Delete loading script
Browse files- superb_demo.py +0 -431
    	
        superb_demo.py
    DELETED
    
    | @@ -1,431 +0,0 @@ | |
| 1 | 
            -
            # coding=utf-8
         | 
| 2 | 
            -
            # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            -
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            -
            # You may obtain a copy of the License at
         | 
| 7 | 
            -
            #
         | 
| 8 | 
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            -
            #
         | 
| 10 | 
            -
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            -
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            -
            # limitations under the License.
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            # Lint as: python3
         | 
| 17 | 
            -
            """SUPERB: Speech processing Universal PERformance Benchmark."""
         | 
| 18 | 
            -
             | 
| 19 | 
            -
            import csv
         | 
| 20 | 
            -
            import glob
         | 
| 21 | 
            -
            import os
         | 
| 22 | 
            -
            import textwrap
         | 
| 23 | 
            -
             | 
| 24 | 
            -
            import datasets
         | 
| 25 | 
            -
             | 
| 26 | 
            -
            _CITATION = """\
         | 
| 27 | 
            -
            @article{DBLP:journals/corr/abs-2105-01051,
         | 
| 28 | 
            -
              author    = {Shu{-}Wen Yang and
         | 
| 29 | 
            -
                           Po{-}Han Chi and
         | 
| 30 | 
            -
                           Yung{-}Sung Chuang and
         | 
| 31 | 
            -
                           Cheng{-}I Jeff Lai and
         | 
| 32 | 
            -
                           Kushal Lakhotia and
         | 
| 33 | 
            -
                           Yist Y. Lin and
         | 
| 34 | 
            -
                           Andy T. Liu and
         | 
| 35 | 
            -
                           Jiatong Shi and
         | 
| 36 | 
            -
                           Xuankai Chang and
         | 
| 37 | 
            -
                           Guan{-}Ting Lin and
         | 
| 38 | 
            -
                           Tzu{-}Hsien Huang and
         | 
| 39 | 
            -
                           Wei{-}Cheng Tseng and
         | 
| 40 | 
            -
                           Ko{-}tik Lee and
         | 
| 41 | 
            -
                           Da{-}Rong Liu and
         | 
| 42 | 
            -
                           Zili Huang and
         | 
| 43 | 
            -
                           Shuyan Dong and
         | 
| 44 | 
            -
                           Shang{-}Wen Li and
         | 
| 45 | 
            -
                           Shinji Watanabe and
         | 
| 46 | 
            -
                           Abdelrahman Mohamed and
         | 
| 47 | 
            -
                           Hung{-}yi Lee},
         | 
| 48 | 
            -
              title     = {{SUPERB:} Speech processing Universal PERformance Benchmark},
         | 
| 49 | 
            -
              journal   = {CoRR},
         | 
| 50 | 
            -
              volume    = {abs/2105.01051},
         | 
| 51 | 
            -
              year      = {2021},
         | 
| 52 | 
            -
              url       = {https://arxiv.org/abs/2105.01051},
         | 
| 53 | 
            -
              archivePrefix = {arXiv},
         | 
| 54 | 
            -
              eprint    = {2105.01051},
         | 
| 55 | 
            -
              timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
         | 
| 56 | 
            -
              biburl    = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
         | 
| 57 | 
            -
              bibsource = {dblp computer science bibliography, https://dblp.org}
         | 
| 58 | 
            -
            }
         | 
| 59 | 
            -
            """
         | 
| 60 | 
            -
             | 
| 61 | 
            -
            _DESCRIPTION = """\
         | 
| 62 | 
            -
            Self-supervised learning (SSL) has proven vital for advancing research in
         | 
| 63 | 
            -
            natural language processing (NLP) and computer vision (CV). The paradigm
         | 
| 64 | 
            -
            pretrains a shared model on large volumes of unlabeled data and achieves
         | 
| 65 | 
            -
            state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
         | 
| 66 | 
            -
            speech processing community lacks a similar setup to systematically explore the
         | 
| 67 | 
            -
            paradigm. To bridge this gap, we introduce Speech processing Universal
         | 
| 68 | 
            -
            PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
         | 
| 69 | 
            -
            performance of a shared model across a wide range of speech processing tasks
         | 
| 70 | 
            -
            with minimal architecture changes and labeled data. Among multiple usages of the
         | 
| 71 | 
            -
            shared model, we especially focus on extracting the representation learned from
         | 
| 72 | 
            -
            SSL due to its preferable re-usability. We present a simple framework to solve
         | 
| 73 | 
            -
            SUPERB tasks by learning task-specialized lightweight prediction heads on top of
         | 
| 74 | 
            -
            the frozen shared model. Our results demonstrate that the framework is promising
         | 
| 75 | 
            -
            as SSL representations show competitive generalizability and accessibility
         | 
| 76 | 
            -
            across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
         | 
| 77 | 
            -
            benchmark toolkit to fuel the research in representation learning and general
         | 
| 78 | 
            -
            speech processing.
         | 
| 79 | 
            -
             | 
| 80 | 
            -
            Note that in order to limit the required storage for preparing this dataset, the
         | 
| 81 | 
            -
            audio is stored in the .flac format and is not converted to a float32 array. To
         | 
| 82 | 
            -
            convert, the audio file to a float32 array, please make use of the `.map()`
         | 
| 83 | 
            -
            function as follows:
         | 
| 84 | 
            -
             | 
| 85 | 
            -
             | 
| 86 | 
            -
            ```python
         | 
| 87 | 
            -
            import soundfile as sf
         | 
| 88 | 
            -
             | 
| 89 | 
            -
            def map_to_array(batch):
         | 
| 90 | 
            -
                speech_array, _ = sf.read(batch["file"])
         | 
| 91 | 
            -
                batch["speech"] = speech_array
         | 
| 92 | 
            -
                return batch
         | 
| 93 | 
            -
             | 
| 94 | 
            -
            dataset = dataset.map(map_to_array, remove_columns=["file"])
         | 
| 95 | 
            -
            ```
         | 
| 96 | 
            -
            """
         | 
| 97 | 
            -
             | 
| 98 | 
            -
             | 
| 99 | 
            -
            class SuperbConfig(datasets.BuilderConfig):
         | 
| 100 | 
            -
                """BuilderConfig for Superb."""
         | 
| 101 | 
            -
             | 
| 102 | 
            -
                def __init__(
         | 
| 103 | 
            -
                        self,
         | 
| 104 | 
            -
                        features,
         | 
| 105 | 
            -
                        url,
         | 
| 106 | 
            -
                        data_url=None,
         | 
| 107 | 
            -
                        supervised_keys=None,
         | 
| 108 | 
            -
                        **kwargs,
         | 
| 109 | 
            -
                ):
         | 
| 110 | 
            -
                    super().__init__(version=datasets.Version("1.9.0", ""), **kwargs)
         | 
| 111 | 
            -
                    self.features = features
         | 
| 112 | 
            -
                    self.data_url = data_url
         | 
| 113 | 
            -
                    self.url = url
         | 
| 114 | 
            -
                    self.supervised_keys = supervised_keys
         | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
            class Superb(datasets.GeneratorBasedBuilder):
         | 
| 118 | 
            -
                """Superb dataset."""
         | 
| 119 | 
            -
             | 
| 120 | 
            -
                BUILDER_CONFIGS = [
         | 
| 121 | 
            -
                    SuperbConfig(
         | 
| 122 | 
            -
                        name="asr",
         | 
| 123 | 
            -
                        description=textwrap.dedent(
         | 
| 124 | 
            -
                            """\
         | 
| 125 | 
            -
                        ASR transcribes utterances into words. While PR analyzes the
         | 
| 126 | 
            -
                        improvement in modeling phonetics, ASR reflects the significance of
         | 
| 127 | 
            -
                        the improvement in a real-world scenario. LibriSpeech
         | 
| 128 | 
            -
                        train-clean-100/dev-clean/test-clean subsets are used for
         | 
| 129 | 
            -
                        training/validation/testing. The evaluation metric is word error
         | 
| 130 | 
            -
                        rate (WER)."""
         | 
| 131 | 
            -
                        ),
         | 
| 132 | 
            -
                        features=datasets.Features(
         | 
| 133 | 
            -
                            {
         | 
| 134 | 
            -
                                "file": datasets.Value("string"),
         | 
| 135 | 
            -
                                "audio": datasets.features.Audio(sampling_rate=16_000),
         | 
| 136 | 
            -
                                "text": datasets.Value("string"),
         | 
| 137 | 
            -
                                "speaker_id": datasets.Value("int64"),
         | 
| 138 | 
            -
                                "chapter_id": datasets.Value("int64"),
         | 
| 139 | 
            -
                                "id": datasets.Value("string"),
         | 
| 140 | 
            -
                            }
         | 
| 141 | 
            -
                        ),
         | 
| 142 | 
            -
                        supervised_keys=("file", "text"),
         | 
| 143 | 
            -
                        url="http://www.openslr.org/12",
         | 
| 144 | 
            -
                        data_url="data/LibriSpeech-test-clean.zip",
         | 
| 145 | 
            -
                    ),
         | 
| 146 | 
            -
                    SuperbConfig(
         | 
| 147 | 
            -
                        name="ks",
         | 
| 148 | 
            -
                        description=textwrap.dedent(
         | 
| 149 | 
            -
                            """\
         | 
| 150 | 
            -
                        Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
         | 
| 151 | 
            -
                        words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
         | 
| 152 | 
            -
                        inference time are all crucial. SUPERB uses the widely used Speech Commands dataset v1.0 for the task.
         | 
| 153 | 
            -
                        The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
         | 
| 154 | 
            -
                        false positive. The evaluation metric is accuracy (ACC)"""
         | 
| 155 | 
            -
                        ),
         | 
| 156 | 
            -
                        features=datasets.Features(
         | 
| 157 | 
            -
                            {
         | 
| 158 | 
            -
                                "file": datasets.Value("string"),
         | 
| 159 | 
            -
                                "audio": datasets.features.Audio(sampling_rate=16_000),
         | 
| 160 | 
            -
                                "label": datasets.ClassLabel(
         | 
| 161 | 
            -
                                    names=[
         | 
| 162 | 
            -
                                        "yes",
         | 
| 163 | 
            -
                                        "no",
         | 
| 164 | 
            -
                                        "up",
         | 
| 165 | 
            -
                                        "down",
         | 
| 166 | 
            -
                                        "left",
         | 
| 167 | 
            -
                                        "right",
         | 
| 168 | 
            -
                                        "on",
         | 
| 169 | 
            -
                                        "off",
         | 
| 170 | 
            -
                                        "stop",
         | 
| 171 | 
            -
                                        "go",
         | 
| 172 | 
            -
                                        "_silence_",
         | 
| 173 | 
            -
                                        "_unknown_",
         | 
| 174 | 
            -
                                    ]
         | 
| 175 | 
            -
                                ),
         | 
| 176 | 
            -
                            }
         | 
| 177 | 
            -
                        ),
         | 
| 178 | 
            -
                        supervised_keys=("file", "label"),
         | 
| 179 | 
            -
                        url="https://www.tensorflow.org/datasets/catalog/speech_commands",
         | 
| 180 | 
            -
                        data_url="data/speech_commands_test_set_v0.01.zip",
         | 
| 181 | 
            -
                    ),
         | 
| 182 | 
            -
                    SuperbConfig(
         | 
| 183 | 
            -
                        name="ic",
         | 
| 184 | 
            -
                        description=textwrap.dedent(
         | 
| 185 | 
            -
                            """\
         | 
| 186 | 
            -
                        Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
         | 
| 187 | 
            -
                        speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent
         | 
| 188 | 
            -
                        labels: action, object, and location. The evaluation metric is accuracy (ACC)."""
         | 
| 189 | 
            -
                        ),
         | 
| 190 | 
            -
                        features=datasets.Features(
         | 
| 191 | 
            -
                            {
         | 
| 192 | 
            -
                                "file": datasets.Value("string"),
         | 
| 193 | 
            -
                                "audio": datasets.features.Audio(sampling_rate=16_000),
         | 
| 194 | 
            -
                                "speaker_id": datasets.Value("string"),
         | 
| 195 | 
            -
                                "text": datasets.Value("string"),
         | 
| 196 | 
            -
                                "action": datasets.ClassLabel(
         | 
| 197 | 
            -
                                    names=["activate", "bring", "change language", "deactivate", "decrease", "increase"]
         | 
| 198 | 
            -
                                ),
         | 
| 199 | 
            -
                                "object": datasets.ClassLabel(
         | 
| 200 | 
            -
                                    names=[
         | 
| 201 | 
            -
                                        "Chinese",
         | 
| 202 | 
            -
                                        "English",
         | 
| 203 | 
            -
                                        "German",
         | 
| 204 | 
            -
                                        "Korean",
         | 
| 205 | 
            -
                                        "heat",
         | 
| 206 | 
            -
                                        "juice",
         | 
| 207 | 
            -
                                        "lamp",
         | 
| 208 | 
            -
                                        "lights",
         | 
| 209 | 
            -
                                        "music",
         | 
| 210 | 
            -
                                        "newspaper",
         | 
| 211 | 
            -
                                        "none",
         | 
| 212 | 
            -
                                        "shoes",
         | 
| 213 | 
            -
                                        "socks",
         | 
| 214 | 
            -
                                        "volume",
         | 
| 215 | 
            -
                                    ]
         | 
| 216 | 
            -
                                ),
         | 
| 217 | 
            -
                                "location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]),
         | 
| 218 | 
            -
                            }
         | 
| 219 | 
            -
                        ),
         | 
| 220 | 
            -
                        # no default supervised keys, since there are 3 labels
         | 
| 221 | 
            -
                        supervised_keys=None,
         | 
| 222 | 
            -
                        url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/",
         | 
| 223 | 
            -
                        data_url="data/fluent_speech_commands_dataset.zip",
         | 
| 224 | 
            -
                    ),
         | 
| 225 | 
            -
                    SuperbConfig(
         | 
| 226 | 
            -
                        name="si",
         | 
| 227 | 
            -
                        description=textwrap.dedent(
         | 
| 228 | 
            -
                            """\
         | 
| 229 | 
            -
                        Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
         | 
| 230 | 
            -
                        classification, where speakers are in the same predefined set for both training and testing. The widely
         | 
| 231 | 
            -
                        used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC)."""
         | 
| 232 | 
            -
                        ),
         | 
| 233 | 
            -
                        features=datasets.Features(
         | 
| 234 | 
            -
                            {
         | 
| 235 | 
            -
                                "file": datasets.Value("string"),
         | 
| 236 | 
            -
                                "audio": datasets.features.Audio(sampling_rate=16_000),
         | 
| 237 | 
            -
                                "label": datasets.ClassLabel(names=[f"id{i + 10001}" for i in range(1251)]),
         | 
| 238 | 
            -
                            }
         | 
| 239 | 
            -
                        ),
         | 
| 240 | 
            -
                        supervised_keys=("file", "label"),
         | 
| 241 | 
            -
                        url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html",
         | 
| 242 | 
            -
                        data_url="data/VoxCeleb1.zip"
         | 
| 243 | 
            -
                    ),
         | 
| 244 | 
            -
                    SuperbConfig(
         | 
| 245 | 
            -
                        name="er",
         | 
| 246 | 
            -
                        description=textwrap.dedent(
         | 
| 247 | 
            -
                            """\
         | 
| 248 | 
            -
                        Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
         | 
| 249 | 
            -
                        IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion
         | 
| 250 | 
            -
                        classes to leave the final four classes with a similar amount of data points and cross-validates on five
         | 
| 251 | 
            -
                        folds of the standard splits. The evaluation metric is accuracy (ACC)."""
         | 
| 252 | 
            -
                        ),
         | 
| 253 | 
            -
                        features=datasets.Features(
         | 
| 254 | 
            -
                            {
         | 
| 255 | 
            -
                                "file": datasets.Value("string"),
         | 
| 256 | 
            -
                                "audio": datasets.features.Audio(sampling_rate=16_000),
         | 
| 257 | 
            -
                                "label": datasets.ClassLabel(names=['neu', 'hap', 'ang', 'sad']),
         | 
| 258 | 
            -
                            }
         | 
| 259 | 
            -
                        ),
         | 
| 260 | 
            -
                        supervised_keys=("file", "label"),
         | 
| 261 | 
            -
                        url="https://sail.usc.edu/iemocap/",
         | 
| 262 | 
            -
                        data_url="data/IEMOCAP_full_release.zip"
         | 
| 263 | 
            -
                    ),
         | 
| 264 | 
            -
                ]
         | 
| 265 | 
            -
             | 
| 266 | 
            -
                def _info(self):
         | 
| 267 | 
            -
                    return datasets.DatasetInfo(
         | 
| 268 | 
            -
                        description=_DESCRIPTION,
         | 
| 269 | 
            -
                        features=self.config.features,
         | 
| 270 | 
            -
                        supervised_keys=self.config.supervised_keys,
         | 
| 271 | 
            -
                        homepage=self.config.url,
         | 
| 272 | 
            -
                        citation=_CITATION,
         | 
| 273 | 
            -
                    )
         | 
| 274 | 
            -
             | 
| 275 | 
            -
                def _split_generators(self, dl_manager):
         | 
| 276 | 
            -
                    if self.config.name == "asr":
         | 
| 277 | 
            -
                        archive_path = dl_manager.download_and_extract(self.config.data_url)
         | 
| 278 | 
            -
                        return [
         | 
| 279 | 
            -
                            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path}),
         | 
| 280 | 
            -
                        ]
         | 
| 281 | 
            -
                    elif self.config.name == "ks":
         | 
| 282 | 
            -
                        archive_path = dl_manager.download_and_extract(self.config.data_url)
         | 
| 283 | 
            -
                        return [
         | 
| 284 | 
            -
                            datasets.SplitGenerator(
         | 
| 285 | 
            -
                                name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"}
         | 
| 286 | 
            -
                            ),
         | 
| 287 | 
            -
                        ]
         | 
| 288 | 
            -
                    elif self.config.name == "ic":
         | 
| 289 | 
            -
                        archive_path = dl_manager.download_and_extract(self.config.data_url)
         | 
| 290 | 
            -
                        return [
         | 
| 291 | 
            -
                            datasets.SplitGenerator(
         | 
| 292 | 
            -
                                name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"}
         | 
| 293 | 
            -
                            ),
         | 
| 294 | 
            -
                        ]
         | 
| 295 | 
            -
                    elif self.config.name == "si":
         | 
| 296 | 
            -
                        archive_path = dl_manager.download_and_extract(self.config.data_url)
         | 
| 297 | 
            -
                        return [
         | 
| 298 | 
            -
                            datasets.SplitGenerator(
         | 
| 299 | 
            -
                                name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": 3}
         | 
| 300 | 
            -
                            ),
         | 
| 301 | 
            -
                        ]
         | 
| 302 | 
            -
                    elif self.config.name == "sd":
         | 
| 303 | 
            -
                        archive_path = dl_manager.download_and_extract(self.config.data_url)
         | 
| 304 | 
            -
                        return [
         | 
| 305 | 
            -
                            datasets.SplitGenerator(
         | 
| 306 | 
            -
                                name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"}
         | 
| 307 | 
            -
                            )
         | 
| 308 | 
            -
                        ]
         | 
| 309 | 
            -
                    elif self.config.name == "er":
         | 
| 310 | 
            -
                        archive_path = dl_manager.download_and_extract(self.config.data_url)
         | 
| 311 | 
            -
                        return [
         | 
| 312 | 
            -
                            datasets.SplitGenerator(
         | 
| 313 | 
            -
                                name="session1", gen_kwargs={"archive_path": archive_path, "split": 1},
         | 
| 314 | 
            -
                            )
         | 
| 315 | 
            -
                        ]
         | 
| 316 | 
            -
             | 
| 317 | 
            -
                def _generate_examples(self, archive_path, split=None):
         | 
| 318 | 
            -
                    """Generate examples."""
         | 
| 319 | 
            -
                    if self.config.name == "asr":
         | 
| 320 | 
            -
                        transcripts_glob = os.path.join(archive_path, "LibriSpeech", "*/*/*/*.txt")
         | 
| 321 | 
            -
                        key = 0
         | 
| 322 | 
            -
                        for transcript_path in sorted(glob.glob(transcripts_glob)):
         | 
| 323 | 
            -
                            transcript_dir_path = os.path.dirname(transcript_path)
         | 
| 324 | 
            -
                            with open(transcript_path, "r", encoding="utf-8") as f:
         | 
| 325 | 
            -
                                for line in f:
         | 
| 326 | 
            -
                                    line = line.strip()
         | 
| 327 | 
            -
                                    id_, transcript = line.split(" ", 1)
         | 
| 328 | 
            -
                                    audio_file = f"{id_}.flac"
         | 
| 329 | 
            -
                                    speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
         | 
| 330 | 
            -
                                    audio_path = os.path.join(transcript_dir_path, audio_file)
         | 
| 331 | 
            -
                                    yield key, {
         | 
| 332 | 
            -
                                        "id": id_,
         | 
| 333 | 
            -
                                        "speaker_id": speaker_id,
         | 
| 334 | 
            -
                                        "chapter_id": chapter_id,
         | 
| 335 | 
            -
                                        "file": audio_path,
         | 
| 336 | 
            -
                                        "audio": audio_path,
         | 
| 337 | 
            -
                                        "text": transcript,
         | 
| 338 | 
            -
                                    }
         | 
| 339 | 
            -
                                    key += 1
         | 
| 340 | 
            -
                    elif self.config.name == "ks":
         | 
| 341 | 
            -
                        words = ["yes", "no", "up", "down", "left", "right", "on", "off", "stop", "go"]
         | 
| 342 | 
            -
                        splits = _split_ks_files(archive_path, split)
         | 
| 343 | 
            -
                        for key, audio_file in enumerate(sorted(splits[split])):
         | 
| 344 | 
            -
                            base_dir, file_name = os.path.split(audio_file)
         | 
| 345 | 
            -
                            _, word = os.path.split(base_dir)
         | 
| 346 | 
            -
                            if word in words:
         | 
| 347 | 
            -
                                label = word
         | 
| 348 | 
            -
                            elif word == "_silence_" or word == "_background_noise_":
         | 
| 349 | 
            -
                                label = "_silence_"
         | 
| 350 | 
            -
                            else:
         | 
| 351 | 
            -
                                label = "_unknown_"
         | 
| 352 | 
            -
                            yield key, {"file": audio_file, "audio": audio_file, "label": label}
         | 
| 353 | 
            -
                    elif self.config.name == "ic":
         | 
| 354 | 
            -
                        root_path = os.path.join(archive_path, "fluent_speech_commands_dataset/")
         | 
| 355 | 
            -
                        csv_path = os.path.join(root_path, f"data/{split}_data.csv")
         | 
| 356 | 
            -
                        with open(csv_path, encoding="utf-8") as csv_file:
         | 
| 357 | 
            -
                            csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True)
         | 
| 358 | 
            -
                            next(csv_reader)
         | 
| 359 | 
            -
                            for row in csv_reader:
         | 
| 360 | 
            -
                                key, file_path, speaker_id, text, action, object_, location = row
         | 
| 361 | 
            -
                                audio_path = os.path.join(root_path, file_path)
         | 
| 362 | 
            -
                                yield key, {
         | 
| 363 | 
            -
                                    "file": audio_path,
         | 
| 364 | 
            -
                                    "audio": audio_path,
         | 
| 365 | 
            -
                                    "speaker_id": speaker_id,
         | 
| 366 | 
            -
                                    "text": text,
         | 
| 367 | 
            -
                                    "action": action,
         | 
| 368 | 
            -
                                    "object": object_,
         | 
| 369 | 
            -
                                    "location": location,
         | 
| 370 | 
            -
                                }
         | 
| 371 | 
            -
                    elif self.config.name == "si":
         | 
| 372 | 
            -
                        wav_path = os.path.join(archive_path, "wav/")
         | 
| 373 | 
            -
                        splits_path = os.path.join(archive_path, "veri_test_class.txt")
         | 
| 374 | 
            -
                        with open(splits_path, "r", encoding="utf-8") as f:
         | 
| 375 | 
            -
                            for key, line in enumerate(f):
         | 
| 376 | 
            -
                                split_id, file_path = line.strip().split(" ")
         | 
| 377 | 
            -
                                if int(split_id) != split:
         | 
| 378 | 
            -
                                    continue
         | 
| 379 | 
            -
                                speaker_id = file_path.split("/")[0]
         | 
| 380 | 
            -
                                audio_path = os.path.join(wav_path, file_path)
         | 
| 381 | 
            -
                                yield key, {
         | 
| 382 | 
            -
                                    "file": audio_path,
         | 
| 383 | 
            -
                                    "audio": audio_path,
         | 
| 384 | 
            -
                                    "label": speaker_id,
         | 
| 385 | 
            -
                                }
         | 
| 386 | 
            -
                    elif self.config.name == "er":
         | 
| 387 | 
            -
                        root_path = os.path.join(archive_path, f"Session{split}/")
         | 
| 388 | 
            -
                        wav_path = os.path.join(root_path, "sentences/wav/")
         | 
| 389 | 
            -
                        labels_path = os.path.join(root_path, "dialog/EmoEvaluation/*.txt")
         | 
| 390 | 
            -
                        emotions = ['neu', 'hap', 'ang', 'sad', 'exc']
         | 
| 391 | 
            -
                        key = 0
         | 
| 392 | 
            -
                        for labels_file in sorted(glob.glob(labels_path)):
         | 
| 393 | 
            -
                            with open(labels_file, "r", encoding="utf-8") as f:
         | 
| 394 | 
            -
                                for line in f:
         | 
| 395 | 
            -
                                    if line[0] != "[":
         | 
| 396 | 
            -
                                        continue
         | 
| 397 | 
            -
                                    _, filename, emo, _ = line.split("\t")
         | 
| 398 | 
            -
                                    if emo not in emotions:
         | 
| 399 | 
            -
                                        continue
         | 
| 400 | 
            -
                                    wav_subdir = filename.rsplit("_", 1)[0]
         | 
| 401 | 
            -
                                    filename = f"{filename}.wav"
         | 
| 402 | 
            -
                                    audio_path = os.path.join(wav_path, wav_subdir, filename)
         | 
| 403 | 
            -
                                    yield key, {
         | 
| 404 | 
            -
                                        "file": audio_path,
         | 
| 405 | 
            -
                                        "audio": audio_path,
         | 
| 406 | 
            -
                                        "label": emo.replace("exc", "hap"),
         | 
| 407 | 
            -
                                    }
         | 
| 408 | 
            -
                                    key += 1
         | 
| 409 | 
            -
             | 
| 410 | 
            -
             | 
| 411 | 
            -
            def _split_ks_files(archive_path, split):
         | 
| 412 | 
            -
                audio_path = os.path.join(archive_path, "**/*.wav")
         | 
| 413 | 
            -
                audio_paths = glob.glob(audio_path)
         | 
| 414 | 
            -
                if split == "test":
         | 
| 415 | 
            -
                    # use all available files for the test archive
         | 
| 416 | 
            -
                    return {"test": audio_paths}
         | 
| 417 | 
            -
             | 
| 418 | 
            -
                val_list_file = os.path.join(archive_path, "validation_list.txt")
         | 
| 419 | 
            -
                test_list_file = os.path.join(archive_path, "testing_list.txt")
         | 
| 420 | 
            -
                with open(val_list_file, encoding="utf-8") as f:
         | 
| 421 | 
            -
                    val_paths = f.read().strip().splitlines()
         | 
| 422 | 
            -
                    val_paths = [os.path.join(archive_path, p) for p in val_paths]
         | 
| 423 | 
            -
                with open(test_list_file, encoding="utf-8") as f:
         | 
| 424 | 
            -
                    test_paths = f.read().strip().splitlines()
         | 
| 425 | 
            -
                    test_paths = [os.path.join(archive_path, p) for p in test_paths]
         | 
| 426 | 
            -
             | 
| 427 | 
            -
                # the paths for the train set is just whichever paths that do not exist in
         | 
| 428 | 
            -
                # either the test or validation splits
         | 
| 429 | 
            -
                train_paths = list(set(audio_paths) - set(val_paths) - set(test_paths))
         | 
| 430 | 
            -
             | 
| 431 | 
            -
                return {"train": train_paths, "val": val_paths}
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 

