | |
| - ltr_norml | |
| - ltr_pMn2l | |
| - mulr_sg_eq1 | |
| - normr_lt0 | |
| - addr_maxl | |
| - lerNl | |
| - ler_ndivlMl | |
| - ler_wsqrtr | |
| - conjC_eq0 | |
| - numEsg | |
| - natrG_gt0 | |
| - Im_conj | |
| - ler_normB | |
| - natr_indexg_neq0 | |
| - sgr_lt0 | |
| - nat_num_semiring | |
| - divr_ge0 | |
| - normr_sg | |
| - rootC_ge1 | |
| - distrC | |
| - ltr_wMn2r | |
| - ltr_iXn2l | |
| - sqrtr_subproof | |
| - real_divr_closed | |
| - pmulrn_lge0 | |
| - signr_inj | |
| - real_ler_distlBl | |
| - ler_nM2l | |
| - normrN | |
| - real_mulr_Nsign_norm | |
| - ReMr | |
| - upper_nthrootP | |
| - deg2_poly_noroot | |
| - archi_boundP | |
| - num_real | |
| - divr_gt0 | |
| - ler0_real | |
| - real_ler_norml | |
| - ler_psqrt | |
| - normr_idP | |
| - ltr_sqr | |
| - a4 | |
| - oppr_le0 | |
| - minr_pMr | |
| - expr_gt1 | |
| - mulrn_wle0 | |
| - maxr_to_min | |
| - real_exprn_even_le0 | |
| - normr_sign | |
| - invC_rect | |
| - real_oppr_min | |
| - sgrX | |
| - Nreal_geF | |
| - lteifBlDr | |
| - psumr_eq0P | |
| - real_addr_minr | |
| - ler0n | |
| - exprn_even_le0 | |
| - invf_lt1 | |
| - geC0_unit_exp | |
| - lteif_distl | |
| - ler_sqrt | |
| - realMr | |
| - ltr_nM2r | |
| - realrMn | |
| - unitf_lt0 | |
| - pmulrn_llt0 | |
| - ger0_le_norm | |
| - Re_rect | |
| - sgr_smul | |
| - ReV | |
| - sqrCK_P | |
| - ltr_wpDr | |
| - mulr_le0_ge0 | |
| - real_eqr_norml | |
| - gtrDl | |
| - signr_ge0 | |
| - lt_def | |
| - normC_def | |
| - ler_neMl | |
| - oppC_rect | |
| - nmulr_rlt0 | |
| - rootCX | |
| - norm_rootC | |
| - deg2_poly_le0m | |
| - ler_wnDr | |
| - Im_lock | |
| - invr_le1 | |
| - ger0_def | |
| - Re_i | |
| - ltr_rootCl | |
| - sqrn_eq1 | |
| - sgr_cp0 | |
| - ltr_sqrtC | |
| - ler_dist_normD | |
| - real_lteif_normr | |
| - ltr_eXn2l | |
| - sqrtC_le0 | |
| - ler_dist_dist | |
| - ler_pXn2r | |
| - ltr_pdivlMl | |
| - mulC_rect | |
| - gtrN | |
| - invr_le0 | |
| - rootCV | |
| - subr_lteif0r | |
| - maxr_pMr | |
| - realM | |
| - deg2_poly_ge0m | |
| - lerBlDr | |
| - real_le0P | |
| - rootCpX | |
| - real_leif_mean_square_scaled | |
| - normf_div | |
| - rectC_mull | |
| - ler_pdivlMr | |
| - sumr_ge0 | |
| - deltaN | |
| - mul_conjC_eq0 | |
| - pmulr_lle0 | |
| - deg2_poly_root1 | |
| - gerDr | |
| - le_normD | |
| - lt01 | |
| - a2gt0 | |
| - mulCii | |
| - invr_lt1 | |
| - sqr_sg | |
| - eqCP | |
| - neq0_mulr_lt0 | |
| - lteif_pM2r | |
| - real_ler_normlP | |
| - subr_gt0 | |
| - a1 | |
| - real_ltNge | |
| - addr_minl | |
| - ltr10 | |
| - invf_pge | |
| - ReE | |
| - gerDl | |
| - ler_niMr | |
| - ltr_pXn2r | |
| - ler_pdivrMr | |
| - maxr_nMr | |
| - ltrD2r | |
| - pmulrn_rlt0 | |
| - ler_piMl | |
| - ltr_nMr | |
| - sqrtr1 | |
| - ltr_ndivlMr | |
| - rootC_eq0 | |
| - lteif0Nr | |
| - real_exprn_even_gt0 | |
| - eq0_norm | |
| - Re_div | |
| - ler_sum | |
| - pneq0 | |
| - sgrMn | |
| - path: mathcomp/solvable/sylow.v | |
| theorems: | |
| - nilpotent_maxp_normal | |
| - card_Syl_dvd | |
| - Baer_Suzuki | |
| - Sylow_exists | |
| - nil_class3 | |
| - pgroup_nil | |
| - nil_Zgroup_cyclic | |
| - Hall_pJsub | |
| - card_p2group_abelian | |
| - trivg_center_pgroup | |
| - morphim_Zgroup | |
| - Hall_psubJ | |
| - sub_nilpotent_cent2 | |
| - pgroup_fix_mod | |
| - nil_class2 | |
| - Syl_trans | |
| - pcore_sub_astab_irr | |
| - nilpotent_Hall_pcore | |
| - Sylow_setI_normal | |
| - Sylow_trans | |
| - Hall_setI_normal | |
| - nontrivial_gacent_pgroup | |
| - pgroup_sol | |
| - nil_class_pgroup | |
| - pcore_faithful_irr_act | |
| - p2group_abelian | |
| - Sylow's_theorem | |
| - small_nil_class | |
| - Sylow_subJ | |
| - normal_pgroup | |
| - Frattini_arg | |
| - max_pgroup_Sylow | |
| - nilpotent_pcoreC | |
| - card_Syl | |
| - coprime_mulG_setI_norm | |
| - pi_center_nilpotent | |
| - Sylow_subnorm | |
| - normal_sylowP | |
| - Sylow_gen | |
| - Sylow_transversal_gen | |
| - path: mathcomp/field/fieldext.v | |
| theorems: | |
| - size_Fadjoin_poly | |
| - Fadjoin0 | |
| - mulfxC | |
| - prodvAC | |
| - base_aspaceOver | |
| - minPolyxx | |
| - field_subvMr | |
| - field_module_eq | |
| - monic_minPoly | |
| - base_moduleOver | |
| - root_minPoly | |
| - mem1v | |
| - p0z0 | |
| - Fadjoin_nil | |
| - field_module_semisimple | |
| - sub1v | |
| - irredp_FAdjoin | |
| - baseField_scaleDr | |
| - aspaceOver_suproof | |
| - nz_p0 | |
| - Fadjoin_polyX | |
| - nonzero1fx | |
| - field_mem_algid | |
| - adjoin0_deg | |
| - subfx_irreducibleP | |
| - subfield_closed | |
| - subfx_inj_is_additive | |
| - map_minPoly | |
| - vspaceOver_refBase | |
| - subfx_scalerDr | |
| - Fadjoin_poly_is_linear | |
| - field_dimS | |
| - Fadjoin_polyC | |
| - pi_subfx_inj | |
| - minPolyOver | |
| - AEnd_lker0 | |
| - fieldExt_hornerX | |
| - modp_polyOver | |
| - subfx_poly_invE | |
| - dim_sup_field | |
| - poly_rV_modp_K | |
| - vsval_invf | |
| - Fadjoin_eq_sum | |
| - aimg_is_aspace | |
| - pi_subfext_add | |
| - subfx_scaleAr | |
| - subfx_inj_eval | |
| - dim_Fadjoin | |
| - AHom_lker0 | |
| - subfx_fieldAxiom | |
| - fieldOver_scaleAl | |
| - subfx_scalerA | |
| - polyOver_subvs | |
| - subfx_inj_base | |
| - polyOverSv | |
| - subfx_scalerDl | |
| - fieldOver_scaleE | |
| - subfx_inj_root | |
| - mem_aspaceOver | |
| - sup_field_module | |
| - baseField_scale1 | |
| - addfxC | |
| - Fadjoin_idP | |
| - baseField_vectMixin | |
| - pi_subfext_inv | |
| - addfxA | |
| - dim_vspaceOver | |
| - nz_p | |
| - baseField_scaleDl | |
| - Fadjoin_polyP | |
| - iotaPz_repr | |
| - adjoin_deg_eq1 | |
| - z0Ciota | |
| - iotaPz_modp | |
| - sub_baseField | |
| - add0fx | |
| - aspaceOverP | |
| - sub_adjoin1v | |
| - subfx_eval_is_additive | |
| - p0_mon | |
| - dim_aspaceOver | |
| - subfxEroot | |
| - subvs_fieldMixin | |
| - mempx_Fadjoin | |
| - fieldOver_scaleDl | |
| - field_module_dimS | |
| - prodvCA | |
| - gcdp_polyOver | |
| - fieldOver_scaleDr | |
| - root_small_adjoin_poly | |
| - aspace_divr_closed | |
| - baseVspace_module | |
| - mul1fx | |
| - prodvC | |
| - fieldOver_scaleA | |
| - FadjoinP | |
| - minPoly_irr | |
| - addfxN | |
| - mulfxA | |
| - fieldExt_hornerC | |
| - baseField_scaleA | |
| - F0ZEZ | |
| - pi_subfext_opp | |
| - equiv_subfext_is_equiv | |
| - adjoin_degree_aimg | |
| - subfx_scaleAl | |
| - prodv_is_aspace | |
| - subfx_eval_is_multiplicative | |
| - fieldExt_hornerZ | |
| - pi_subfext_mul | |
| - min_subfx_vect | |
| - subfx_evalZ | |
| - field_subvMl | |
| - algid1 | |
| - mem_baseVspace | |
| - baseField_scaleE | |
| - dim_cosetv | |
| - alg_polyOver | |
| - dim_baseVspace | |
| - trivial_fieldOver | |
| - nz_x_i | |
| - mulfx_addl | |
| - dim_field_module | |
| - subfx_inv0 | |
| - fieldOver_vectMixin | |
| - subfxE | |
| - Fadjoin_poly_mod | |
| - baseField_scaleAr | |
| - fieldOver_scaleAr | |
| - size_minPoly | |
| - Fadjoin1_polyP | |
| - vspaceOverP | |
| - minPolyS | |
| - Fadjoin_poly_eq | |
| - baseField_scaleAl | |
| - baseAspace_suproof | |
| - Fadjoin_polyOver | |
| - module_baseAspace | |
| - adjoin_degreeE | |
| - minPoly_XsubC | |
| - Fadjoin_seqP | |
| - n_gt0 | |
| - Fadjoin_sum_direct | |
| - base_vspaceOver | |
| - fieldOver_scale1 | |
| - subfx_injZ | |
| - Fadjoin_poly_unique | |
| - path: mathcomp/character/character.v | |
| theorems: | |
| - cfBigdprodi_lin_char | |
| - cfker_constt | |
| - cfcenter_sub | |
| - lin_charV_conj | |
| - cfDprodr_lin_char | |
| - irr_inv | |
| - cfMorph_charE | |
| - subGcfker | |
| - cfAut_lin_char | |
| - cfDetRes | |
| - xcfunZr | |
| - cfDetMorph | |
| - cfQuo_irr | |
| - cfRepr_dsum | |
| - dsumx_mul | |
| - cap_cfker_normal | |
| - neq0_has_constt | |
| - cfConjC_irr1 | |
| - cfdot_sum_irr | |
| - irr_prime_injP | |
| - conjC_IirrK | |
| - trow_is_linear | |
| - cfAut_irr1 | |
| - Iirr_cast | |
| - add_mx_repr | |
| - cfker_reg_quo | |
| - cfdot_Res_ge_constt | |
| - irr_free | |
| - tprodE | |
| - cfRepr_inj | |
| - dprodr_IirrE | |
| - cfConjC_lin_char | |
| - sdprod_IirrE | |
| - TI_cfker_irr | |
| - irr_classP | |
| - card_afix_irr_classes | |
| - mxtrace_prod | |
| - irr_basis | |
| - cfcenter_repr | |
| - lin_char_unity_root | |
| - cfRegE | |
| - socle_of_Iirr_bij | |
| - irr_eq1 | |
| - cfReg_sum | |
| - cfRepr_standard | |
| - isom_IirrE | |
| - cfkerEirr | |
| - cap_cfcenter_irr | |
| - conjC_Iirr0 | |
| - cfaithful_reg | |
| - dprod_IirrEl | |
| - cfSdprod_irr | |
| - cfun1_irr | |
| - aut_IirrE | |
| - irr1_gt0 | |
| - Res_irr_neq0 | |
| - cfnorm_Res_leif | |
| - irrWnorm | |
| - Iirr1_neq0 | |
| - cfDet_order_dvdG | |
| - lin_char_prod | |
| - Res_sdprod_irr | |
| - cap_cfker_lin_irr | |
| - lin_char_group | |
| - char1_ge_constt | |
| - reindex_irr_class | |
| - Ind_irr_neq0 | |
| - cfnorm_irr | |
| - cfRepr_subproof | |
| - dprod_Iirr0r | |
| - eq_irr_mem_classP | |
| - conjC_IirrE | |
| - cfInd_eq0 | |
| - cfRepr_sub | |
| - lin_char_neq0 | |
| - eq_subZnat_irr | |
| - cfMorph_char | |
| - isom_Iirr0 | |
| - cfcenter_cyclic | |
| - cfRes_lin_char | |
| - char_sum_irr | |
| - lin_charX | |
| - dprodr_Iirr0 | |
| - prod_mx_repr | |
| - trowbE | |
| - cfMod_charE | |
| - cfBigdprodi_char | |
| - irr_of_socle_bij | |
| - mod_Iirr0 | |
| - irr_cfcenterE | |
| - cfRepr1 | |
| - cfExp_prime_transitive | |
| - socle_Iirr0 | |
| - cfDprodr_irr | |
| - cfker_irr0 | |
| - cfMod_irr | |
| - Wedderburn_id_expansion | |
| - cfMod_char | |
| - dprod_Iirr0l | |
| - lin_charM | |
| - cfcenter_normal | |
| - cfcenter_group_set | |
| - irr_faithful_center | |
| - max_cfRepr_mx1 | |
| - linear_char_divr | |
| - dprod_Iirr_onto | |
| - dprod_Iirr0 | |
| - cfRepr_char | |
| - irr1_bound | |
| - constt_Res_trans | |
| - quo_Iirr_eq0 | |
| - dprod_IirrEr | |
| - cfMorph_lin_char | |
| - cfRepr_rsimP | |
| - mod_IirrK | |
| - eq_addZ_irr | |
| - morph_Iirr_eq0 | |
| - cfBigdprod_irr | |
| - cfConjC_irr | |
| - cfBigdprodi_lin_charE | |
| - cfQuo_lin_charE | |
| - irrP | |
| - cforder_lin_char | |
| - constt_ortho_char | |
| - cfdot_aut_char | |
| - groupC | |
| - constt_cfInd_irr | |
| - cfkerE | |
| - cfRes_char | |
| - aut_Iirr_inj | |
| - cfBigdprod_Res_lin | |
| - cfBigdprod_lin_char | |
| - irr_orthonormal | |
| - sdprod_Iirr0 | |
| - cfBigdprod_char | |
| - cfIsom_char | |
| - cfRepr_morphim | |
| - xcfun_id | |
| - cfker_Res | |
| - sAG | |
| - dprod_IirrK | |
| - dprodl_Iirr0 | |
| - irr_char | |
| - cfIsom_irr | |
| - dprodr_IirrK | |
| - mul_conjC_lin_char | |
| - eq_scaled_irr | |
| - cfDetD | |
| - card_Iirr_abelian | |
| - dprod_IirrE | |
| - irr_cyclic_lin | |
| - cfDprodKl_abelian | |
| - cfun1_char | |
| - sdprod_Iirr_eq0 | |
| - morph_Iirr_inj | |
| - quo_IirrK | |
| - quo_IirrE | |
| - cfBigdprodi_charE | |
| - normC_lin_char | |
| - cfDet_order_lin | |
| - trow0 | |
| - cfIirrE | |
| - aut_Iirr0 | |
| - cfcenter_eq_center | |
| - isom_IirrKV | |
| - cfDet_lin_char | |
| - irr1_neq0 | |
| - cfun1_lin_char | |
| - second_orthogonality_relation | |
| - nKG | |
| - cfBigdprodKabelian | |
| - trowb_is_linear | |
| - cfun0_char | |
| - cfun_sum_cfdot | |
| - class_IirrK | |
| - character_table_unit | |
| - cfDprod_irr | |
| - congr_irr | |
| - conjC_irrAut | |
| - first_orthogonality_relation | |
| - dprod_Iirr_inj | |
| - isom_IirrK | |
| - trow_mul | |
| - cfcenter_fful_irr | |
| - cfdot_dprod_irr | |
| - cfMorph_irr | |
| - cfSdprod_char | |
| - detRepr_lin_char | |
| - cfIirr_key | |
| - mod_Iirr_eq0 | |
| - cfDprod_char | |
| - cfkerEchar | |
| - char_sum_irrP | |
| - cfIsom_lin_char | |
| - prod_repr_lin | |
| - cfRes_lin_lin | |
| - cfDetMn | |
| - cfConjC_char1 | |
| - NirrE | |
| - cfIirrPE | |
| - dprod_Iirr_eq0 | |
| - mul_lin_irr | |
| - Cnat_cfdot_char_irr | |
| - sdprod_Res_IirrE | |
| - cforder_irr_eq1 | |
| - lin_char_der1 | |
| - sdprod_IirrK | |
| - irr_sum_square | |
| - cfBigdprod_eq1 | |
| - xcfun_mul_id | |
| - cfRepr_dadd | |
| - eq_signed_irr | |
| - irr1_degree | |
| - isom_Iirr_eq0 | |
| - repr_rsim_diag | |
| - cfDet_id | |
| - cfDprodKr_abelian | |
| - char1_ge_norm | |
| - irr_reprP | |
| - irr1_abelian_bound | |
| - has_nonprincipal_irr | |
| - xcfun_is_additive | |
| - mx_rsim_socle | |
| - irr_prime_lin | |
| - mod_IirrE | |
| - repr_irr_classK | |
| - inv_dprod_Iirr0 | |
| - irr0 | |
| - morph_Iirr0 | |
| - cfRepr_sim | |
| - cforder_lin_char_gt0 | |
| - cfker_center_normal | |
| - isom_Iirr_inj | |
| - cfQuo_charE | |
| - lin_charW | |
| - cfdot_irr | |
| - cfAut_char1 | |
| - irr_neq0 | |
| - cfBigdprodi_irr | |
| - cfDprod_eq1 | |
| - cfdot_char_r | |
| - solvable_has_lin_char | |
| - cfInd_char | |
| - cfAut_irr | |
| - coord_cfdot | |
| - cfQuo_lin_char | |
| - mx_rsim_dsum | |
| - cfcenter_subset_center | |
| - Cnat_irr1 | |
| - irrK | |
| - cfDet0 | |
| - cfBigdprodKlin | |
| - cfSdprod_lin_char | |
| - card_subcent1_coset | |
| - cfker_Ind | |
| - xcfunG | |
| - mx_rsim_dadd | |
| - cfDprodl_char | |
| - conjC_Iirr_eq0 | |
| - lin_char_irr | |
| - lin_irr_der1 | |
| - dprodl_IirrE | |
| - card_Iirr_cyclic | |
| - invr_lin_char | |
| - Cnat_char1 | |
| - generalized_orthogonality_relation | |
| - cfRepr0 | |
| - mem_irr | |
| - dprodl_IirrK | |
| - char_reprP | |
| - morph_IirrE | |
| - mx_rsim_standard | |
| - cfDetIsom | |
| - Nxi | |
| - cfDprodl_lin_char | |
| - irrWchar | |
| - usumx_mul | |
| - char1_eq0 | |
| - cfMod_lin_charE | |
| - constt_irr | |
| - cfConjC_char | |
| - Res_Iirr0 | |
| - aut_Iirr_eq0 | |
| - quo_Iirr0 | |
| - fful_lin_char_inj | |
| - cfDet_mul_lin | |
| - XX'_1 | |
| - conjC_charAut | |
| - irrRepr | |
| - xiMV | |
| - socle_of_IirrK | |
| - irrEchar | |
| - xcfun_repr | |
| - cfDprodr_char | |
| - cfDetRepr | |
| - tprod_tr | |
| - cfReg_char | |
| - cfMorph_lin_charE | |
| - mul_char | |
| - cfQuo_char | |
| - char_abelianP | |
| - card_lin_irr | |
| - mx_repr0 | |
| - quo_IirrKeq | |
| - lin_char_unitr | |
| - eq_scale_irr | |
| - char_inv | |
| - cfun_sum_constt | |
| - cforder_lin_char_dvdG | |
| - char_cfcenterE | |
| - cfDprod_lin_char | |
| - char1_ge0 | |
| - dprodr_Iirr_eq0 | |
| - cfcenter_Res | |
| - det_is_repr | |
| - irr_aut_closed | |
| - irr_of_socleK | |
| - constt_cfRes_irr | |
| - lin_char1 | |
| - sdprod_Res_IirrK | |
| - cfker_nzcharE | |
| - cfReprReg | |
| - mod_Iirr_bij | |
| - add_char | |
| - path: mathcomp/field/algnum.v | |
| theorems: | |
| - Aint_aut | |
| - Crat_spanP | |
| - eqAmodMr0 | |
| - eqAmod_refl | |
| - eqAmod_addl_mul | |
| - restrict_aut_to_normal_num_field | |
| - eqAmod0_rat | |
| - Crat_span_zmod_closed | |
| - eqAmodMl0 | |
| - dec_Cint_span | |
| - eqAmodN | |
| - restrict_aut_to_num_field | |
| - fin_Csubring_Aint | |
| - Aint0 | |
| - eqAmodMl | |
| - Cint_span_zmod_closed | |
| - eqAmod0_nat | |
| - eqAmodD | |
| - dvdA_zmod_closed | |
| - num_field_exists | |
| - mem_Cint_span | |
| - Aint_prim_root | |
| - Aint1 | |
| - eqAmod0 | |
| - Aint_subring | |
| - eqAmod_rat | |
| - rmorphZ_num | |
| - eqAmodm0 | |
| - eqAmodMr | |
| - dvdn_orderC | |
| - Aint_Cint | |
| - eqAmod_transl | |
| - exp_orderC | |
| - eqAmod_sym | |
| - root_monic_Aint | |
| - Crat_spanM | |
| - Aint_unity_root | |
| - eqAmod_transr | |
| - alg_num_field | |
| - mem_Crat_span | |
| - Crat_spanZ | |
| - Aint_Cnat | |
| - map_Qnum_poly | |
| - eqAmod_trans | |
| - num_field_proj | |
| - eqAmod_nat | |
| - eqAmodM | |
| - Cint_spanP | |
| - Crat_span_subproof | |
| - fmorph_numZ | |
| - Aint_int | |
| - extend_algC_subfield_aut | |
| - eqAmodDl | |
| - eqAmodDr | |
| - algC_PET | |
| - Cint_rat_Aint | |
| - path: mathcomp/algebra/poly.v | |
| theorems: | |
| - drop_poly_is_linear | |
| - comm_poly_exp | |
| - multiplicity_XsubC | |
| - mul_0poly | |
| - coefXM | |
| - root_ZXsubC | |
| - polyOverZ | |
| - comp_poly0 | |
| - mul_poly_key | |
| - size_map_polyC | |
| - size_Poly | |
| - fmorph_unity_root | |
| - nderivnC | |
| - monicXnaddC | |
| - prim_root_dvd_eq0 | |
| - map_polyXaddC | |
| - nderivnMn | |
| - size_polyC_leq1 | |
| - odd_polyE | |
| - commr_polyXn | |
| - dvdn_prim_root | |
| - lead_coefM | |
| - aa4 | |
| - polySpred | |
| - polyOverNr | |
| - comm_polyX | |
| - rpred_horner | |
| - size_polyXn | |
| - size_exp_leq | |
| - prim_root_natf_neq0 | |
| - derivnC | |
| - derivnB | |
| - scale_poly_eq0 | |
| - rootE | |
| - comp_poly_eq0 | |
| - nderivnXn | |
| - lead_coefDr | |
| - size_poly_eq | |
| - mul_polyDr | |
| - derivMXaddC | |
| - poly2_root | |
| - comp_polyXaddC_K | |
| - horner_eval_is_linear | |
| - prim_order_dvd | |
| - scale_polyC | |
| - mul_poly0 | |
| - derivn1 | |
| - coefMXn | |
| - horner_coef_wide | |
| - lead_coefX | |
| - nderivn_def | |
| - polyOver0 | |
| - size_exp | |
| - polyseqXn | |
| - rreg_polyMC_eq0 | |
| - hornerN | |
| - prim_expr_order | |
| - lead_coef_monicM | |
| - root_exp_XsubC | |
| - scale_1poly | |
| - polyC0 | |
| - root_polyC | |
| - deg2_poly_root1 | |
| - size1_polyC | |
| - even_polyD | |
| - monic_neq0 | |
| - coefXn | |
| - coef_opp_poly | |
| - derivnXn | |
| - lead_coef_map_inj | |
| - closed_nonrootP | |
| - size_odd_poly | |
| - rmorph_root | |
| - lead_coefMX | |
| - polyOver_addr_closed | |
| - monic_lreg | |
| - polyX_key | |
| - map_polyZ | |
| - commr_horner | |
| - monic_exp | |
| - aneq0 | |
| - polyXsubC_eq0 | |
| - deg2_poly_canonical | |
| - lead_coef_exp | |
| - polyOverC | |
| - closed_rootP | |
| - rootN | |
| - coef0 | |
| - polyOverXaddC | |
| - map_poly_inj | |
| - mul_polyC | |
| - rmorph_unity_root | |
| - hornerXn | |
| - poly_inj | |
| - polyCM | |
| - mapf_root | |
| - coef0_prod_XsubC | |
| - polyOver_poly | |
| - factor_Xn_sub_1 | |
| - size_prod_seq | |
| - comp_poly_multiplicative | |
| - scale_poly_key | |
| - lead_coefXnsubC | |
| - factor_theorem | |
| - prim_root_charF | |
| - size_exp_XsubC | |
| - take_polyDMXn | |
| - odd_polyD | |
| - comm_polyM | |
| - unity_rootE | |
| - root0 | |
| - horner_prod | |
| - deg2_poly_root1 | |
| - polyOver_deriv | |
| - root_prod_XsubC | |
| - drop_polyDMXn | |
| - size_prod_seq_eq1 | |
| - size_prod_leq | |
| - coefB | |
| - derivnMNn | |
| - derivMNn | |
| - even_polyZ | |
| - lead_coef_map | |
| - rootPt | |
| - polyOverXnsubC | |
| - polyCV | |
| - comm_poly1 | |
| - polyCMn | |
| - derivMn | |
| - take_poly0l | |
| - coef_map_id0 | |
| - dec_factor_theorem | |
| - odd_polyZ | |
| - size_drop_poly | |
| - map_poly_is_multiplicative | |
| - prim_rootP | |
| - coef_drop_poly | |
| - sum_odd_poly | |
| - sum_even_poly | |
| - coef_comp_poly_Xn | |
| - poly_mulVp | |
| - polyseq_cons | |
| - hornerMX | |
| - rootPf | |
| - map_poly_com | |
| - prim_expr_mod | |
| - size_prod_eq1 | |
| - polyCK | |
| - derivXsubC | |
| - size_add | |
| - size_comp_poly2 | |
| - coefMn | |
| - polyOverXn | |
| - map_polyC | |
| - comp_poly_is_linear | |
| - nderivn0 | |
| - hornerD | |
| - size_opp | |
| - coefCM | |
| - nderivnMNn | |
| - comp_polyM | |
| - prim_root_eq0 | |
| - commr_polyX | |
| - map_prod_XsubC | |
| - prim_root_exp_coprime | |
| - roots_geq_poly_eq0 | |
| - lead_coefDl | |
| - poly_take_drop | |
| - unity_rootP | |
| - derivnMXaddC | |
| - hornerXsubC | |
| - mul_lead_coef | |
| - deg2_poly_root2 | |
| - map_polyE | |
| - map_comm_coef | |
| - deriv_exp | |
| - map_poly_comp_id0 | |
| - map_poly_is_additive | |
| - root_exp | |
| - horner_map | |
| - coefXnM | |
| - coefPn_prod_XsubC | |
| - poly_intro_unit | |
| - monic_map | |
| - size_polyC | |
| - poly_inv_out | |
| - even_polyE | |
| - eqp_take_drop | |
| - polyOverXsubC | |
| - size_poly | |
| - size_poly0 | |
| - size_Mmonic | |
| - size_polyX | |
| - lead_coefE | |
| - comp_polyX | |
| - rootZ | |
| - derivM | |
| - max_poly_roots | |
| - odd_polyMX | |
| - size_even_poly_eq | |
| - even_polyC | |
| - polyC_inj | |
| - polyseqXaddC | |
| - comp_polyZ | |
| - monic_mulr_closed | |
| - monic_prod_XsubC | |
| - polyseqMX | |
| - polyOver_mulr_2closed | |
| - polyC_eq0 | |
| - take_polyMXn_0 | |
| - horner_algX | |
| - nderiv_taylor_wide | |
| - polyX_eq0 | |
| - poly_even_odd | |
| - rreg_size | |
| - comp_poly_MXaddC | |
| - prim_root_pi_eq0 | |
| - polyseqC | |
| - coef_mul_poly | |
| - comp_polyB | |
| - lead_coef_Mmonic | |
| - comp_poly0r | |
| - derivXn | |
| - poly_idomainAxiom | |
| - horner0 | |
| - size_map_inj_poly | |
| - polyC1 | |
| - nderivn_map | |
| - mem_root | |
| - coef_odd_poly | |
| - map_comm_poly | |
| - polyP | |
| - deg2_poly_canonical | |
| - drop_polyZ | |
| - mul_polyA | |
| - size_XmulC | |
| - derivnZ | |
| - size_sum | |
| - root_XaddC | |
| - coef_cons | |
| - polyseqK | |
| - aut_unity_rootC | |
| - horner_coef0 | |
| - scale_polyAl | |
| - comp_polyXr | |
| - add_poly0 | |
| - sqa2neq0 | |
| - poly_mul_comm | |
| - max_unity_roots | |
| - hornerCM | |
| - coef0_prod | |
| - multiplicity_XsubC | |
| - monicXaddC | |
| - fmorph_root | |
| - lead_coef_eq0 | |
| - derivSn | |
| - nderiv_taylor | |
| - horner_comp | |
| - monic1 | |
| - size_poly_gt0 | |
| - coefMC | |
| - nderivnB | |
| - horner_is_linear | |
| - monicXn | |
| - poly_initial | |
| - size_map_poly | |
| - in_alg_comm | |
| - polyOver_derivn | |
| - hornerX | |
| - size_mulXn | |
| - deriv0 | |
| - rootM | |
| - comm_coef_poly | |
| - lead_coef_lreg | |
| - size_prod_XsubC | |
| - multiplicity_XsubC | |
| - polyseqMXn | |
| - polyseq0 | |
| - polyC_natr | |
| - lead_coef1 | |
| - derivn_is_linear | |
| - polyseqXsubC | |
| - horner_exp | |
| - polyCD | |
| - coef0M | |
| - prim_order_gt0 | |
| - coef_derivn | |
| - lead_coefN | |
| - aut_unity_rootP | |
| - nderivn_is_linear | |
| - coef_deriv | |
| - coefMr | |
| - eq_map_poly | |
| - rreg_lead | |
| - map_diff_roots | |
| - comm_polyD | |
| - opp_poly_key | |
| - drop_poly0r | |
| - size_MXaddC | |
| - coefX | |
| - map_Poly | |
| - comp_polyE | |
| - coefC | |
| - monicMl | |
| - size_mul | |
| - coef_nderivn | |
| - horner_morphX | |
| - coef_poly | |
| - cons_poly_def | |
| - deriv_mulC | |
| - lt_size_deriv | |
| - horner_is_multiplicative | |
| - polyseq_poly | |
| - derivnS | |
| - polyOverXnaddC | |
| - even_polyMX | |
| - deriv_comp | |
| - polyC_multiplicative | |
| - closed_rootP | |
| - map_polyXn | |
| - polyOver_comp | |
| - take_poly0r | |
| - derivn0 | |
| - aut_prim_rootP | |
| - comp_poly2_eq0 | |
| - prod_map_poly | |
| - a1 | |
| - polyOver_mul1_closed | |
| - poly0Vpos | |
| - size_Cmul | |
| - horner_algC | |
| - hornerC | |
| - size_prod | |
| - nderivnZ | |
| - deg2_poly_factor | |
| - map_inj_poly | |
| - monicP | |
| - size_scale_leq | |
| - hornerM_comm | |
| - map_poly_id | |
| - eq_poly | |
| - poly_key | |
| - size_proper_mul | |
| - polyseqX | |
| - map_polyK | |
| - size_cons_poly | |
| - drop_poly_sum | |
| - comp_polyD | |
| - derivn_map | |
| - max_ring_poly_roots | |
| - root_size_gt1 | |
| - eq_prim_root_expr | |
| - deriv_map | |
| - take_polyD | |
| - polyOverX | |
| - eq_in_map_poly_id0 | |
| - size_poly1 | |
| - eq_in_map_poly | |
| - lead_coefXsubC | |
| - size_even_poly | |
| - poly_morphX_comm | |
| - coefZ | |
| - monicE | |
| - coef_map | |
| - lead_coef0 | |
| - pneq0 | |
| - splitr | |
| - poly_invE | |
| - poly_unitE | |
| - coef_take_poly | |
| - rreg_div0 | |
| - derivC | |
| - monic_prod | |
| - map_uniq_roots | |
| - lead_coefZ | |
| - coefp0_multiplicative | |
| - monic_rreg | |
| - all_roots_prod_XsubC | |
| - polyOver_nderivn | |
| - a2neq0 | |
| - lreg_lead0 | |
| - coef_Poly | |
| - lreg_lead | |
| - pE | |
| - monicXnsubC | |
| - rootX | |
| - lead_coef_map_eq | |
| - horner_cons | |
| - derivnD | |
| - size_mul_eq1 | |
| - char_poly | |
| - coefD | |
| - drop_poly0l | |
| - poly_def | |
| - lead_coefXnaddC | |
| - coef_sum | |
| - rootP | |
| - horner_exp_comm | |
| - PolyK | |
| - coefMNn | |
| - map_poly0 | |
| - add_polyA | |
| - derivn_poly0 | |
| - gt_size_poly_neq0 | |
| - lead_coefC | |
| - size_take_poly | |
| - lead_coef_comp | |
| - derivB | |
| - nderivn_poly0 | |
| - size_map_poly_id0 | |
| - coef_even_poly | |
| - scale_polyA | |
| - lreg_polyZ_eq0 | |
| - size_poly1P | |
| - lead_coefXn | |
| - root_XsubC | |
| - drop_polyMXn | |
| - odd_poly_is_linear | |
| - lead_coef_prod_XsubC | |
| - derivnMn | |
| - lead_coef_poly | |
| - horner_morphC | |
| - nderivnMXaddC | |
| - exp_prim_root | |
| - size_monicM | |
| - map_poly_comp | |
| - alg_polyC | |
| - comp_Xn_poly | |
| - sum_drop_poly | |
| - map_polyX | |
| - take_poly_id | |
| - fmorph_primitive_root | |
| - size_comp_poly | |
| - comp_poly_Xn | |
| - horner_eval_is_multiplicative | |
| - mem_unity_roots | |
| - monicX | |
| - size_XnsubC | |
| - lead_coef_proper_mul | |
| - poly1_neq0 | |
| - hornerZ | |
| - map_polyC_eq0 | |
| - lead_coef_prod | |
| - coefK | |
| - derivD | |
| - nderivnN | |
| - coef_mul_poly_rev | |
| - add_polyN | |
| - monicXsubC | |
| - mul_poly1 | |
| - hornerMXaddC | |
| - size_XsubC | |
| - take_poly_sum | |
| - uniq_roots_prod_XsubC | |
| - horner_sum | |
| - uniq_rootsE | |
| - size_mul_leq | |
| - nderivnD | |
| - mul_1poly | |
| - coefM | |
| - nderivn1 | |
| - mul_polyDl | |
| - drop_polyMXn_id | |
| - nil_poly | |
| - horner_Poly | |
| - odd_polyC | |
| - polyCN | |
| - take_polyZ | |
| - comp_polyC | |
| - monic_comreg | |
| - horner_poly | |
| - even_poly_is_linear | |
| - hornerMn | |
| - polyOverS | |
| - scale_polyDr | |
| - root_comp | |
| - path: mathcomp/field/separable.v | |
| theorems: | |
| - extendDerivation_id | |
| - separable_generatorP | |
| - adjoin_separable_eq | |
| - separable_polyP | |
| - extendDerivation_horner | |
| - separable_deriv_eq0 | |
| - separable_refl | |
| - poly_square_freeP | |
| - strong_Primitive_Element_Theorem | |
| - make_separable | |
| - eqp_separable | |
| - separableS | |
| - Derivation_scalar | |
| - Derivation_separable | |
| - sub_inseparable | |
| - charf_n_separable | |
| - separableP | |
| - adjoin_separableP | |
| - Primitive_Element_Theorem | |
| - separable_Fadjoin_seq | |
| - cyclic_or_large | |
| - extendDerivation_scalable_subproof | |
| - extendDerivationP | |
| - separable_generator_mem | |
| - separable_poly_neq0 | |
| - charf0_separable | |
| - separable_map | |
| - separable_root | |
| - separableSl | |
| - purely_inseparableP | |
| - purely_inseparable_trans | |
| - separable_root_der | |
| - finite_PET | |
| - eq_adjoin_separable_generator | |
| - adjoin_separable | |
| - Derivation_exp | |
| - separablePn | |
| - separable_elementP | |
| - inseparable_sum | |
| - sub_adjoin_separable_generator | |
| - separable_sum | |
| - separable_inseparable_decomposition | |
| - inseparable_add | |
| - extendDerivation_additive_subproof | |
| - Derivation1 | |
| - separable_coprime | |
| - separable_mul | |
| - separable_elementS | |
| - separable_nz_der | |
| - charf_p_separable | |
| - Derivation_separableP | |
| - purely_inseparable_elementP | |
| - DerivationS | |
| - separableSr | |
| - Derivation_mul | |
| - Derivation_horner | |
| - separable_exponent | |
| - purely_inseparable_refl | |
| - large_field_PET | |
| - separable_nosquare | |
| - separable_trans | |
| - path: mathcomp/solvable/extremal.v | |
| theorems: | |
| - r_gt0 | |
| - cyclic_SCN | |
| - odd_pgroup_rank1_cyclic | |
| - Grp_2dihedral | |
| - defQ | |
| - dihedral2_structure | |
| - modular_group_classP | |
| - card_quaternion | |
| - def2qr | |
| - card_ext_dihedral | |
| - def_q | |
| - prime_Ohm1P | |
| - involutions_gen_dihedral | |
| - maximal_cycle_extremal | |
| - ltqm | |
| - card_2dihedral | |
| - modular_group_structure | |
| - Grp_ext_dihedral | |
| - generators_modular_group | |
| - cyclic_pgroup_Aut_structure | |
| - Grp_quaternion | |
| - r_gt0 | |
| - def_r | |
| - dihedral_classP | |
| - def_p | |
| - bound_extremal_groups | |
| - card_modular_group | |
| - card_semidihedral | |
| - card | |
| - generators_quaternion | |
| - generators_semidihedral | |
| - quaternion_structure | |
| - aut_dvdn | |
| - Grp'_dihedral | |
| - semidihedral_structure | |
| - card_dihedral | |
| - act_dom | |
| - extremal2_structure | |
| - eq_Mod8_D8 | |
| - ltrq | |
| - Grp_dihedral | |
| - Grp | |
| - Grp_modular_group | |
| - q_gt1 | |
| - q_gt0 | |
| - symplectic_type_group_structure | |
| - Grp_semidihedral | |
| - semidihedral_classP | |
| - quaternion_classP | |
| - cancel_index_extremal_groups | |
| - path: mathcomp/solvable/maximal.v | |
| theorems: | |
| - injm_Fitting | |
| - Fitting_group_set | |
| - SCN_P | |
| - der1_stab_Ohm1_SCN_series | |
| - Ohm1_stab_Ohm1_SCN_series | |
| - card_extraspecial | |
| - p_index_maximal | |
| - Phi_Mho | |
| - p3group_extraspecial | |
| - charsimple_dprod | |
| - isog_extraspecial | |
| - index_maxnormal_sol_prime | |
| - p_core_Fitting | |
| - Phi_quotient_abelem | |
| - trivg_Phi | |
| - Fitting_sub | |
| - pcore_Fitting | |
| - Phi_nongen | |
| - injm_special | |
| - sol_prime_factor_exists | |
| - Phi_joing | |
| - extraspecial_prime | |
| - solvable_norm_abelem | |
| - exponent_special | |
| - Phi_normal | |
| - Phi_sub | |
| - SCN_max | |
| - simple_sol_prime | |
| - charsimpleP | |
| - Phi_quotient_cyclic | |
| - maxnormal_charsimple | |
| - cprod_extraspecial | |
| - injm_extraspecial | |
| - center_special_abelem | |
| - Fitting_pcore | |
| - Fitting_normal | |
| - p_maximal_index | |
| - minnormal_solvable | |
| - Fitting_nil | |
| - Fitting_eq_pcore | |
| - FittingEgen | |
| - Fitting_char | |
| - split1_extraspecial | |
| - Phi_char | |
| - PhiJ | |
| - card_subcent_extraspecial | |
| - p_abelem_split1 | |
| - Frattini_continuous | |
| - abelem_split_dprod | |
| - Phi_sub_max | |
| - critical_extraspecial | |
| - cent1_extraspecial_maximal | |
| - Phi_min | |
| - quotient_Phi | |
| - Thompson_critical | |
| - Phi_cprod | |
| - Phi_mulg | |
| - critical_class2 | |
| - p_maximal_normal | |
| - injm_Phi | |
| - extraspecial_nonabelian | |
| - trivg_Fitting | |
| - morphim_Fitting | |
| - abelem_charsimple | |
| - charsimple_solvable | |
| - center_aut_extraspecial | |
| - pmaxElem_extraspecial | |
| - isog_Phi | |
| - PhiS | |
| - card_center_extraspecial | |
| - Ohm1_cent_max_normal_abelem | |
| - Phi_proper | |
| - max_SCN | |
| - isog_Fitting | |
| - exponent_Ohm1_class2 | |
| - morphim_Phi | |
| - abelian_charsimple_special | |
| - FittingS | |
| - minnormal_charsimple | |
| - exponent_2extraspecial | |
| - Phi_quotient_id | |
| - extraspecial_structure | |
| - SCN_abelian | |
| - critical_p_stab_Aut | |
| - path: mathcomp/field/falgebra.v | |
| theorems: | |
| - prodv_sub | |
| - agenvX | |
| - vsval_invr | |
| - memv_adjoin | |
| - id_is_ahom | |
| - prodvSr | |
| - memv_algid | |
| - expv_line | |
| - adim1P | |
| - adjoinSl | |
| - ker_sub_ahom_is_aspace | |
| - centraliser_is_aspace | |
| - prod1v | |
| - adjoin_seqSl | |
| - FalgType_proper | |
| - agenvS | |
| - agenvE | |
| - subvs_mulDr | |
| - skew_field_algid1 | |
| - agenvM | |
| - adjoin_seq1 | |
| - aimg_adjoin_seq | |
| - prodv1 | |
| - aimgM | |
| - lfun_mulE | |
| - adjoin_seqSr | |
| - prodvS | |
| - subvs_mul1 | |
| - adjoin_nil | |
| - dim_cosetv_unit | |
| - sub_agenv | |
| - unitrP | |
| - expv_id | |
| - mulVr | |
| - amull1 | |
| - aspacef_subproof | |
| - algid_eq1 | |
| - prodv0 | |
| - expv2 | |
| - Falgebra_FieldMixin | |
| - subvs_scaleAr | |
| - amulr_inj | |
| - prodvDl | |
| - skew_field_dimS | |
| - centv1 | |
| - aimgX | |
| - aspace1_subproof | |
| - cent1v1 | |
| - agenvEr | |
| - not_asubv0 | |
| - amulr_is_linear | |
| - regular_fullv | |
| - lfun_invr_out | |
| - memvM | |
| - limg_amulr | |
| - unitr_algid1 | |
| - prodv_line | |
| - prodvP | |
| - dim_algid | |
| - centraliser1_is_aspace | |
| - adim_gt0 | |
| - subvs_mu1l | |
| - algid_neq0 | |
| - memvV | |
| - amE | |
| - aimg_agen | |
| - asubv | |
| - aspace_cap_subproof | |
| - lker0_amulr | |
| - skew_field_module_semisimple | |
| - divrr | |
| - subv_adjoin | |
| - centv_algid | |
| - algidl | |
| - expv0n | |
| - expvD | |
| - amullM | |
| - has_algid1 | |
| - cent1v_id | |
| - agenv_modl | |
| - prodvSl | |
| - centvP | |
| - prod0v | |
| - expvS | |
| - subvs_mulA | |
| - prodv_id | |
| - lfun_compE | |
| - vbasis1 | |
| - subv_cent1 | |
| - linfun_is_ahom | |
| - amull_inj | |
| - cent1vC | |
| - algid_subproof | |
| - centvsP | |
| - polyOver1P | |
| - expvSr | |
| - subvs_scaleAl | |
| - adjoinC | |
| - aimg_adjoin | |
| - cent1vX | |
| - agenv_modr | |
| - skew_field_module_dimS | |
| - ahomWin | |
| - agenv_is_aspace | |
| - memv_mul | |
| - lfun_unitrP | |
| - prodvA | |
| - lker0_amull | |
| - agenv_id | |
| - amulr_is_multiplicative | |
| - algid_center | |
| - subvP_adjoin | |
| - lfun1_poly | |
| - vsval_unitr | |
| - ahomP | |
| - subvs_mulDl | |
| - comp_is_ahom | |
| - expvSl | |
| - invr_out | |
| - lfun_mulrV | |
| - agenv_sub_modr | |
| - adjoin_rcons | |
| - seqv_sub_adjoin | |
| - subv_adjoin_seq | |
| - has_algidP | |
| - centvC | |
| - dim_prodv | |
| - ahom_is_multiplicative | |
| - ahom_inP | |
| - vspace1_neq0 | |
| - dimv1 | |
| - centvX | |
| - agenvEl | |
| - agenv_add_id | |
| - expv1 | |
| - expvM | |
| - memv_cosetP | |
| - aimg1 | |
| - prodv_key | |
| - algid_decidable | |
| - lfun_mulVr | |
| - cent1vP | |
| - path: mathcomp/algebra/mxpoly.v | |
| theorems: | |
| - geigenspaceE | |
| - eigenpoly_map | |
| - codiagonalizable1 | |
| - sub_kermxpoly_conjmx | |
| - eigenvalue_conjmx | |
| - mxminpoly_linear_is_scalar | |
| - submx_form_qf | |
| - integral_root | |
| - kermxpolyX | |
| - integral_nat | |
| - degree_mxminpoly_proof | |
| - nth_row_env | |
| - mx_root_minpoly | |
| - resultant_eq0 | |
| - char_poly_monic | |
| - diagonalizablePeigen | |
| - horner_rVpolyK | |
| - conjmx_scalar | |
| - conjmxK | |
| - map_resultant | |
| - integral_add | |
| - size_mod_mxminpoly | |
| - rVpolyK | |
| - mxminpoly_conj | |
| - diagonalizableP | |
| - algebraic_sub | |
| - diagonalizable_for_sum | |
| - integral_sub | |
| - char_block_diag_mx | |
| - diagonalizable0 | |
| - conj1mx | |
| - stablemx_restrict | |
| - sub_eigenspace_conjmx | |
| - mxdirect_sum_geigenspace | |
| - eval_col_mx | |
| - kermxpolyM | |
| - companion_map_poly | |
| - coef_rVpoly_ord | |
| - horner_mx_C | |
| - conjuMumx | |
| - integral_rmorph | |
| - map_geigenspace | |
| - size_seq_of_rV | |
| - Exists_rowP | |
| - integral0 | |
| - mxminpoly_dvd_char | |
| - simmxP | |
| - minpoly_mx_free | |
| - eigenpolyP | |
| - mulmx_delta_companion | |
| - intR_XsubC | |
| - integral_horner_root | |
| - algebraic0 | |
| - diagonalizable_diag | |
| - eval_mulmx | |
| - diagonalizable_for_mxminpoly | |
| - conjmx_eigenvalue | |
| - row'_col'_char_poly_mx | |
| - diagonalizable_scalar | |
| - conjMmx | |
| - size_char_poly | |
| - map_kermxpoly | |
| - horner_mx_conj | |
| - algebraic_div | |
| - mxminpoly_min | |
| - poly_rV_K | |
| - eigenvalue_root_min | |
| - kermxpolyC | |
| - comm_horner_mx | |
| - companionmxK | |
| - integral_opp | |
| - horner_mx_mem | |
| - comm_mx_stable_kermxpoly | |
| - codiagonalizable_on | |
| - root_mxminpoly | |
| - integral_div | |
| - size_diagA | |
| - minpoly_mx_ring | |
| - mxminpoly_uconj | |
| - algebraic_opp | |
| - algebraic_id | |
| - codiagonalizablePfull | |
| - mx_poly_ring_isom | |
| - map_rVpoly | |
| - integral1 | |
| - size_mxminpoly | |
| - mxminpoly_map | |
| - horner_mx_stable | |
| - comm_mx_stable_geigenspace | |
| - integral_inv | |
| - map_powers_mx | |
| - integral_mul | |
| - integral_root_monic | |
| - eigenspace_sub_geigen | |
| - conjMumx | |
| - comm_mx_horner | |
| - rVpoly_delta | |
| - stablemx_comp | |
| - eval_row_var | |
| - minpoly_mx1 | |
| - char_poly_trig | |
| - eval_mxrank | |
| - eigenvalue_poly | |
| - char_poly_det | |
| - poly_rV_is_linear | |
| - algebraic_mul | |
| - diagonalizable_for_row_base | |
| - mxminpoly_monic | |
| - horner_mx_X | |
| - mxminpoly_minP | |
| - simmx_minpoly | |
| - conjuMmx | |
| - integral_poly | |
| - map_mx_inv_horner | |
| - Cayley_Hamilton | |
| - integral_id | |
| - diagonalizable_forPp | |
| - eigenpoly_conjmx | |
| - degree_mxminpoly_map | |
| - mxminpoly_nonconstant | |
| - eval_vec_mx | |
| - conjVmx | |
| - Sylvester_mxE | |
| - kermxpoly_prod | |
| - mxdirect_kermxpoly | |
| - mxminpoly_diag | |
| - simmxLR | |
| - eval_submx | |
| - conjmx0 | |
| - kermxpoly_min | |
| - minpoly_mxM | |
| - integral_algebraic | |
| - nth_seq_of_rV | |
| - eigenvalue_root_char | |
| - mx_inv_hornerK | |
| - mxdirect_sum_kermx | |
| - map_poly_rV | |
| - horner_mx_uconj | |
| - eigenspace_poly | |
| - simmxPp | |
| - eval_mx_term | |
| - codiagonalizableP | |
| - horner_rVpoly | |
| - simmxRL | |
| - diagonalizable_forP | |
| - dvd_mxminpoly | |
| - diagonalizable_conj_diag | |
| - kermxpoly1 | |
| - XsubC0 | |
| - resultant_in_ideal | |
| - algebraic1 | |
| - diagonalizable_forLR | |
| - mxrank_form_qf | |
| - horner_mxZ | |
| - horner_mxK | |
| - conjmxVK | |
| - path: mathcomp/field/closed_field.v | |
| theorems: | |
| - qf_cps_if | |
| - eval_amulXnT | |
| - rgdcop_recT_qf | |
| - holds_ex_elim | |
| - redivp_rec_loopP | |
| - rgcdp_loopT_qf | |
| - redivpTP | |
| - rgcdpTP | |
| - rgdcopTP | |
| - abstrX1 | |
| - rgcdpTsP | |
| - rgcdpT_qf | |
| - rseq_poly_map | |
| - isnull_qf | |
| - rpoly_map_mul | |
| - rgdcop_recTP | |
| - redivp_rec_loopT_qf | |
| - sizeTP | |
| - abstrXP | |
| - holds_conjn | |
| - rsumpT | |
| - eval_poly_mulM | |
| - lead_coefTP | |
| - countable_algebraic_closure | |
| - rgdcopT_qf | |
| - redivp_rec_loopTP | |
| - eval_lift | |
| - ex_elim_seqP | |
| - ex_elim_seq_qf | |
| - eval_poly1 | |
| - wf_ex_elim | |
| - redivpT_qf | |
| - eval_opppT | |
| - holds_conj | |
| - qf_simpl | |
| - eval_mulpT | |
| - isnullP | |
| - countable_field_extension | |
| - ramulXnT | |
| - rabstrX | |
| - lead_coefT_qf | |
| - rgcdpTs_qf | |
| - qf_cps_ret | |
| - abstrX_mulM | |
| - qf_cps_bind | |
| - eval_sumpT | |
| - rgcdp_loopP | |
| - sizeT_qf | |
| - eval_natmulpT | |
| - path: mathcomp/fingroup/automorphism.v | |
| theorems: | |
| - Aut_conj_aut | |
| - Aut_morphic | |
| - Aut_isomM | |
| - char_norm_trans | |
| - conj_isom | |
| - char_normal | |
| - Aut_aut | |
| - eq_Aut | |
| - im_Aut_isom | |
| - injm_char | |
| - im_autm | |
| - conj_autE | |
| - perm_in_inj | |
| - perm_inE | |
| - Aut_Aut_isom | |
| - Aut_isomP | |
| - char_injm | |
| - conj_aut_morphM | |
| - charI | |
| - morphim_conj | |
| - Aut_closed | |
| - autmE | |
| - imset_autE | |
| - perm_in_on | |
| - lone_subgroup_char | |
| - char_refl | |
| - char_norm | |
| - conjgmE | |
| - charP | |
| - Aut_isom_subproof | |
| - char_sub | |
| - injm_Aut_isom | |
| - morphim_fixP | |
| - char_norms | |
| - Aut1 | |
| - preim_autE | |
| - ker_conj_aut | |
| - char_trans | |
| - injm_autm | |
| - charM | |
| - Aut_isomE | |
| - norm_conjg_im | |
| - out_Aut | |
| - norm_conj_isom | |
| - norm_conj_autE | |
| - char_normal_trans | |
| - aut_closed | |
| - conj_isog | |
| - path: mathcomp/ssreflect/fingraph.v | |
| theorems: | |
| - same_connect | |
| - order_gt0 | |
| - finv_inv | |
| - fconnect_invariant | |
| - iter_findex | |
| - eq_n_comp_r | |
| - connect_closed | |
| - eq_fcard | |
| - predC_closed | |
| - eq_order_cycle | |
| - injectivePcycle | |
| - fconnect_cycle | |
| - fconnect1 | |
| - fpath_finv_cycle | |
| - fpath_finv_in | |
| - size_orbit | |
| - finv_in | |
| - connect_cycle | |
| - connect_sub | |
| - fcycle_consEflatten | |
| - fcycle_consE | |
| - orbit_uniq | |
| - subset_dfs | |
| - same_fconnect_finv | |
| - fcard_id | |
| - connect_trans | |
| - rgraphK | |
| - eq_roots | |
| - fclosed1 | |
| - order_finv | |
| - image_orbit | |
| - fconnect_finv | |
| - same_fconnect1 | |
| - eq_n_comp | |
| - iter_finv_in | |
| - eq_root | |
| - orbit_id | |
| - closure_closed | |
| - fconnect_id | |
| - f_finv_in | |
| - eq_connect0 | |
| - fcard_order_set | |
| - orbitPcycle | |
| - root_root | |
| - subset_closure | |
| - order_cycle | |
| - finv_inj_cycle | |
| - froots_id | |
| - prevE | |
| - connect1 | |
| - looping_order | |
| - mem_orbit | |
| - fpath_f_finv_cycle | |
| - froot_id | |
| - finv_bij | |
| - finv_cycle | |
| - adjunction_closed | |
| - fpath_finv | |
| - undup_cycle_cons | |
| - intro_closed | |
| - cycle_orbit | |
| - connectP | |
| - fpath_finv_f_cycle | |
| - path_connect | |
| - fconnect_f | |
| - strict_adjunction | |
| - cycle_orbit_cycle | |
| - eq_fconnect | |
| - in_orbit_cycle | |
| - fcycleEflatten | |
| - fconnect_iter | |
| - root_connect | |
| - n_comp_connect | |
| - iter_order | |
| - finv_f_in | |
| - iter_order_cycle | |
| - n_comp_closure2 | |
| - same_connect_r | |
| - same_connect1r | |
| - fconnect_findex | |
| - order_id_cycle | |
| - closed_connect | |
| - fcard_gt0P | |
| - dfsP | |
| - intro_adjunction | |
| - orbitE | |
| - fconnect_orbit | |
| - same_connect1 | |
| - findex_eq0 | |
| - n_compC | |
| - findex_max | |
| - connect_root | |
| - f_finv | |
| - finv_inj | |
| - orderPcycle | |
| - mem_closure | |
| - iter_finv_cycle | |
| - same_connect_rev | |
| - f_finv_cycle | |
| - fconnect_sym | |
| - eq_finv | |
| - findex_iter | |
| - iter_order_in | |
| - fconnect_eqVf | |
| - dfs_pathP | |
| - rootP | |
| - fcard_gt1P | |
| - in_orbit | |
| - order_le_cycle | |
| - eq_connect | |
| - fconnect_sym_in | |
| - same_fconnect1_r | |
| - finv_f | |
| - fpath_f_finv_in | |
| - fpath_finv_f_in | |
| - iter_finv | |
| - connect_rev | |
| - fcard_finv | |
| - fcycle_rconsE | |
| - orderSpred | |
| - path: mathcomp/algebra/ssrint.v | |
| theorems: | |
| - nmulrz_rlt0 | |
| - exprz_pintl | |
| - mulr0z | |
| - distn_eq1 | |
| - rpredMz | |
| - sgz_odd | |
| - ltr_piXz2l | |
| - ltr1z | |
| - ler_int | |
| - pmulrz_llt0 | |
| - exprzD_ss | |
| - NegzE | |
| - distn_eq0 | |
| - scalerMzr | |
| - lez_total | |
| - nonzero1z | |
| - mulzn_eq1 | |
| - mulrz_le0 | |
| - intr_norm | |
| - abszMsign | |
| - ltr_int | |
| - sgzX | |
| - ltr_nXz2r | |
| - expfz_eq0 | |
| - abszN1 | |
| - ler_pMz2l | |
| - ltr_pXz2r | |
| - mulrzAC | |
| - distnn | |
| - ltr0_sgz | |
| - oppzK | |
| - rmorphMz | |
| - mulr_absz | |
| - exprSzr | |
| - commr_int | |
| - intrV | |
| - fmorphXz | |
| - exprzMzl | |
| - PoszD | |
| - lerz0 | |
| - mul2z | |
| - eqz_nat | |
| - subSz1 | |
| - natr_absz | |
| - exprnP | |
| - ler_wpXz2r | |
| - pmulrz_lgt0 | |
| - mulrbz | |
| - mulrz_nat | |
| - ltz1D | |
| - Frobenius_aut_int | |
| - mulrz_suml | |
| - rpredZint | |
| - realz | |
| - commrXz | |
| - nmulrz_rgt0 | |
| - ffunMzE | |
| - rmorphXz | |
| - unitr_n0expz | |
| - derivMz | |
| - mulz_Nsign_abs | |
| - pexprz_eq1 | |
| - is_intE | |
| - leqifD_distz | |
| - linearMn | |
| - abszM | |
| - normr_sgz | |
| - natz | |
| - sgz_le0 | |
| - sgzP | |
| - ltNz_nat | |
| - ler_wpMz2l | |
| - sgz_smul | |
| - exprzD_Nnat | |
| - invz_out | |
| - absz_eq0 | |
| - lez_abs | |
| - lez0_abs | |
| - expfz_neq0 | |
| - mulr1z | |
| - nmulrz_lge0 | |
| - horner_int | |
| - oppzD | |
| - distnEl | |
| - sgrMz | |
| - ler_niXz2l | |
| - commrMz | |
| - intr_sign | |
| - mulrz_int | |
| - mul0rz | |
| - invr_expz | |
| - raddfMz | |
| - mulNrNz | |
| - abszX | |
| - lez_anti | |
| - sgz_sgr | |
| - mulrzDr_tmp | |
| - gtz0_ge1 | |
| - mulr2z | |
| - ltr_eXz2l | |
| - ler_wnXz2r | |
| - ler_wpiXz2l | |
| - is_natE | |
| - exprMz_comm | |
| - ltzD1 | |
| - truncP | |
| - Znat_def | |
| - expfzMl | |
| - ler_nMz2r | |
| - intr_sg | |
| - ler_weXz2l | |
| - mulzA | |
| - mulrz_neq0 | |
| - rmorphzP | |
| - distn0 | |
| - mulz0 | |
| - absz1 | |
| - pexpIrz | |
| - ieexprIz | |
| - Frobenius_autMz | |
| - absz0 | |
| - exprnN | |
| - mul0z | |
| - mulrzr | |
| - mulrz_le0_ge0 | |
| - addNz | |
| - exprzMl | |
| - lez1D | |
| - exprz_pMzl | |
| - abszEsg | |
| - ltr_pMz2r | |
| - ler_eXz2l | |
| - distSn | |
| - lez_nat | |
| - intS | |
| - lez_mul | |
| - abszN | |
| - ltr_nMz2l | |
| - sgz_def | |
| - mulrzA_C | |
| - intmul1_is_multiplicative | |
| - pmulrz_rle0 | |
| - nmulrz_lgt0 | |
| - eqr_int | |
| - leqD_dist | |
| - ltzN_nat | |
| - rpredXz | |
| - expNrz | |
| - lerz1 | |
| - lez_add | |
| - ler1z | |
| - ltz_nat | |
| - ltrz1 | |
| - le0z_nat | |
| - sgz_eq0 | |
| - unitrXz | |
| - eqrXz2 | |
| - ler0z | |
| - scalezrE | |
| - distnS | |
| - nmulrz_rle0 | |
| - addzC | |
| - mulrzz | |
| - ltr0z | |
| - polyCMz | |
| - mulNrz | |
| - unitzPl | |
| - mulrzAl | |
| - mulpz | |
| - intr_eq0 | |
| - raddf_int_scalable | |
| - abszE | |
| - natsum_of_intK | |
| - PoszM | |
| - mulzC | |
| - normzN | |
| - sgz_gt0 | |
| - mulz_sign_abs | |
| - absz_gt0 | |
| - mulrz_ge0 | |
| - exp1rz | |
| - sgrEz | |
| - mulrzBr | |
| - sgz_eq | |
| - sgz1 | |
| - prodMz | |
| - nmulrn | |
| - nmulrz_llt0 | |
| - sgz_cp0 | |
| - mulz_addl | |
| - gez0_norm | |
| - distnC | |
| - exprN1 | |
| - sumMz | |
| - intrM | |
| - mulNz | |
| - mulrz_ge0_le0 | |
| - distnDl | |
| - pmulrz_lle0 | |
| - normrMz | |
| - ler_wpMz2r | |
| - mulz_sg | |
| - expr0z | |
| - rpred_int | |
| - pmulrz_rgt0 | |
| - sgz_ge0 | |
| - intz | |
| - absz_sign | |
| - subz_ge0 | |
| - commrXz_wmulls | |
| - int_rect | |
| - leNz_nat | |
| - intP | |
| - exprzDr | |
| - exprz_inv | |
| - scalerMzl | |
| - mulrNz | |
| - intEsg | |
| - mulrzBl | |
| - intrB | |
| - mulz_sg_eq1 | |
| - ler_wniXz2l | |
| - ltr_nMz2r | |
| - sgzN | |
| - abszEsign | |
| - subzSS | |
| - lez0_nat | |
| - ZnatP | |
| - ltz0_abs | |
| - sgz_int | |
| - ler_nMz2l | |
| - ltr_niXz2l | |
| - ler_pXz2r | |
| - mulrzDl_tmp | |
| - mulzN | |
| - lezD1 | |
| - mul1z | |
| - expfz_n0addr | |
| - mulrz_sumr | |
| - mulrzA | |
| - sgzM | |
| - expfzDr | |
| - nmulrz_rge0 | |
| - idomain_axiomz | |
| - gtr0_sgz | |
| - sgrz | |
| - add1Pz | |
| - add0z | |
| - subzn | |
| - ler_wnMz2r | |
| - predn_int | |
| - mulVz | |
| - ler_wneXz2l | |
| - ltrz0 | |
| - pmulrz_rge0 | |
| - mulrIz | |
| - pmulrz_lge0 | |
| - int_rect | |
| - ler_wpeXz2l | |
| - dist0n | |
| - mulrzl | |
| - intrD | |
| - expr1z | |
| - sgz_id | |
| - exprzAC | |
| - exprz_gt0 | |
| - predn_int | |
| - intrN | |
| - ler_nXz2r | |
| - NegzE | |
| - expfV | |
| - nmulrz_lle0 | |
| - ltz_def | |
| - gez0_abs | |
| - mulrzAr | |
| - addzA | |
| - exprzD_nat | |
| - mulz_sg_eqN1 | |
| - absz_sg | |
| - sgz_lt0 | |
| - normr_sg | |
| - ler_piXz2l | |
| - exprz_ge0 | |
| - pmulrn | |
| - exprz_exp | |
| - sgz0 | |
| - addPz | |
| - absz_nat | |
| - hornerMz | |
| - intEsign | |
| - rmorph_int | |
| - absz_id | |
| - lezN_nat | |
| - gtz0_abs | |
| - path: mathcomp/algebra/vector.v | |
| theorems: | |
| - vsof_sub | |
| - limg_line | |
| - capv_idPl | |
| - addvA | |
| - lfun_vect_iso | |
| - vsproj_key | |
| - cat_basis | |
| - limg_dim_eq | |
| - b2mxK | |
| - memv_span1 | |
| - vsprojK | |
| - vs2mxI | |
| - span_lfunP | |
| - dimv_add_leqif | |
| - gen_vs2mx | |
| - lker0_compfK | |
| - lfun_img_key | |
| - eq_limg_ker0 | |
| - add_lfunE | |
| - span_subvP | |
| - memv_cap | |
| - funmx_linear | |
| - memv0 | |
| - vsvalK | |
| - comp_lfun0r | |
| - lpreimK | |
| - subv_anti | |
| - memvB | |
| - freeP | |
| - span_def | |
| - free_cons | |
| - lfun_key | |
| - lker0_compVKf | |
| - subvsP | |
| - mem0v | |
| - congr_subvs | |
| - mxof_comp | |
| - SubvsE | |
| - rVof_sub | |
| - diffvSl | |
| - capv_compl | |
| - coord_free | |
| - dimv_sum_leqif | |
| - memvN | |
| - lpreimS | |
| - mxof1 | |
| - memv_line | |
| - comp_lfunDr | |
| - memvD | |
| - directv_addP | |
| - v2r_inj | |
| - fixedSpace_id | |
| - subv_sumP | |
| - comp_lfunNr | |
| - nil_free | |
| - limg_cap | |
| - dim_vline | |
| - sumv_pi_sum | |
| - fixedSpace_limg | |
| - limgE | |
| - coord_sum_free | |
| - basis_free | |
| - ffun_vect_iso | |
| - span_seq1 | |
| - capfv | |
| - subvP | |
| - vecof_delta | |
| - addv_pi2_proj | |
| - msofK | |
| - basis_not0 | |
| - span_key | |
| - subv0 | |
| - lfun_scale1 | |
| - hommxE | |
| - addv0 | |
| - directv_sumE | |
| - basisEdim | |
| - subvv | |
| - coord_vbasis | |
| - vlineP | |
| - lker_proj | |
| - vecof_eq0 | |
| - lfun_addA | |
| - addvS | |
| - capv_idPr | |
| - memvf | |
| - rVof_linear | |
| - vecof_linear | |
| - subvs_vect_iso | |
| - lker0_lfunK | |
| - addv_pi1_pi2 | |
| - v2rK | |
| - capvv | |
| - dimv_cap_compl | |
| - coord_is_scalar | |
| - span_nil | |
| - directv_addE | |
| - mul_b2mx | |
| - memv_ker | |
| - lim1g | |
| - leigenspaceE | |
| - limgD | |
| - memv_suml | |
| - lfun_is_linear | |
| - vsof_eq0 | |
| - mxof_eq0 | |
| - projv_id | |
| - nil_basis | |
| - capv_diff | |
| - subvPn | |
| - sumv_pi_uniq_sum | |
| - basisEfree | |
| - dimv_leqif_eq | |
| - limg_span | |
| - comp_lfun1r | |
| - comp_lfunZl | |
| - scale_lfunE | |
| - hommx_linear | |
| - rVof_mul | |
| - vsproj_is_linear | |
| - span_b2mx | |
| - rVof_app | |
| - bigcat_basis | |
| - addvv | |
| - catr_free | |
| - lker0_compfVK | |
| - perm_free | |
| - dimvf | |
| - subvf | |
| - msof_sub | |
| - fixedSpacesP | |
| - vs2mxK | |
| - mx2vs_subproof | |
| - addv_diff_cap | |
| - subv_bigcapP | |
| - bigcat_free | |
| - addv_complf | |
| - vecof_mul | |
| - addvC | |
| - vs2mxF | |
| - dimvS | |
| - vs2mxD | |
| - addv_pi2_id | |
| - msof0 | |
| - eqEdim | |
| - vs2mx0 | |
| - free_b2mx | |
| - hommx_eq0 | |
| - dimv_eq0 | |
| - eq_in_limg | |
| - vspaceP | |
| - add0v | |
| - sum_lfunE | |
| - lkerE | |
| - comp_lfunZr | |
| - filter_free | |
| - directvP | |
| - hommxK | |
| - directvEgeq | |
| - subvs_inj | |
| - mxofK | |
| - span_cons | |
| - subv_trans | |
| - limg_ker_compl | |
| - limg_ker0 | |
| - vs2mx_sum_expr_subproof | |
| - comp_lfunA | |
| - vsolve_eqP | |
| - vspace_modl | |
| - bigcapv_inf | |
| - memv_sumP | |
| - lker0_limgf | |
| - matrix_vect_iso | |
| - directv_trivial | |
| - sub_vsof | |
| - lpreim0 | |
| - directv_add_unique | |
| - projv_proj | |
| - limg_basis_of | |
| - daddv_pi_id | |
| - vbasis_mem | |
| - memv_projC | |
| - comp_lfun1l | |
| - free_uniq | |
| - lker_ker | |
| - opp_lfunE | |
| - inv_lfun_def | |
| - binary_addv_subproof | |
| - lpreim_cap_limg | |
| - limg_sum | |
| - subv_cap | |
| - vecofK | |
| - subv_add | |
| - size_basis | |
| - mxof_linear | |
| - eqEsubv | |
| - nary_addv_subproof | |
| - memv_sumr | |
| - lim0g | |
| - lfun_scaleDr | |
| - sub0v | |
| - sumfv | |
| - memv_pi2 | |
| - rVof_eq0 | |
| - lfun1_neq0 | |
| - lker0_lfunVK | |
| - addv_idPl | |
| - directv_sum_unique | |
| - addv_diff | |
| - pair_vect_iso | |
| - limgS | |
| - capvf | |
| - coord_vecof | |
| - capvSr | |
| - limg_lfunVK | |
| - memv_sum_pi | |
| - id_lfunE | |
| - lfun_scaleA | |
| - basis_mem | |
| - coord_rVof | |
| - memv_span | |
| - r2v_inj | |
| - vpick0 | |
| - rVofK | |
| - memv_proj | |
| - dimv_leqif_sup | |
| - memv_addP | |
| - addvSr | |
| - sumv_pi_nat_sum | |
| - linear_of_free | |
| - r2vK | |
| - limg_ker_dim | |
| - daddv_pi_proj | |
| - free_not0 | |
| - memv_submod_closed | |
| - lfunE | |
| - lker0_compKf | |
| - vbasisP | |
| - lfun_add0 | |
| - capvC | |
| - hom_vecof | |
| - directv_sum_independent | |
| - sub_msof | |
| - dimv_disjoint_sum | |
| - vsof0 | |
| - mem_vecof | |
| - memvZ | |
| - cap0v | |
| - r2v_subproof | |
| - limg_proj | |
| - free_directv | |
| - directv_sumP | |
| - capv0 | |
| - addv_pi1_proj | |
| - memv_preim | |
| - subset_limgP | |
| - dimv_compl | |
| - comp_lfunE | |
| - rVofE | |
| - memv_img | |
| - addvSl | |
| - coord_basis | |
| - lker0_compVf | |
| - fullv_lfunP | |
| - regular_vect_iso | |
| - coord0 | |
| - dimv_sum_cap | |
| - directvE | |
| - memv_pi | |
| - addvf | |
| - limg0 | |
| - fixedSpaceP | |
| - dim_matrix | |
| - memvE | |
| - lfun_scaleDl | |
| - lfunPn | |
| - lin_b2mx | |
| - v2r_subproof | |
| - addv_idPr | |
| - capvS | |
| - memv_pi1 | |
| - limg_bigcap | |
| - eq_span | |
| - hommx_mul | |
| - vsval_is_linear | |
| - coord_span | |
| - row_b2mx | |
| - catl_free | |
| - vsofK | |
| - memv_imgP | |
| - lker0P | |
| - limg_comp | |
| - eqlfun_inP | |
| - msof_eq0 | |
| - eqlfunP | |
| - perm_basis | |
| - dimv_leq_sum | |
| - freeE | |
| - mx2vsK | |
| - diffv_eq0 | |
| - mem_r2v | |
| - lker0_img_cap | |
| - freeNE | |
| - memv_pick | |
| - span_cat | |
| - daddv_pi_add | |
| - path: mathcomp/ssreflect/path.v | |
| theorems: | |
| - suffix_sorted | |
| - e'_e | |
| - eq_in_path | |
| - undup_sorted | |
| - cycle_path | |
| - homo_sorted_in | |
| - homo_path_in | |
| - all_sort | |
| - mem2_map | |
| - sort_stable_in | |
| - cycle_from_next | |
| - order_path_min_in | |
| - filter_sort | |
| - nextE | |
| - loopingP | |
| - mono_cycle_in | |
| - sub_in_cycle | |
| - merge_uniq | |
| - path_relI | |
| - take_sorted | |
| - map_merge | |
| - perm_sort_inP | |
| - pop_stable | |
| - size_traject | |
| - sorted_leq_nth | |
| - cat_path | |
| - merge_stable_sorted | |
| - rcons_path | |
| - e_e' | |
| - take_traject | |
| - sorted_mask_in | |
| - inj_cycle | |
| - cycle_from_prev | |
| - right_arc | |
| - sort_pairwise_stable | |
| - mem2_last | |
| - sub_in_path | |
| - perm_sortP | |
| - subseq_sorted | |
| - count_sort | |
| - sorted_filter | |
| - homo_path | |
| - sub_in_sorted | |
| - mem_next | |
| - mem2_seq1 | |
| - subseq_sort_in | |
| - homo_sort_map_in | |
| - eq_in_cycle | |
| - nth_traject | |
| - rev_path | |
| - mem_fcycle | |
| - leElex | |
| - path_filter_in | |
| - next_prev | |
| - mem_sort | |
| - sorted_ltn_nth_in | |
| - mem2_cat | |
| - mono_sorted | |
| - next_nth | |
| - merge_path | |
| - all_merge | |
| - path_mask_in | |
| - homo_sorted | |
| - prefix_sorted | |
| - ucycle_uniq | |
| - path_sorted | |
| - looping_uniq | |
| - sort_map | |
| - rev_sorted | |
| - mem_prev | |
| - mono_path | |
| - path_le | |
| - irr_sorted_eq | |
| - homo_cycle_in | |
| - homo_cycle | |
| - eq_cycle | |
| - leT_tr' | |
| - infix_sorted | |
| - prev_nth | |
| - cycle_map | |
| - pathP | |
| - sorted_mask_sort_in | |
| - prev_rot | |
| - sort_uniq | |
| - eq_in_sorted | |
| - perm_sort | |
| - perm_iota_sort | |
| - sorted_uniq | |
| - sorted_sort_in | |
| - mono_sorted_in | |
| - ucycle_cycle | |
| - pairwise_sorted | |
| - subseq_sort | |
| - sortedP | |
| - map_sort | |
| - merge_sorted | |
| - mem2r | |
| - path_pairwise | |
| - size_sort | |
| - cycle_catC | |
| - sub_path | |
| - path_filter | |
| - undup_path | |
| - pairwise_sort | |
| - rot_cycle | |
| - splitP | |
| - cat_sorted2 | |
| - prev_rev | |
| - prev_next | |
| - merge_map | |
| - fpath_traject | |
| - traject_iteri | |
| - eq_path | |
| - sort_sorted | |
| - count_merge | |
| - mono_cycle | |
| - sorted_ltn_index | |
| - mem2_splice1 | |
| - size_merge | |
| - sort_sorted_in | |
| - path_sortedE | |
| - prev_map | |
| - path_map | |
| - subseq_path_in | |
| - sorted_filter_in | |
| - sorted_uniq_in | |
| - path_sorted_inE | |
| - size_merge_sort_push | |
| - sorted_relI | |
| - sorted_merge | |
| - fpathE | |
| - sorted_leq_nth_in | |
| - eq_fcycle | |
| - sorted_subseq_sort | |
| - mask_sort_in | |
| - merge_stable_path | |
| - cycle_all2rel | |
| - irr_sorted_eq_in | |
| - next_cycle | |
| - subseq_sorted_in | |
| - mem2_sort | |
| - mem2lf | |
| - mono_path_in | |
| - sorted_pairwise_in | |
| - eq_count_merge | |
| - next_rev | |
| - sorted_leq_index_in | |
| - next_rotr | |
| - mem2_cons | |
| - mem2l_cat | |
| - last_traject | |
| - prefix_path | |
| - mask_sort | |
| - trajectSr | |
| - trajectP | |
| - path_pairwise_in | |
| - fpathP | |
| - sub_cycle | |
| - left_arc | |
| - sorted_leq_index | |
| - mergeA | |
| - path_mask | |
| - splitPl | |
| - sort_iota_stable | |
| - sorted_ltn_nth | |
| - cycle_all2rel_in | |
| - next_rot | |
| - mem2l | |
| - sorted_eq | |
| - eq_sorted | |
| - sortE | |
| - iota_ltn_sorted | |
| - mem2_splice | |
| - sub_sorted | |
| - rot_ucycle | |
| - sorted_pairwise | |
| - cycle_next | |
| - order_path_min | |
| - next_map | |
| - sorted_mask_sort | |
| - ltn_sorted_uniq_leq | |
| - filter_sort_in | |
| - sorted_mask | |
| - push_stable | |
| - rev_cycle | |
| - trajectD | |
| - mem2_sort_in | |
| - prev_cycle | |
| - path: mathcomp/field/finfield.v | |
| theorems: | |
| - finDomain_mulrC | |
| - card_finField_unit | |
| - order_primeChar | |
| - card_finCharP | |
| - finField_galois_generator | |
| - primeChar_scaleDl | |
| - natrFp | |
| - Fermat's_little_theorem | |
| - finField_galois | |
| - primeChar_dimf | |
| - lregR | |
| - ffT_splitting_subproof | |
| - galLgen | |
| - expf_card | |
| - finRing_gt1 | |
| - card_primeChar | |
| - card_vspacef | |
| - card_vspace | |
| - primeChar_scaleDr | |
| - finField_is_abelem | |
| - primeChar_pgroup | |
| - pr_p | |
| - FinSplittingFieldFor | |
| - card_vspace1 | |
| - finField_genPoly | |
| - primeChar_vectAxiom | |
| - PrimePowerField | |
| - galL | |
| - primeChar_scaleAr | |
| - primeChar_scaleA | |
| - finDomain_field | |
| - finCharP | |
| - path: mathcomp/solvable/gseries.v | |
| theorems: | |
| - quotient_subnormal | |
| - subnormalP | |
| - quotient_simple | |
| - normal_subnormal | |
| - subnormalEsupport | |
| - setI_subnormal | |
| - cosetpre_maximal | |
| - isog_simple | |
| - invariant_subnormal | |
| - maximal_exists | |
| - maxnormal_minnormal | |
| - maximalJ | |
| - mulg_normal_maximal | |
| - subnormal_refl | |
| - subnormal_trans | |
| - central_central_factor | |
| - cosetpre_maximal_eq | |
| - injm_maxnormal | |
| - maxnormal_normal | |
| - simple_maxnormal | |
| - chief_series_exists | |
| - maxnormal_sub | |
| - quotient_maximal_eq | |
| - injm_minnormal | |
| - subnormal_sub | |
| - path_setIgr | |
| - morphim_subnormal | |
| - injm_maximal_eq | |
| - maximal_eqP | |
| - subnormalEl | |
| - chief_factor_minnormal | |
| - maxnormalM | |
| - central_factor_central | |
| - injm_maximal | |
| - ex_maxnormal_ntrivg | |
| - maxnormal_proper | |
| - acts_irrQ | |
| - path: mathcomp/algebra/zmodp.v | |
| theorems: | |
| - Fp_nat_mod | |
| - add_1_Zp | |
| - char_Fp_0 | |
| - Zp_addC | |
| - unitZpE | |
| - Fp_fieldMixin | |
| - add_N1_Zp | |
| - Zp_nat | |
| - Zp1_expgz | |
| - rshift1 | |
| - card_Fp | |
| - card_Zp | |
| - Zp_nontrivial | |
| - Zp_mul1z | |
| - val_Fp_nat | |
| - valZpK | |
| - split1 | |
| - order_Zp1 | |
| - Zp_inv_out | |
| - Zp_addA | |
| - Zp_intro_unit | |
| - natr_Zp | |
| - Zp_cycle | |
| - char_Zp | |
| - Zp_mulA | |
| - Zp_mul_addl | |
| - Zp_mul_addr | |
| - modZp | |
| - unitFpE | |
| - Zp_mulz1 | |
| - card_units_Zp | |
| - unit_Zp_expg | |
| - Zp_expg | |
| - units_Zp_abelian | |
| - Zp_add0z | |
| - Zp_mulgC | |
| - add_Zp_1 | |
| - Zp_mulrn | |
| - Zp_mulC | |
| - lshift0 | |
| - Zp_nat_mod | |
| - val_Zp_nat | |
| - char_Fp | |
| - Zp_cast | |
| - Zp_mulzV | |
| - mem_Zp | |
| - ord1 | |
| - Zp_addNz | |
| - natr_negZp | |
| - path: mathcomp/character/integral_char.v | |
| theorems: | |
| - mxZn_inj | |
| - Burnside_p_a_q_b | |
| - group_num_field_exists | |
| - faithful_degree_p_part | |
| - gring_class_sum_central | |
| - gring_classM_coef_sum_eq | |
| - nonlinear_irr_vanish | |
| - gring_mode_class_sum_eq | |
| - Aint_char | |
| - mx_irr_gring_op_center_scalar | |
| - index_support_dvd_degree | |
| - dvd_irr1_index_center | |
| - Aint_irr | |
| - gring_classM_expansion | |
| - Aint_gring_mode_class_sum | |
| - coprime_degree_support_cfcenter | |
| - sum_norm2_char_generators | |
| - set_gring_classM_coef | |
| - cfRepr_gring_center | |
| - gring_irr_modeM | |
| - Aint_class_div_irr1 | |
| - dvd_irr1_cardG | |
| - primes_class_simple_gt1 | |
| - path: mathcomp/ssreflect/prime.v | |
| theorems: | |
| - mem_primes | |
| - logn_gt0 | |
| - primeNsig | |
| - pfactorKpdiv | |
| - sub_in_partn | |
| - up_log_gt0 | |
| - partnC | |
| - prime_nt_dvdP | |
| - primePns | |
| - pdiv_gt0 | |
| - partn_lcm | |
| - dvdn_partP | |
| - ltn_log0 | |
| - primeP | |
| - up_logMp | |
| - ltn_logl | |
| - Euclid_dvdM | |
| - pfactor_gt0 | |
| - max_pdiv_dvd | |
| - partn1 | |
| - elogn2P | |
| - pdiv_leq | |
| - trunc_log_eq | |
| - Euclid_dvdX | |
| - p_natP | |
| - up_log_min | |
| - totient_pfactor | |
| - partn0 | |
| - p'natEpi | |
| - Euclid_dvd1 | |
| - trunc_log1 | |
| - pi_pnat | |
| - partn_biggcd | |
| - pi_pdiv | |
| - logn_count_dvd | |
| - primes_part | |
| - p_part_eq1 | |
| - logn_lcm | |
| - pi_p'nat | |
| - pnat_div | |
| - eq_partn_from_log | |
| - up_log_eq0 | |
| - up_log_bounds | |
| - odd_prime_gt2 | |
| - part_p'nat | |
| - pnat_pi | |
| - sub_pnat_coprime | |
| - pi_of_dvd | |
| - pnatX | |
| - sorted_divisors_ltn | |
| - ifnzP | |
| - sorted_primes | |
| - p'natE | |
| - prime_oddPn | |
| - p'nat_coprime | |
| - prime_decompE | |
| - logn_prime | |
| - primes_prime | |
| - pnatI | |
| - filter_pi_of | |
| - up_log_trunc_log | |
| - prime_gt0 | |
| - coprime_has_primes | |
| - pfactorK | |
| - eq_in_pnat | |
| - divisors_uniq | |
| - widen_partn | |
| - mem_prime_decomp | |
| - logn_coprime | |
| - part_pnat_id | |
| - part_gt0 | |
| - eq_partn | |
| - trunc_expnK | |
| - trunc_log1n | |
| - all_prime_primes | |
| - primesM | |
| - trunc_logMp | |
| - eq_negn | |
| - pi'_p'nat | |
| - pi_max_pdiv | |
| - coprime_pi' | |
| - pdiv_dvd | |
| - divisors_correct | |
| - trunc_lognn | |
| - dvdn_pfactor | |
| - totientE | |
| - pi_of_exp | |
| - leq_trunc_log | |
| - up_expnK | |
| - up_log0 | |
| - prime_coprime | |
| - up_log2S | |
| - logn0 | |
| - trunc_log_gt0 | |
| - logn_part | |
| - dvdn_sum | |
| - p_part_gt1 | |
| - partnM | |
| - coprime_partC | |
| - pnat_1 | |
| - pfactor_dvdn | |
| - logn_gcd | |
| - primePn | |
| - modn_partP | |
| - max_pdiv_prime | |
| - pnatPpi | |
| - logn1 | |
| - max_pdiv_gt0 | |
| - pnat_dvd | |
| - p_part | |
| - up_lognn | |
| - prime_above | |
| - max_pdiv_max | |
| - negnK | |
| - lognE | |
| - trunc_log_eq0 | |
| - prime_gt1 | |
| - pnatNK | |
| - partn_eq1 | |
| - pi_ofM | |
| - trunc_log0n | |
| - partnNK | |
| - pnatE | |
| - prime_decomp_correct | |
| - up_log_gtn | |
| - trunc_log2_double | |
| - partn_gcd | |
| - up_log_eq | |
| - trunc_log0 | |
| - trunc_log2S | |
| - dvdn_part | |
| - edivn2P | |
| - divisor1 | |
| - odd_2'nat | |
| - pnat_coprime | |
| - pdivP | |
| - primes_eq0 | |
| - primes_uniq | |
| - trunc_log_bounds | |
| - even_prime | |
| - eqn_from_log | |
| - leq_up_log | |
| - eq_pnat | |
| - pnatP | |
| - partn_dvd | |
| - pi_of_part | |
| - lognX | |
| - pnat_id | |
| - eq_piP | |
| - pdiv_prime | |
| - divisors_id | |
| - pfactor_coprime | |
| - partnT | |
| - ltn_pdiv2_prime | |
| - up_log1 | |
| - pi_of_prime | |
| - sub_in_pnat | |
| - totient_coprime | |
| - up_logP | |
| - eq_primes | |
| - sorted_divisors | |
| - partn_pi | |
| - partnI | |
| - partn_biglcm | |
| - totient_gt1 | |
| - dvdn_leq_log | |
| - trunc_log_max | |
| - prod_prime_decomp | |
| - logn_Gauss | |
| - totient_gt0 | |
| - pdiv_min_dvd | |
| - pfactor_dvdnn | |
| - part_pnat | |
| - dvdn_divisors | |
| - path: mathcomp/character/mxabelem.v | |
| theorems: | |
| - rVabelemN | |
| - GLmx_faithful | |
| - mx_group_homocyclic | |
| - rowg_mxS | |
| - faithful_repr_extraspecial | |
| - abelem_mx_faithful | |
| - GL_mx_repr | |
| - abelem_rV_S | |
| - abelem_rV_X | |
| - rstabs_abelem | |
| - pcore_faithful_mx_irr | |
| - comp_reprGLm | |
| - rowg_mx1 | |
| - im_abelem_rV | |
| - rfix_pgroup_char | |
| - scale_actE | |
| - abelian_type_mx_group | |
| - card_rowg | |
| - rVabelem_minj | |
| - astab_rowg_repr | |
| - rVabelemD | |
| - mxsimple_abelemP | |
| - mxrank_rowg | |
| - sub_rVabelem | |
| - abelem_rV_V | |
| - exponent_mx_group | |
| - mx_repr_is_groupAction | |
| - abelem_rV_injm | |
| - rowg_mx_eq0 | |
| - pcore_sub_rstab_mxsimple | |
| - eq_rowg | |
| - card_rVabelem | |
| - abelem_mx_irrP | |
| - val_reprGLm | |
| - rowgS | |
| - rker_abelem | |
| - rVabelem_injm | |
| - im_rVabelem | |
| - rfix_abelem | |
| - rVabelem0 | |
| - mxmodule_abelem_subg | |
| - rowg0 | |
| - rowg_stable | |
| - afix_repr | |
| - astab_setT_repr | |
| - scale_is_groupAction | |
| - abelem_rV_isom | |
| - mxsimple_abelem_subg | |
| - p_pr | |
| - gacent_repr | |
| - mx_repr_is_action | |
| - abelem_rV_K | |
| - dim_abelemE | |
| - extraspecial_repr_structure | |
| - rowgI | |
| - eq_abelem_subg_repr | |
| - rVabelemK | |
| - mx_Fp_stable | |
| - abelem_rV_inj | |
| - dprod_rowg | |
| - astab1_scale_act | |
| - mx_Fp_abelem | |
| - stable_rowg_mxK | |
| - card_abelem_rV | |
| - rowgK | |
| - abelem_rV_M | |
| - mx_repr_actE | |
| - rowg_mxSK | |
| - rVabelem_inj | |
| - abelem_rV_1 | |
| - abelem_rowgJ | |
| - reprGLmM | |
| - sub_abelem_rV_im | |
| - bigdprod_rowg | |
| - mxmodule_abelemG | |
| - abelem_mx_linear_proof | |
| - rVabelem_mK | |
| - rVabelemS | |
| - sub_rVabelem_im | |
| - cprod_rowg | |
| - rowgD | |
| - mem_rowg | |
| - rsim_abelem_subg | |
| - mxmodule_abelem | |
| - mxsimple_abelemGP | |
| - trivg_rowg | |
| - abelem_rV_J | |
| - sub_im_abelem_rV | |
| - isog_abelem_rV | |
| - modIp' | |
| - abelem_mx_repr | |
| - ker_reprGLm | |
| - abelem_rV_mK | |
| - bigcprod_rowg | |
| - pcore_sub_rker_mx_irr | |
| - rstab_abelem | |
| - acts_rowg | |
| - mem_rVabelem | |
| - rstabs_abelemG | |
| - rank_mx_group | |
| - rVabelemJ | |
| - mem_im_abelem_rV | |
| - rowg_mxK | |
| - scale_is_action | |
| - rV_abelem_sJ | |
| - rVabelemZ | |
| - path: mathcomp/character/vcharacter.v | |
| theorems: | |
| - zchar_split | |
| - zchar_onS | |
| - dirr_constt_oppr | |
| - dirr_dchi | |
| - dirr_norm1 | |
| - cfnorm_map_orthonormal | |
| - irr_constt_to_dirr | |
| - Aint_vchar | |
| - cfdot_sum_orthonormal | |
| - Z_S | |
| - ndirr_inj | |
| - Zisometry_of_cfnorm | |
| - dirr_opp | |
| - cfdot_dirr_eq1 | |
| - mul_vchar | |
| - char_vchar | |
| - isometry_in_zchar | |
| - vchar_mulr_closed | |
| - zchar_trans | |
| - zchar_small_norm | |
| - notS0 | |
| - cfdot_add_dirr_eq1 | |
| - cfdot_dirr | |
| - ndirrK | |
| - dchi_ndirrE | |
| - cfnorm_orthonormal | |
| - sub_aut_zchar | |
| - dirr_dIirrE | |
| - cnorm_dconstt | |
| - dirr_constt_oppl | |
| - zcharW | |
| - dIrrP | |
| - cfInd_vchar | |
| - Cnat_cfnorm_vchar | |
| - dirrP | |
| - cfdot_sum_orthogonal | |
| - zchar_on | |
| - cfproj_sum_orthonormal | |
| - zcharD1 | |
| - Zchar_zmod | |
| - cfnorm_sum_orthogonal | |
| - dchi_vchar | |
| - cfnorm_sum_orthonormal | |
| - zchar_tuple_expansion | |
| - zchar_nth_expansion | |
| - map_pairwise_orthogonal | |
| - cfdot_dchi | |
| - dirr_constt_oppI | |
| - zchar_filter | |
| - zchar_span | |
| - orthonormal_span | |
| - Cnat_dirr | |
| - dirr_small_norm | |
| - dirrE | |
| - cfAut_vchar | |
| - cfRes_vchar | |
| - scale_zchar | |
| - vchar_norm1P | |
| - Zisometry_inj | |
| - vchar_aut | |
| - cfdot_sum_dchi | |
| - conjC_vcharAut | |
| - zchar_subseq | |
| - cfproj_sum_orthogonal | |
| - dirr_aut | |
| - support_zchar | |
| - dirr_consttE | |
| - zchar_onG | |
| - dirr_sign | |
| - Zisometry_of_iso | |
| - dirr_dIirrPE | |
| - cfdot_vchar_r | |
| - mem_zchar_on | |
| - cfun0_zchar | |
| - irr_dirr | |
| - sub_conjC_vchar | |
| - Frobenius_kernel_exists | |
| - dchi1 | |
| - map_orthonormal | |
| - vchar_orthonormalP | |
| - dirr_oppr_closed | |
| - ndirr_diff | |
| - irr_vchar | |
| - cfun_sum_dconstt | |
| - cfRes_vchar_on | |
| - cfAut_zchar | |
| - zchar_trans_on | |
| - cfdot_todirrE | |
| - Cint_cfdot_vchar_irr | |
| - of_irrK | |
| - to_dirrK | |
| - cfdot_aut_vchar | |
| - Cint_cfdot_vchar | |
| - nS1 | |
| - Cint_vchar1 | |
| - zchar_sub_irr | |
| - zchar_expansion | |
| - cfnorm_orthogonal | |
| - irr_vchar_on | |
| - path: mathcomp/solvable/burnside_app.v | |
| theorems: | |
| - R50_inj | |
| - F_Sv | |
| - F_r034 | |
| - Fid3 | |
| - is_isoP | |
| - r41_inv | |
| - F_r32 | |
| - dir_s0p | |
| - burnside_app_iso_2_4col | |
| - card_Fid | |
| - F_s6 | |
| - r14_inv | |
| - act_f_morph | |
| - F_r012 | |
| - act_g_morph | |
| - group_set_iso3 | |
| - F_r013 | |
| - card_n4 | |
| - iso_eq_F0_F1_F2 | |
| - R021_inj | |
| - rot_eq_c0 | |
| - s14 | |
| - sd2_inv | |
| - iso0_1 | |
| - R32_inj | |
| - Lcorrect | |
| - card_n | |
| - burnside_app_rot | |
| - prod_t_correct | |
| - ecubes_def | |
| - r3_inv | |
| - S2_inv | |
| - F_r021 | |
| - rot_is_rot | |
| - F_Sh | |
| - card_Fid3 | |
| - isometries_iso | |
| - r2_inv | |
| - F_r05 | |
| - burnside_app_iso | |
| - sd1_inv | |
| - act_g_1 | |
| - s23_inv | |
| - R043_inj | |
| - R042_inj | |
| - R1_inj | |
| - group_set_diso3 | |
| - R14_inj | |
| - R013_inj | |
| - Sh_inj | |
| - F_r3 | |
| - card_n3s | |
| - S5_inv | |
| - R2_inj | |
| - R024_inj | |
| - Sv_inj | |
| - card_n2 | |
| - group_set_iso | |
| - r1_inv | |
| - r50_inv | |
| - F_s05 | |
| - eqperm | |
| - S0_inv | |
| - S14_inj | |
| - sop_inj | |
| - R012_inj | |
| - group_set_rot | |
| - sop_spec | |
| - Sd2_inj | |
| - burnside_app2 | |
| - F_r14 | |
| - R031_inj | |
| - card_n2_3 | |
| - sv_inv | |
| - F_r042 | |
| - iso3_ndir | |
| - seqs1 | |
| - F_r41 | |
| - rotations_is_rot | |
| - group_set_iso2 | |
| - F_r23 | |
| - F_Sd2 | |
| - F_Sd1 | |
| - iso_eq_F0_F1 | |
| - act_f_1 | |
| - F_s1 | |
| - F_s2 | |
| - F_r2 | |
| - F_s5 | |
| - card_n3_3 | |
| - L_iso | |
| - stable | |
| - group_set_rotations | |
| - F_r024 | |
| - dir_iso_iso3 | |
| - R23_inj | |
| - S4_inv | |
| - uniq4_uniq6 | |
| - R41_inj | |
| - S6_inv | |
| - R3_inj | |
| - R05_inj | |
| - F_r031 | |
| - card_n3 | |
| - burnside_app_iso_3_3col | |
| - F_s4 | |
| - eqperm_map | |
| - F_r043 | |
| - F_s3 | |
| - F_r1 | |
| - R034_inj | |
| - Fid | |
| - gen_diso3 | |
| - ndir_s0p | |
| - is_iso3P | |
| - burnside_app_iso3 | |
| - card_rot | |
| - F_r50 | |
| - card_iso2 | |
| - diff_id_sh | |
| - F_s14 | |
| - ord_enum4 | |
| - burnside_formula | |
| - sop_morph | |
| - path: mathcomp/algebra/finalg.v | |
| theorems: | |
| - unit_is_groupAction | |
| - mulrV | |
| - unit_actE | |
| - zmod_mulgC | |
| - val_unitV | |
| - zmodXgE | |
| - zmodVgE | |
| - invr_out | |
| - mulVr | |
| - unit_mul_proof | |
| - unit_mul1u | |
| - unit_muluA | |
| - decidable | |
| - card_finRing_gt1 | |
| - card_finField_unit | |
| - zmod1gE | |
| - val_unit1 | |
| - intro_unit | |
| - val_unitX | |
| - val_unitM | |
| - unit_mulVu | |
| - zmodMgE | |
| - path: mathcomp/ssreflect/binomial.v | |
| theorems: | |
| - bin2_sum | |
| - binS | |
| - fermat_little | |
| - card_partial_ord_partitions | |
| - ffact_small | |
| - cards_draws | |
| - bin_gt0 | |
| - bin0 | |
| - bin_sub | |
| - binSn | |
| - ffactnS | |
| - bin2 | |
| - bin_ffact | |
| - bin1 | |
| - prime_modn_expSn | |
| - leq_bin2l | |
| - bin_small | |
| - mul_bin_left | |
| - prime_dvd_bin | |
| - ffact_factd | |
| - binn | |
| - modn_summ | |
| - predn_exp | |
| - bin2odd | |
| - Wilson | |
| - dvdn_pred_predX | |
| - card_uniq_tuples | |
| - mul_bin_down | |
| - subn_exp | |
| - ffactE | |
| - ffact_fact | |
| - bin_ffactd | |
| - card_ltn_sorted_tuples | |
| - expnDn | |
| - logn_fact | |
| - card_sorted_tuples | |
| - card_ord_partitions | |
| - ffactn1 | |
| - ffact0n | |
| - ffactnn | |
| - Vandermonde | |
| - binE | |
| - bin0n | |
| - card_inj_ffuns | |
| - ffact_prod | |
| - ffactn0 | |
| - bin_fact | |
| - card_inj_ffuns_on | |
| - card_draws | |
| - fact_prod | |
| - mul_bin_diag | |
| - path: mathcomp/ssreflect/div.v | |
| theorems: | |
| - dvdn_lcm | |
| - divnMA | |
| - lcmnAC | |
| - gcdnMDl | |
| - lcmn_gt0 | |
| - divn1 | |
| - divn0 | |
| - edivnB | |
| - modn1 | |
| - divnK | |
| - chinese_modr | |
| - divnn | |
| - modnMDl | |
| - dvdn1 | |
| - modnDmr | |
| - coprime_dvdl | |
| - gcdn_gt0 | |
| - modn0 | |
| - dvdnn | |
| - gcdnMr | |
| - dvdnP | |
| - modnDml | |
| - divn2 | |
| - coprimen1 | |
| - leq_div2r | |
| - divnDl | |
| - modn_small | |
| - dvd1n | |
| - gcdnC | |
| - divnAC | |
| - dvdn_add_eq | |
| - dvdn_addr | |
| - edivn_pred | |
| - leq_mod | |
| - gcdn_idPl | |
| - modnD | |
| - egcd0n | |
| - edivn_eq | |
| - gcdnDl | |
| - divn_gt0 | |
| - Bezoutl | |
| - gcdnAC | |
| - ltn_ceil | |
| - Gauss_dvdl | |
| - modn_pred | |
| - dvdn_mull | |
| - lcmnMl | |
| - dvdn_exp2r | |
| - dvdn_gcd | |
| - leq_div | |
| - coprimeXl | |
| - gcdnDr | |
| - gcdn_modr | |
| - Gauss_dvd | |
| - gcdnA | |
| - dvdn_exp | |
| - modnMl | |
| - dvdn_gcdr | |
| - gcdn0 | |
| - divn_eq | |
| - chinese_modl | |
| - ltn_divRL | |
| - divnDMl | |
| - coprimeXr | |
| - modnDl | |
| - gcdnCA | |
| - divnB | |
| - dvdn_addl | |
| - coprime_pexpr | |
| - coprimen2 | |
| - mulKn | |
| - modn2 | |
| - dvdn_pexp2r | |
| - gcdnACA | |
| - dvdn_gcdl | |
| - gcd1n | |
| - coprime_modr | |
| - lcmn_idPr | |
| - Gauss_gcdl | |
| - ltn_Pdiv | |
| - modnS | |
| - lcmn_idPl | |
| - leq_divDl | |
| - dvdn_add | |
| - gcdn_idPr | |
| - leqDmod | |
| - dvd0n | |
| - expnB | |
| - dvdn_pmul2l | |
| - divnMBl | |
| - lcmnCA | |
| - dvdn_Pexp2l | |
| - mod0n | |
| - dvdn_subl | |
| - geq_divBl | |
| - eqn_modDr | |
| - muln_lcm_gcd | |
| - coprimeP | |
| - coprime_dvdr | |
| - modn_mod | |
| - divn_modl | |
| - coprimenS | |
| - edivnS | |
| - modn_def | |
| - dvdn_mul | |
| - dvdn_fact | |
| - modnMml | |
| - coprimeMl | |
| - gcdn_def | |
| - dvdn_odd | |
| - divnMr | |
| - coprimeMr | |
| - expn_max | |
| - muln_gcdr | |
| - coprimeSn | |
| - divn_pred | |
| - dvdn_double_leq | |
| - muln_divCA | |
| - lcmnA | |
| - modn_coprime | |
| - muln_modr | |
| - dvdn_exp2l | |
| - lcmnACA | |
| - coprime1n | |
| - gcdnE | |
| - modnMr | |
| - edivn_def | |
| - divn_small | |
| - dvdn_pmul2r | |
| - lcmn1 | |
| - divnA | |
| - leq_divLR | |
| - dvdn_div | |
| - dvdn_divRL | |
| - muln_divA | |
| - edivnD | |
| - egcdnP | |
| - eqn_mul | |
| - coprimenP | |
| - modnDr | |
| - dvdn_gt0 | |
| - modnMm | |
| - gcd0n | |
| - gcdn_modl | |
| - leq_div2l | |
| - coprime_modl | |
| - coprime2n | |
| - odd_mod | |
| - divnDr | |
| - modnn | |
| - dvdn_double_ltn | |
| - lcmnMr | |
| - divnMl | |
| - divnD | |
| - lcm0n | |
| - muln_divCA_gcd | |
| - ltn_pmod | |
| - muln_lcmr | |
| - Gauss_gcdr | |
| - divn_mulAC | |
| - muln_gcdl | |
| - muln_modl | |
| - Bezoutr | |
| - divnBMl | |
| - lcmn0 | |
| - gtnNdvd | |
| - expn_min | |
| - dvdn_leq | |
| - gcdnMl | |
| - eqn_dvd | |
| - lcm1n | |
| - chinese_mod | |
| - dvdn2 | |
| - chinese_remainder | |
| - modnDm | |
| - dvdn_trans | |
| - modn_divl | |
| - ltn_divLR | |
| - div0n | |
| - muln_lcml | |
| - coprimePn | |
| - coprime_egcdn | |
| - ltn_mod | |
| - dvdn_divLR | |
| - Gauss_dvdr | |
| - dvdn_mulr | |
| - divnBl | |
| - mulnK | |
| - gcdnn | |
| - divnS | |
| - gcdn1 | |
| - divnMDl | |
| - path: mathcomp/algebra/interval.v | |
| theorems: | |
| - mem0_itvoo_xNx | |
| - mid_in_itvcc | |
| - BInfty_leE | |
| - le_bound_refl | |
| - itv_bound_can | |
| - BRight_BLeft_leE | |
| - itv_splitI | |
| - oppr_itvcc | |
| - subset_itv | |
| - itv_meetA | |
| - bound_lex1 | |
| - subitvPl | |
| - subitvP | |
| - BLeft_ltE | |
| - BInfty_le_eqE | |
| - miditv_ge_right | |
| - itv_splitU | |
| - BLeft_BRight_ltE | |
| - BInfty_BInfty_ltE | |
| - itv_meetUl | |
| - bound_meetA | |
| - subset_itv_oo_cc | |
| - itv_le0x | |
| - in_segmentDgt0Pr | |
| - in_segmentDgt0Pl | |
| - miditv_le_left | |
| - bound_lexx | |
| - subitvPr | |
| - bound_joinA | |
| - mid_in_itv | |
| - itv_ge | |
| - itv_dec | |
| - BInfty_geE | |
| - mem_miditv | |
| - subset_itv_co_cc | |
| - ge_pinfty | |
| - BInfty_gtF | |
| - itv_meetKU | |
| - itv_total_meet3E | |
| - bound_leEmeet | |
| - itvxx | |
| - in_itv | |
| - itvP | |
| - oppr_itvoo | |
| - bound_meetC | |
| - bound_meetKU | |
| - leBRight_ltBLeft | |
| - lteif_in_itv | |
| - subitv_trans | |
| - BInfty_ltF | |
| - boundr_in_itv | |
| - lt_ninfty | |
| - ltBSide | |
| - subitvE | |
| - predC_itv | |
| - bound_le0x | |
| - boundl_in_itv | |
| - gt_pinfty | |
| - bound_joinKI | |
| - BLeft_BSide_leE | |
| - BInfty_ltE | |
| - predC_itvr | |
| - itv_joinA | |
| - ltBRight_leBLeft | |
| - bound_ltxx | |
| - itv_bound_total | |
| - itv_splitU1 | |
| - BSide_ltE | |
| - lt_in_itv | |
| - oppr_itvoc | |
| - itv_bound_display | |
| - in_itvI | |
| - bound_joinC | |
| - oppr_itv | |
| - BInfty_gtE | |
| - itv_splitUeq | |
| - mid_in_itvoo | |
| - BSide_leE | |
| - subitv_anti | |
| - itv_boundlr | |
| - subset_itv_oo_oc | |
| - itvxxP | |
| - predC_itvl | |
| - subset_itv_oc_cc | |
| - lt_bound_def | |
| - itv_lex1 | |
| - BInfty_ge_eqE | |
| - subset_itv_oo_co | |
| - le_bound_anti | |
| - itv_meetC | |
| - interval_can | |
| - itv_total_join3E | |
| - itv_joinC | |
| - BRight_leE | |
| - BRight_BSide_ltE | |
| - mem0_itvcc_xNx | |
| - itv_xx | |
| - subitv_refl | |
| - interval_display | |
| - path: mathcomp/solvable/center.v | |
| theorems: | |
| - center_class_formula | |
| - xcprodmI | |
| - xcprodmEl | |
| - cprod_by_uniq | |
| - subcentP | |
| - ker_cprod_by_central | |
| - subcent1_cycle_sub | |
| - subcent1_id | |
| - injm_cpairg1 | |
| - xcprodm_cent | |
| - im_cpair_cprod | |
| - ncprod1 | |
| - xcprodP | |
| - center_bigdprod | |
| - injm_cpair1g | |
| - sub_center_normal | |
| - injm_xcprodm | |
| - xcprodmE | |
| - cprod_center_id | |
| - im_cpair_cent | |
| - subcent1C | |
| - cpairg1_dom | |
| - center_bigcprod | |
| - center_cprod | |
| - ncprodS | |
| - cpair1g_dom | |
| - xcprod_subproof | |
| - subcent_norm | |
| - injgz | |
| - subcent_sub | |
| - cpair1g_center | |
| - isog_xcprod | |
| - center_normal | |
| - Aut_cprod_by_full | |
| - cpairg1_center | |
| - ker_cprod_by_is_group | |
| - gzZchar | |
| - im_xcprodm | |
| - center_char | |
| - center_idP | |
| - isog_cprod_by | |
| - Aut_cprod_full | |
| - subcent1_cycle_normal | |
| - center_ncprod0 | |
| - centerP | |
| - cprod_by_key | |
| - morphim_center | |
| - subcent_normal | |
| - center_abelian | |
| - center1 | |
| - subcent1_cycle_norm | |
| - in_cprodM | |
| - subcent1_sub | |
| - xcprodmEr | |
| - cyclic_center_factor_abelian | |
| - cpair_center_id | |
| - im_cpair | |
| - isog_center | |
| - eq_cpairZ | |
| - gzZ_lone | |
| - ncprod0 | |
| - injm_center | |
| - ker_in_cprod | |
| - im_xcprodml | |
| - centerC | |
| - subcent1P | |
| - subcent_char | |
| - ncprod_key | |
| - cyclic_factor_abelian | |
| - Aut_ncprod_full | |
| - setI_im_cpair | |
| - gzZ | |
| - im_xcprodmr | |
| - path: mathcomp/solvable/jordanholder.v | |
| theorems: | |
| - maxainv_norm | |
| - qacts_coset | |
| - maxainvM | |
| - asimpleP | |
| - section_reprP | |
| - asimpleI | |
| - StrongJordanHolderUniqueness | |
| - simple_compsP | |
| - maxainvS | |
| - maxainv_exists | |
| - trivg_acomps | |
| - asimple_acompsP | |
| - qacts_cosetpre | |
| - maxainv_ainvar | |
| - section_repr_isog | |
| - gactsM | |
| - compsP | |
| - exists_comps | |
| - qact_dom_doms | |
| - maxainv_sub | |
| - asimple_quo_maxainv | |
| - acomps_cons | |
| - trivg_comps | |
| - acts_qact_doms | |
| - exists_acomps | |
| - comps_cons | |
| - path: mathcomp/solvable/commutator.v | |
| theorems: | |
| - derJ | |
| - commXg | |
| - quotient_cents2 | |
| - sub_der1_abelian | |
| - commg_subr | |
| - dergS | |
| - commgV | |
| - normsRr | |
| - commXXg | |
| - commgMJ | |
| - commg_normal | |
| - normsRl | |
| - commMgR | |
| - der_normalS | |
| - derg1 | |
| - commg_normr | |
| - der_abelian | |
| - commgAC | |
| - Hall_Witt_identity | |
| - quotient_der | |
| - sub_der1_norm | |
| - commg_sub | |
| - commG1 | |
| - commg_norm | |
| - commg_normSr | |
| - commg_norml | |
| - sub_der1_normal | |
| - der1_min | |
| - der_sub | |
| - commg_normSl | |
| - comm1G | |
| - commMGr | |
| - commVg | |
| - charR | |
| - der_normal | |
| - expMg_Rmul | |
| - commgMR | |
| - der_cont | |
| - morphim_der | |
| - der_norm | |
| - comm_norm_cent_cent | |
| - der_group_set | |
| - commMgJ | |
| - dergSn | |
| - conjg_mulR | |
| - commg_subl | |
| - commg_subI | |
| - three_subgroup | |
| - der1_joing_cycles | |
| - derG1P | |
| - conjg_Rmul | |
| - path: mathcomp/ssreflect/finfun.v | |
| theorems: | |
| - card_pfamily | |
| - tnth_fgraph | |
| - ffunK | |
| - card_ffun | |
| - ffunE | |
| - eq_dffun | |
| - supportP | |
| - FinfunK | |
| - tuple_of_finfunK | |
| - nth_fgraph_ord | |
| - tfgraph_inj | |
| - ffunP | |
| - codom_ffun | |
| - fgraphK | |
| - tagged_tfgraph | |
| - fgraph_codom | |
| - familyP | |
| - pffun_onP | |
| - card_dep_ffun | |
| - finfun_of_tupleK | |
| - pfamilyP | |
| - ffun_onP | |
| - card_ffun_on | |
| - card_family | |
| - card_pffun_on | |
| - eq_ffun | |
| - codom_tffun | |
| - fgraph_ffun0 | |
| - tfgraphK | |
| - ffun0 | |
| - path: mathcomp/ssreflect/ssrfun.v | |
| theorems: | |
| - eq_omap | |
| - inj_omap | |
| - omapK | |
| - omap_id | |
| - path: mathcomp/ssreflect/choice.v | |
| theorems: | |
| - chooseP | |
| - pair_of_tagK | |
| - ltn_code | |
| - seq_of_optK | |
| - nat_pickleK | |
| - gtn_decode | |
| - codeK | |
| - bool_of_unitK | |
| - pickle_invK | |
| - xchooseP | |
| - pickleK_inv | |
| - sigW | |
| - eq_xchoose | |
| - pickle_seqK | |
| - sig_eqW | |
| - PCanHasChoice | |
| - nat_hasChoice | |
| - opair_of_sumK | |
| - codeK | |
| - eq_choose | |
| - tag_of_pairK | |
| - sig2_eqW | |
| - decodeK | |
| - pcan_pickleK | |
| - xchoose_subproof | |
| - path: mathcomp/algebra/polyXY.v | |
| theorems: | |
| - map_div_annihilantP | |
| - swapXYK | |
| - swapXY_is_multiplicative | |
| - size_poly_XaY | |
| - max_size_lead_coefXY | |
| - swapXY_comp_poly | |
| - horner_polyC | |
| - swapXY_poly_XaY | |
| - swapXY_map | |
| - horner_poly_XaY | |
| - max_size_evalC | |
| - div_annihilant_in_ideal | |
| - lead_coef_poly_XaY | |
| - sizeY_mulX | |
| - poly_XaY_eq0 | |
| - swapXY_key | |
| - root_annihilant | |
| - max_size_evalX | |
| - poly_XmY0 | |
| - coef_swapXY | |
| - swapXY_map_polyC | |
| - swapXY_polyC | |
| - horner2_swapXY | |
| - swapXY_eq0 | |
| - sizeY_eq0 | |
| - algebraic_root_polyXY | |
| - horner_swapXY | |
| - div_annihilant_neq0 | |
| - size_poly_XmY | |
| - swapXY_Y | |
| - swapXY_poly_XmY | |
| - map_sub_annihilantP | |
| - poly_XmY_eq0 | |
| - horner_poly_XmY | |
| - sub_annihilant_neq0 | |
| - div_annihilantP | |
| - sub_annihilantP | |
| - swapXY_is_additive | |
| - sub_annihilant_in_ideal | |
| - path: mathcomp/algebra/ring_quotient.v | |
| theorems: | |
| - rquot_IdomainAxiom | |
| - nonzero1q | |
| - idealMr | |
| - mulqC | |
| - idealr_closed_nontrivial | |
| - idealr1 | |
| - pi_is_multiplicative | |
| - idealrDE | |
| - addqC | |
| - addNq | |
| - idealr_closedB | |
| - pi_is_additive | |
| - pi_opp | |
| - addqA | |
| - mul1q | |
| - idealrBE | |
| - equivE | |
| - pi_mul | |
| - idealr0 | |
| - mulq_addl | |
| - add0q | |
| - pi_add | |
| - path: mathcomp/solvable/hall.v | |
| theorems: | |
| - strongest_coprime_quotient_cent | |
| - coprime_Hall_trans | |
| - ext_coprime_quotient_cent | |
| - quotient_TI_subcent | |
| - coprime_cent_mulG | |
| - Hall_exists_subJ | |
| - SchurZassenhaus_trans_actsol | |
| - Hall_superset | |
| - sol_coprime_Sylow_subset | |
| - external_action_im_coprime | |
| - ext_norm_conj_cent | |
| - Hall_subJ | |
| - SchurZassenhaus_split | |
| - Hall_exists | |
| - coprime_norm_cent | |
| - ext_coprime_Hall_exists | |
| - coprime_Hall_subset | |
| - Hall_Frattini_arg | |
| - sol_coprime_Sylow_trans | |
| - norm_conj_cent | |
| - coprime_norm_quotient_cent | |
| - sol_coprime_Sylow_exists | |
| - SchurZassenhaus_trans_sol | |
| - ext_coprime_Hall_subset | |
| - Hall_trans | |
| - ext_coprime_Hall_trans | |
| - coprime_Hall_exists | |
| - path: mathcomp/ssreflect/ssrAC.v | |
| theorems: | |
| - serial_Op | |
| - set_pos_trecE | |
| - cforallP | |
| - pos_set_pos | |
| - proof | |
| - path: mathcomp/field/cyclotomic.v | |
| theorems: | |
| - prod_cyclotomic | |
| - size_cyclotomic | |
| - Cintr_Cyclotomic | |
| - root_cyclotomic | |
| - Cyclotomic_monic | |
| - C_prim_root_exists | |
| - minCpoly_cyclotomic | |
| - prod_Cyclotomic | |
| - cyclotomic_monic | |
| - separable_Xn_sub_1 | |
| - size_Cyclotomic | |
| - Cyclotomic0 | |
| - path: mathcomp/solvable/primitive_action.v | |
| theorems: | |
| - n_act0 | |
| - stab_ntransitive | |
| - dtuple_on_add_D1 | |
| - ntransitive_weak | |
| - ntransitive1 | |
| - n_act_add | |
| - ntransitive_primitive | |
| - trans_prim_astab | |
| - ntransitive0 | |
| - n_act_dtuple | |
| - dtuple_on_add | |
| - stab_ntransitiveI | |
| - prim_trans_norm | |
| - dtuple_on_subset | |
| - dtuple_onP | |
| - card_uniq_tuple | |
| - path: mathcomp/ssreflect/ssrbool.v | |
| theorems: | |
| - if_add | |
| - classic_ex | |
| - classic_sigW | |
| - if_or | |
| - if_implybC | |
| - if_and | |
| - relpre_trans | |
| - homo_mono1 | |
| - path: mathcomp/field/algebraics_fundamentals.v | |
| theorems: | |
| - rat_algebraic_archimedean | |
| - minPoly_decidable_closure | |
| - rat_algebraic_decidable | |
| - Fundamental_Theorem_of_Algebraics | |
| - alg_integral | |