Commit
·
61303bf
1
Parent(s):
6f4ec81
Upload pl-corpus.py
Browse files- pl-corpus.py +123 -0
pl-corpus.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
logger = datasets.logging.get_logger(__name__)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
_CITATION = """
|
| 8 |
+
ALBUQUERQUE2022,author="Albuquerque, Hidelberg O. and Costa, Rosimeire and Silvestre, Gabriel and Souza, Ellen and da Silva, N{\'a}dia F. F. and Vit{\'o}rio, Douglas and Moriyama, Gyovana and Martins, Lucas and Soezima, Luiza and Nunes, Augusto and Siqueira, Felipe and Tarrega, Jo{\~a}o P. and Beinotti, Joao V. and Dias, Marcio and Silva, Matheus and Gardini, Miguel and Silva, Vinicius and de Carvalho, Andr{\'e} C. P. L. F. and Oliveira, Adriano L. I.", title="{UlyssesNER-Br}: A Corpus of Brazilian Legislative Documents for Named Entity Recognition", booktitle="Computational Processing of the Portuguese Language", year="2022", pages="3--14",@inproceedings{inPress, PROPOR2022}
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
_DESCRIPTION = """
|
| 12 |
+
PL-corpus is a Portuguese language dataset for named entity recognition applied to legislative documents. Its parte of the UlyssesBR-corpus, and consists entirely of manually annotated public bills texts (projetos de leis) and contains tags for persons, locations, date entities, organizations, legal foundation and bills.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
_HOMEPAGE = "https://github.com/Convenio-Camara-dos-Deputados/ulyssesner-br-propor"
|
| 16 |
+
|
| 17 |
+
_URL = "https://raw.githubusercontent.com/bergoliveira/assessment-of-deep-learning-models-icann/main/pl-corpus/"
|
| 18 |
+
_TRAINING_FILE = "train.conll"
|
| 19 |
+
_DEV_FILE = "dev.conll"
|
| 20 |
+
_TEST_FILE = "test.conll"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class PlCorpus(datasets.GeneratorBasedBuilder):
|
| 24 |
+
"""pL-corpus dataset"""
|
| 25 |
+
|
| 26 |
+
VERSION = datasets.Version("1.0.0")
|
| 27 |
+
|
| 28 |
+
BUILDER_CONFIGS = [
|
| 29 |
+
datasets.BuilderConfig(name="pl-corpus", version=VERSION, description="PL-corpus dataset"),
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
def _info(self):
|
| 33 |
+
return datasets.DatasetInfo(
|
| 34 |
+
description=_DESCRIPTION,
|
| 35 |
+
features=datasets.Features(
|
| 36 |
+
{
|
| 37 |
+
"id": datasets.Value("string"),
|
| 38 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 39 |
+
"ner_tags": datasets.Sequence(
|
| 40 |
+
datasets.features.ClassLabel(
|
| 41 |
+
names=[
|
| 42 |
+
"O",
|
| 43 |
+
"B-ORGANIZACAO",
|
| 44 |
+
"I-ORGANIZACAO",
|
| 45 |
+
"B-PESSOA",
|
| 46 |
+
"I-PESSOA",
|
| 47 |
+
"B-DATA",
|
| 48 |
+
"I-DATA",
|
| 49 |
+
"B-LOCAL",
|
| 50 |
+
"I-LOCAL",
|
| 51 |
+
"B-FUNDAMENTO",
|
| 52 |
+
"I-FUNDAMENTO",
|
| 53 |
+
"B-PRODUTODELEI",
|
| 54 |
+
"I-PRODUTODELEI",
|
| 55 |
+
"B-EVENTO",
|
| 56 |
+
"I-EVENTO",
|
| 57 |
+
]
|
| 58 |
+
)
|
| 59 |
+
),
|
| 60 |
+
}
|
| 61 |
+
),
|
| 62 |
+
supervised_keys=None,
|
| 63 |
+
homepage="https://github.com/Convenio-Camara-dos-Deputados/ulyssesner-br-propor",
|
| 64 |
+
citation=_CITATION,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
def _split_generators(self, dl_manager):
|
| 68 |
+
"""Returns SplitGenerators."""
|
| 69 |
+
urls_to_download = {
|
| 70 |
+
"train": f"{_URL}{_TRAINING_FILE}",
|
| 71 |
+
"dev": f"{_URL}{_DEV_FILE}",
|
| 72 |
+
"test": f"{_URL}{_TEST_FILE}",
|
| 73 |
+
}
|
| 74 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 75 |
+
|
| 76 |
+
return [
|
| 77 |
+
datasets.SplitGenerator(
|
| 78 |
+
name=datasets.Split.TRAIN,
|
| 79 |
+
gen_kwargs={"filepath": downloaded_files["train"], "split": "train"},
|
| 80 |
+
),
|
| 81 |
+
datasets.SplitGenerator(
|
| 82 |
+
name=datasets.Split.VALIDATION,
|
| 83 |
+
gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"},
|
| 84 |
+
),
|
| 85 |
+
datasets.SplitGenerator(
|
| 86 |
+
name=datasets.Split.TEST,
|
| 87 |
+
gen_kwargs={"filepath": downloaded_files["test"], "split": "test"},
|
| 88 |
+
),
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
def _generate_examples(self, filepath, split):
|
| 92 |
+
"""Yields examples."""
|
| 93 |
+
|
| 94 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
| 95 |
+
|
| 96 |
+
with open(filepath, encoding="utf-8") as f:
|
| 97 |
+
|
| 98 |
+
guid = 0
|
| 99 |
+
tokens = []
|
| 100 |
+
ner_tags = []
|
| 101 |
+
|
| 102 |
+
for line in f:
|
| 103 |
+
if line == "" or line == "\n":
|
| 104 |
+
if tokens:
|
| 105 |
+
yield guid, {
|
| 106 |
+
"id": str(guid),
|
| 107 |
+
"tokens": tokens,
|
| 108 |
+
"ner_tags": ner_tags,
|
| 109 |
+
}
|
| 110 |
+
guid += 1
|
| 111 |
+
tokens = []
|
| 112 |
+
ner_tags = []
|
| 113 |
+
else:
|
| 114 |
+
splits = line.split(" ")
|
| 115 |
+
tokens.append(splits[0])
|
| 116 |
+
ner_tags.append(splits[1].rstrip())
|
| 117 |
+
|
| 118 |
+
# last example
|
| 119 |
+
yield guid, {
|
| 120 |
+
"id": str(guid),
|
| 121 |
+
"tokens": tokens,
|
| 122 |
+
"ner_tags": ner_tags,
|
| 123 |
+
}
|