Delete loading script
Browse files- superb_dummy.py +0 -273
    	
        superb_dummy.py
    DELETED
    
    | @@ -1,273 +0,0 @@ | |
| 1 | 
            -
            # coding=utf-8
         | 
| 2 | 
            -
            # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            -
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            -
            # You may obtain a copy of the License at
         | 
| 7 | 
            -
            #
         | 
| 8 | 
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            -
            #
         | 
| 10 | 
            -
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            -
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            -
            # limitations under the License.
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            # Lint as: python3
         | 
| 17 | 
            -
            """SUPERB: Speech processing Universal PERformance Benchmark."""
         | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
            import base64
         | 
| 21 | 
            -
            import json
         | 
| 22 | 
            -
            import textwrap
         | 
| 23 | 
            -
             | 
| 24 | 
            -
            import datasets
         | 
| 25 | 
            -
            import numpy as np
         | 
| 26 | 
            -
             | 
| 27 | 
            -
            _CITATION = """\
         | 
| 28 | 
            -
            @article{DBLP:journals/corr/abs-2105-01051,
         | 
| 29 | 
            -
              author    = {Shu{-}Wen Yang and
         | 
| 30 | 
            -
                           Po{-}Han Chi and
         | 
| 31 | 
            -
                           Yung{-}Sung Chuang and
         | 
| 32 | 
            -
                           Cheng{-}I Jeff Lai and
         | 
| 33 | 
            -
                           Kushal Lakhotia and
         | 
| 34 | 
            -
                           Yist Y. Lin and
         | 
| 35 | 
            -
                           Andy T. Liu and
         | 
| 36 | 
            -
                           Jiatong Shi and
         | 
| 37 | 
            -
                           Xuankai Chang and
         | 
| 38 | 
            -
                           Guan{-}Ting Lin and
         | 
| 39 | 
            -
                           Tzu{-}Hsien Huang and
         | 
| 40 | 
            -
                           Wei{-}Cheng Tseng and
         | 
| 41 | 
            -
                           Ko{-}tik Lee and
         | 
| 42 | 
            -
                           Da{-}Rong Liu and
         | 
| 43 | 
            -
                           Zili Huang and
         | 
| 44 | 
            -
                           Shuyan Dong and
         | 
| 45 | 
            -
                           Shang{-}Wen Li and
         | 
| 46 | 
            -
                           Shinji Watanabe and
         | 
| 47 | 
            -
                           Abdelrahman Mohamed and
         | 
| 48 | 
            -
                           Hung{-}yi Lee},
         | 
| 49 | 
            -
              title     = {{SUPERB:} Speech processing Universal PERformance Benchmark},
         | 
| 50 | 
            -
              journal   = {CoRR},
         | 
| 51 | 
            -
              volume    = {abs/2105.01051},
         | 
| 52 | 
            -
              year      = {2021},
         | 
| 53 | 
            -
              url       = {https://arxiv.org/abs/2105.01051},
         | 
| 54 | 
            -
              archivePrefix = {arXiv},
         | 
| 55 | 
            -
              eprint    = {2105.01051},
         | 
| 56 | 
            -
              timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
         | 
| 57 | 
            -
              biburl    = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
         | 
| 58 | 
            -
              bibsource = {dblp computer science bibliography, https://dblp.org}
         | 
| 59 | 
            -
            }
         | 
| 60 | 
            -
            """
         | 
| 61 | 
            -
             | 
| 62 | 
            -
            _DESCRIPTION = """\
         | 
| 63 | 
            -
            Self-supervised learning (SSL) has proven vital for advancing research in
         | 
| 64 | 
            -
            natural language processing (NLP) and computer vision (CV). The paradigm
         | 
| 65 | 
            -
            pretrains a shared model on large volumes of unlabeled data and achieves
         | 
| 66 | 
            -
            state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
         | 
| 67 | 
            -
            speech processing community lacks a similar setup to systematically explore the
         | 
| 68 | 
            -
            paradigm. To bridge this gap, we introduce Speech processing Universal
         | 
| 69 | 
            -
            PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
         | 
| 70 | 
            -
            performance of a shared model across a wide range of speech processing tasks
         | 
| 71 | 
            -
            with minimal architecture changes and labeled data. Among multiple usages of the
         | 
| 72 | 
            -
            shared model, we especially focus on extracting the representation learned from
         | 
| 73 | 
            -
            SSL due to its preferable re-usability. We present a simple framework to solve
         | 
| 74 | 
            -
            SUPERB tasks by learning task-specialized lightweight prediction heads on top of
         | 
| 75 | 
            -
            the frozen shared model. Our results demonstrate that the framework is promising
         | 
| 76 | 
            -
            as SSL representations show competitive generalizability and accessibility
         | 
| 77 | 
            -
            across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
         | 
| 78 | 
            -
            benchmark toolkit to fuel the research in representation learning and general
         | 
| 79 | 
            -
            speech processing.
         | 
| 80 | 
            -
            """
         | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
            class SuperbConfig(datasets.BuilderConfig):
         | 
| 84 | 
            -
                """BuilderConfig for Superb."""
         | 
| 85 | 
            -
             | 
| 86 | 
            -
                def __init__(
         | 
| 87 | 
            -
                    self,
         | 
| 88 | 
            -
                    features,
         | 
| 89 | 
            -
                    url,
         | 
| 90 | 
            -
                    data_url=None,
         | 
| 91 | 
            -
                    supervised_keys=None,
         | 
| 92 | 
            -
                    **kwargs,
         | 
| 93 | 
            -
                ):
         | 
| 94 | 
            -
                    super().__init__(version=datasets.Version("1.9.0", ""), **kwargs)
         | 
| 95 | 
            -
                    self.features = features
         | 
| 96 | 
            -
                    self.data_url = data_url
         | 
| 97 | 
            -
                    self.url = url
         | 
| 98 | 
            -
                    self.supervised_keys = supervised_keys
         | 
| 99 | 
            -
             | 
| 100 | 
            -
             | 
| 101 | 
            -
            class Superb(datasets.GeneratorBasedBuilder):
         | 
| 102 | 
            -
                """Superb dataset."""
         | 
| 103 | 
            -
             | 
| 104 | 
            -
                BUILDER_CONFIGS = [
         | 
| 105 | 
            -
                    SuperbConfig(
         | 
| 106 | 
            -
                        name="ks",
         | 
| 107 | 
            -
                        description=textwrap.dedent(
         | 
| 108 | 
            -
                            """\
         | 
| 109 | 
            -
                        Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
         | 
| 110 | 
            -
                        words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
         | 
| 111 | 
            -
                        inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0] for the task.
         | 
| 112 | 
            -
                        The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
         | 
| 113 | 
            -
                        false positive. The evaluation metric is accuracy (ACC)"""
         | 
| 114 | 
            -
                        ),
         | 
| 115 | 
            -
                        features=datasets.Features(
         | 
| 116 | 
            -
                            {
         | 
| 117 | 
            -
                                "file": datasets.Value("string"),
         | 
| 118 | 
            -
                                "label": datasets.ClassLabel(
         | 
| 119 | 
            -
                                    names=[
         | 
| 120 | 
            -
                                        "yes",
         | 
| 121 | 
            -
                                        "no",
         | 
| 122 | 
            -
                                        "up",
         | 
| 123 | 
            -
                                        "down",
         | 
| 124 | 
            -
                                        "left",
         | 
| 125 | 
            -
                                        "right",
         | 
| 126 | 
            -
                                        "on",
         | 
| 127 | 
            -
                                        "off",
         | 
| 128 | 
            -
                                        "stop",
         | 
| 129 | 
            -
                                        "go",
         | 
| 130 | 
            -
                                        "_silence_",
         | 
| 131 | 
            -
                                        "_unknown_",
         | 
| 132 | 
            -
                                    ]
         | 
| 133 | 
            -
                                ),
         | 
| 134 | 
            -
                                "speech": datasets.Sequence(datasets.Value("float32")),
         | 
| 135 | 
            -
                            }
         | 
| 136 | 
            -
                        ),
         | 
| 137 | 
            -
                        url="https://www.tensorflow.org/datasets/catalog/speech_commands",
         | 
| 138 | 
            -
                        data_url="ks.json",
         | 
| 139 | 
            -
                    ),
         | 
| 140 | 
            -
                    SuperbConfig(
         | 
| 141 | 
            -
                        name="ic",
         | 
| 142 | 
            -
                        description=textwrap.dedent(
         | 
| 143 | 
            -
                            """\
         | 
| 144 | 
            -
                        Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
         | 
| 145 | 
            -
                        speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent
         | 
| 146 | 
            -
                        labels: action, object, and location. The evaluation metric is accuracy (ACC)."""
         | 
| 147 | 
            -
                        ),
         | 
| 148 | 
            -
                        features=datasets.Features(
         | 
| 149 | 
            -
                            {
         | 
| 150 | 
            -
                                "file": datasets.Value("string"),
         | 
| 151 | 
            -
                                "speaker_id": datasets.Value("string"),
         | 
| 152 | 
            -
                                "text": datasets.Value("string"),
         | 
| 153 | 
            -
                                "action": datasets.ClassLabel(
         | 
| 154 | 
            -
                                    names=["activate", "bring", "change language", "deactivate", "decrease", "increase"]
         | 
| 155 | 
            -
                                ),
         | 
| 156 | 
            -
                                "object": datasets.ClassLabel(
         | 
| 157 | 
            -
                                    names=[
         | 
| 158 | 
            -
                                        "Chinese",
         | 
| 159 | 
            -
                                        "English",
         | 
| 160 | 
            -
                                        "German",
         | 
| 161 | 
            -
                                        "Korean",
         | 
| 162 | 
            -
                                        "heat",
         | 
| 163 | 
            -
                                        "juice",
         | 
| 164 | 
            -
                                        "lamp",
         | 
| 165 | 
            -
                                        "lights",
         | 
| 166 | 
            -
                                        "music",
         | 
| 167 | 
            -
                                        "newspaper",
         | 
| 168 | 
            -
                                        "none",
         | 
| 169 | 
            -
                                        "shoes",
         | 
| 170 | 
            -
                                        "socks",
         | 
| 171 | 
            -
                                        "volume",
         | 
| 172 | 
            -
                                    ]
         | 
| 173 | 
            -
                                ),
         | 
| 174 | 
            -
                                "location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]),
         | 
| 175 | 
            -
                                "speech": datasets.Sequence(datasets.Value("float32")),
         | 
| 176 | 
            -
                            }
         | 
| 177 | 
            -
                        ),
         | 
| 178 | 
            -
                        url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/",
         | 
| 179 | 
            -
                        data_url="ic.json",
         | 
| 180 | 
            -
                    ),
         | 
| 181 | 
            -
                    SuperbConfig(
         | 
| 182 | 
            -
                        name="si",
         | 
| 183 | 
            -
                        description=textwrap.dedent(
         | 
| 184 | 
            -
                            """\
         | 
| 185 | 
            -
                        Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
         | 
| 186 | 
            -
                        classification, where speakers are in the same predefined set for both training and testing. The widely
         | 
| 187 | 
            -
                        used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC)."""
         | 
| 188 | 
            -
                        ),
         | 
| 189 | 
            -
                        features=datasets.Features(
         | 
| 190 | 
            -
                            {
         | 
| 191 | 
            -
                                "file": datasets.Value("string"),
         | 
| 192 | 
            -
                                "label": datasets.ClassLabel(names=[f"id{i+10001}" for i in range(1251)]),
         | 
| 193 | 
            -
                                "speech": datasets.Sequence(datasets.Value("float32")),
         | 
| 194 | 
            -
                            }
         | 
| 195 | 
            -
                        ),
         | 
| 196 | 
            -
                        url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html",
         | 
| 197 | 
            -
                        data_url="si.json",
         | 
| 198 | 
            -
                    ),
         | 
| 199 | 
            -
                    SuperbConfig(
         | 
| 200 | 
            -
                        name="er",
         | 
| 201 | 
            -
                        description=textwrap.dedent(
         | 
| 202 | 
            -
                            """\
         | 
| 203 | 
            -
                        Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
         | 
| 204 | 
            -
                        IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion
         | 
| 205 | 
            -
                        classes to leave the final four classes with a similar amount of data points and cross-validates on five
         | 
| 206 | 
            -
                        folds of the standard splits. The evaluation metric is accuracy (ACC)."""
         | 
| 207 | 
            -
                        ),
         | 
| 208 | 
            -
                        features=datasets.Features(
         | 
| 209 | 
            -
                            {
         | 
| 210 | 
            -
                                "file": datasets.Value("string"),
         | 
| 211 | 
            -
                                "label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
         | 
| 212 | 
            -
                                "speech": datasets.Sequence(datasets.Value("float32")),
         | 
| 213 | 
            -
                            }
         | 
| 214 | 
            -
                        ),
         | 
| 215 | 
            -
                        url="https://sail.usc.edu/iemocap/",
         | 
| 216 | 
            -
                        data_url="er.json",
         | 
| 217 | 
            -
                    ),
         | 
| 218 | 
            -
                    SuperbConfig(
         | 
| 219 | 
            -
                        name="sd",
         | 
| 220 | 
            -
                        description=textwrap.dedent(
         | 
| 221 | 
            -
                            """\
         | 
| 222 | 
            -
                        Speaker Diarization (SD) predicts `who is speaking when` for each timestamp, and multiple speakers can
         | 
| 223 | 
            -
                        speak simultaneously. The model has to encode rich speaker characteristics for each frame and should be
         | 
| 224 | 
            -
                        able to represent mixtures of signals. [LibriMix] is adopted where LibriSpeech
         | 
| 225 | 
            -
                        train-clean-100/dev-clean/test-clean are used to generate mixtures for training/validation/testing.
         | 
| 226 | 
            -
                        We focus on the two-speaker scenario as the first step. The time-coded speaker labels were generated using
         | 
| 227 | 
            -
                        alignments from Kaldi LibriSpeech ASR model. The evaluation metric is diarization error rate (DER)."""
         | 
| 228 | 
            -
                        ),
         | 
| 229 | 
            -
                        features=datasets.Features(
         | 
| 230 | 
            -
                            {
         | 
| 231 | 
            -
                                "file": datasets.Value("string"),
         | 
| 232 | 
            -
                                "speech": datasets.Sequence(datasets.Value("float32")),
         | 
| 233 | 
            -
                                "speakers": [
         | 
| 234 | 
            -
                                    {
         | 
| 235 | 
            -
                                        "speaker_id": datasets.Value("string"),
         | 
| 236 | 
            -
                                        "start": datasets.Value("int64"),
         | 
| 237 | 
            -
                                        "end": datasets.Value("int64"),
         | 
| 238 | 
            -
                                    }
         | 
| 239 | 
            -
                                ],
         | 
| 240 | 
            -
                            }
         | 
| 241 | 
            -
                        ),
         | 
| 242 | 
            -
                        url="https://github.com/ftshijt/LibriMix",
         | 
| 243 | 
            -
                        data_url="sd.json",
         | 
| 244 | 
            -
                    ),
         | 
| 245 | 
            -
                ]
         | 
| 246 | 
            -
             | 
| 247 | 
            -
                def _info(self):
         | 
| 248 | 
            -
                    return datasets.DatasetInfo(
         | 
| 249 | 
            -
                        description=_DESCRIPTION,
         | 
| 250 | 
            -
                        features=self.config.features,
         | 
| 251 | 
            -
                        supervised_keys=self.config.supervised_keys,
         | 
| 252 | 
            -
                        homepage=self.config.url,
         | 
| 253 | 
            -
                        citation=_CITATION,
         | 
| 254 | 
            -
                    )
         | 
| 255 | 
            -
             | 
| 256 | 
            -
                def _split_generators(self, dl_manager):
         | 
| 257 | 
            -
                    data_path = dl_manager.download_and_extract(self.config.data_url)
         | 
| 258 | 
            -
             | 
| 259 | 
            -
                    return [
         | 
| 260 | 
            -
                        datasets.SplitGenerator(
         | 
| 261 | 
            -
                            name=datasets.Split.TEST,
         | 
| 262 | 
            -
                            gen_kwargs={"data_path": data_path},
         | 
| 263 | 
            -
                        )
         | 
| 264 | 
            -
                    ]
         | 
| 265 | 
            -
             | 
| 266 | 
            -
                def _generate_examples(self, data_path):
         | 
| 267 | 
            -
                    """Generate examples."""
         | 
| 268 | 
            -
                    with open(data_path, "r", encoding="utf-8") as f:
         | 
| 269 | 
            -
                        for key, line in enumerate(f):
         | 
| 270 | 
            -
                            example = json.loads(line)
         | 
| 271 | 
            -
                            example["speech"] = np.frombuffer(base64.b64decode(example["speech"]), dtype=np.float32)
         | 
| 272 | 
            -
             | 
| 273 | 
            -
                            yield key, example
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 

