|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import asyncio | 
					
						
						|  | import time | 
					
						
						|  |  | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import aiohttp | 
					
						
						|  | import requests.utils | 
					
						
						|  | from dotenv import load_dotenv | 
					
						
						|  | from huggingface_hub import HfApi | 
					
						
						|  | from tenacity import retry, stop_after_attempt, wait_exponential | 
					
						
						|  |  | 
					
						
						|  | load_dotenv() | 
					
						
						|  |  | 
					
						
						|  | CACHE_DIR = ".hf_cache" | 
					
						
						|  | os.makedirs(CACHE_DIR, exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  | api = HfApi() | 
					
						
						|  | USER_ID = api.whoami()["name"] | 
					
						
						|  | REPO_ID = f"{USER_ID}/hub-stats" | 
					
						
						|  |  | 
					
						
						|  | print(f"π Hugging Face Hub Stats Collector") | 
					
						
						|  | print(f"π Dataset will be uploaded to: {REPO_ID}") | 
					
						
						|  | print(f"π€ User: {USER_ID}") | 
					
						
						|  | print("-" * 50) | 
					
						
						|  |  | 
					
						
						|  | ENDPOINT_CONFIGS = { | 
					
						
						|  | "models": { | 
					
						
						|  | "limit": 1000, | 
					
						
						|  | "params": { | 
					
						
						|  | "full": "true", | 
					
						
						|  | "config": "true", | 
					
						
						|  | "expand[]": [ | 
					
						
						|  | "gguf", | 
					
						
						|  | "downloadsAllTime", | 
					
						
						|  | "transformersInfo", | 
					
						
						|  | "cardData", | 
					
						
						|  | "safetensors", | 
					
						
						|  | "baseModels", | 
					
						
						|  | "author", | 
					
						
						|  | "likes", | 
					
						
						|  | "inferenceProviderMapping", | 
					
						
						|  | "downloads", | 
					
						
						|  | "siblings", | 
					
						
						|  | "tags", | 
					
						
						|  | "pipeline_tag", | 
					
						
						|  | "lastModified", | 
					
						
						|  | "createdAt", | 
					
						
						|  | "config", | 
					
						
						|  | "library_name", | 
					
						
						|  | ], | 
					
						
						|  | }, | 
					
						
						|  | }, | 
					
						
						|  | "datasets": { | 
					
						
						|  | "limit": 1000, | 
					
						
						|  | "params": { | 
					
						
						|  | "full": "true", | 
					
						
						|  | "expand[]": [ | 
					
						
						|  | "author", | 
					
						
						|  | "cardData", | 
					
						
						|  | "citation", | 
					
						
						|  | "createdAt", | 
					
						
						|  | "disabled", | 
					
						
						|  | "description", | 
					
						
						|  | "downloads", | 
					
						
						|  | "downloadsAllTime", | 
					
						
						|  | "gated", | 
					
						
						|  | "lastModified", | 
					
						
						|  | "likes", | 
					
						
						|  | "paperswithcode_id", | 
					
						
						|  | "private", | 
					
						
						|  | "siblings", | 
					
						
						|  | "sha", | 
					
						
						|  | "tags", | 
					
						
						|  | "trendingScore", | 
					
						
						|  | ], | 
					
						
						|  | }, | 
					
						
						|  | }, | 
					
						
						|  | "spaces": {"limit": 1000, "params": {"full": "true"}}, | 
					
						
						|  | "posts": {"limit": 50, "params": {"skip": 0}}, | 
					
						
						|  | "daily_papers": { | 
					
						
						|  | "limit": 50, | 
					
						
						|  | "params": {}, | 
					
						
						|  | "base_url": "https://huggingface.co/api/daily_papers", | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_link_header(link_header): | 
					
						
						|  | if not link_header: | 
					
						
						|  | return None | 
					
						
						|  | links = requests.utils.parse_header_links(link_header) | 
					
						
						|  | for link in links: | 
					
						
						|  | if link.get("rel") == "next": | 
					
						
						|  | return link.get("url") | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def to_json_string(x): | 
					
						
						|  | return ( | 
					
						
						|  | json.dumps(x) | 
					
						
						|  | if isinstance(x, (dict, list)) | 
					
						
						|  | else str(x) if x is not None else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def process_dataframe(df, endpoint): | 
					
						
						|  | if len(df) == 0: | 
					
						
						|  | return df | 
					
						
						|  |  | 
					
						
						|  | if endpoint == "posts": | 
					
						
						|  | if "author" in df.columns: | 
					
						
						|  | author_df = pd.json_normalize(df["author"]) | 
					
						
						|  | author_cols = ["avatarUrl", "followerCount", "fullname", "name"] | 
					
						
						|  | for col in author_cols: | 
					
						
						|  | if col in author_df.columns: | 
					
						
						|  | df[col] = author_df[col] | 
					
						
						|  | df = df.drop("author", axis=1) | 
					
						
						|  |  | 
					
						
						|  | for ts_col in ["publishedAt", "updatedAt"]: | 
					
						
						|  | if ts_col in df.columns: | 
					
						
						|  | df[ts_col] = pd.to_datetime(df[ts_col]).dt.tz_localize(None) | 
					
						
						|  |  | 
					
						
						|  | elif endpoint == "daily_papers": | 
					
						
						|  | if "paper" in df.columns: | 
					
						
						|  | paper_df = pd.json_normalize(df["paper"], errors="ignore").add_prefix( | 
					
						
						|  | "paper_" | 
					
						
						|  | ) | 
					
						
						|  | df = pd.concat([df.drop("paper", axis=1), paper_df], axis=1) | 
					
						
						|  |  | 
					
						
						|  | for ts_col in ["publishedAt", "paper_publishedAt"]: | 
					
						
						|  | if ts_col in df.columns: | 
					
						
						|  | df[ts_col] = pd.to_datetime(df[ts_col], errors="coerce").dt.tz_localize( | 
					
						
						|  | None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | for field in ["createdAt", "lastModified"]: | 
					
						
						|  | if field in df.columns: | 
					
						
						|  | df[field] = pd.to_datetime(df[field], errors="coerce").dt.tz_localize( | 
					
						
						|  | None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if "gated" in df.columns: | 
					
						
						|  | df["gated"] = df["gated"].astype(str) | 
					
						
						|  |  | 
					
						
						|  | for col in ["cardData", "config", "gguf"]: | 
					
						
						|  | if col in df.columns: | 
					
						
						|  | df[col] = df[col].apply(to_json_string) | 
					
						
						|  |  | 
					
						
						|  | return df | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def save_parquet(df, output_file): | 
					
						
						|  | df.to_parquet(output_file, index=False, engine="pyarrow") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @retry(stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, min=4, max=60)) | 
					
						
						|  | async def fetch_data_page(session, url, params=None, headers=None): | 
					
						
						|  | async with session.get(url, params=params, headers=headers) as response: | 
					
						
						|  | response.raise_for_status() | 
					
						
						|  | return await response.json(), response.headers.get("Link") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | async def create_parquet_files(skip_upload=False): | 
					
						
						|  | start_time = time.time() | 
					
						
						|  | endpoints = ["daily_papers", "models", "spaces", "datasets", "posts"] | 
					
						
						|  | created_files = [] | 
					
						
						|  |  | 
					
						
						|  | async with aiohttp.ClientSession() as session: | 
					
						
						|  | for endpoint in endpoints: | 
					
						
						|  | print(f"Processing {endpoint}...") | 
					
						
						|  |  | 
					
						
						|  | config = ENDPOINT_CONFIGS[endpoint] | 
					
						
						|  | base_url = config.get("base_url", f"https://huggingface.co/api/{endpoint}") | 
					
						
						|  | params = {"limit": config["limit"]} | 
					
						
						|  | params.update(config["params"]) | 
					
						
						|  |  | 
					
						
						|  | headers = {"Accept": "application/json"} | 
					
						
						|  | all_data = [] | 
					
						
						|  | url = base_url | 
					
						
						|  | page = 0 | 
					
						
						|  |  | 
					
						
						|  | jsonl_file = None | 
					
						
						|  | if skip_upload: | 
					
						
						|  | jsonl_file = os.path.join(CACHE_DIR, f"{endpoint}_raw.jsonl") | 
					
						
						|  | with open(jsonl_file, "w") as f: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | while url: | 
					
						
						|  | if endpoint == "posts": | 
					
						
						|  | params["skip"] = page * params["limit"] | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | data, link_header = await fetch_data_page( | 
					
						
						|  | session, url, params, headers | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if skip_upload and jsonl_file: | 
					
						
						|  | with open(jsonl_file, "a") as f: | 
					
						
						|  | f.write(json.dumps(data) + "\n") | 
					
						
						|  |  | 
					
						
						|  | if endpoint == "posts": | 
					
						
						|  | items = data["socialPosts"] | 
					
						
						|  | total_items = data["numTotalItems"] | 
					
						
						|  | all_data.extend(items) | 
					
						
						|  |  | 
					
						
						|  | if (page + 1) * params["limit"] >= total_items: | 
					
						
						|  | url = None | 
					
						
						|  | else: | 
					
						
						|  | url = base_url | 
					
						
						|  | else: | 
					
						
						|  | all_data.extend(data) | 
					
						
						|  | url = parse_link_header(link_header) | 
					
						
						|  | if url: | 
					
						
						|  | params = {} | 
					
						
						|  |  | 
					
						
						|  | if len(all_data) % 10000 == 0: | 
					
						
						|  | print(f"  {len(all_data):,} records processed") | 
					
						
						|  |  | 
					
						
						|  | page += 1 | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Error on page {page}: {e}") | 
					
						
						|  | await asyncio.sleep(2) | 
					
						
						|  | if page > 0: | 
					
						
						|  | url = None | 
					
						
						|  | else: | 
					
						
						|  | raise | 
					
						
						|  |  | 
					
						
						|  | if skip_upload and jsonl_file and os.path.exists(jsonl_file): | 
					
						
						|  | print(f"  Raw data saved to {jsonl_file}") | 
					
						
						|  |  | 
					
						
						|  | df = pd.DataFrame(all_data) | 
					
						
						|  | df = process_dataframe(df, endpoint) | 
					
						
						|  |  | 
					
						
						|  | output_file = os.path.join(CACHE_DIR, f"{endpoint}.parquet") | 
					
						
						|  | save_parquet(df, output_file) | 
					
						
						|  | created_files.append(output_file) | 
					
						
						|  |  | 
					
						
						|  | print(f"β {endpoint}: {len(df):,} rows -> {output_file}") | 
					
						
						|  |  | 
					
						
						|  | if not skip_upload: | 
					
						
						|  | upload_to_hub(output_file, REPO_ID) | 
					
						
						|  |  | 
					
						
						|  | elapsed = time.time() - start_time | 
					
						
						|  | return created_files, elapsed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def recreate_from_jsonl(): | 
					
						
						|  | endpoints = ["daily_papers", "models", "spaces", "datasets", "posts"] | 
					
						
						|  |  | 
					
						
						|  | for endpoint in endpoints: | 
					
						
						|  | jsonl_file = os.path.join(CACHE_DIR, f"{endpoint}_raw.jsonl") | 
					
						
						|  | if not os.path.exists(jsonl_file): | 
					
						
						|  | print(f"β {jsonl_file} not found") | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | print(f"Recreating {endpoint} from {jsonl_file}...") | 
					
						
						|  |  | 
					
						
						|  | all_data = [] | 
					
						
						|  | with open(jsonl_file, "r") as f: | 
					
						
						|  | for line in f: | 
					
						
						|  | data = json.loads(line.strip()) | 
					
						
						|  | if endpoint == "posts": | 
					
						
						|  | all_data.extend(data["socialPosts"]) | 
					
						
						|  | else: | 
					
						
						|  | all_data.extend(data) | 
					
						
						|  |  | 
					
						
						|  | df = pd.DataFrame(all_data) | 
					
						
						|  | df = process_dataframe(df, endpoint) | 
					
						
						|  |  | 
					
						
						|  | output_file = os.path.join(CACHE_DIR, f"{endpoint}.parquet") | 
					
						
						|  | save_parquet(df, output_file) | 
					
						
						|  |  | 
					
						
						|  | print(f"β {endpoint}: {len(df):,} rows -> {output_file}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def upload_to_hub(file_path, repo_id): | 
					
						
						|  | try: | 
					
						
						|  | api.upload_file( | 
					
						
						|  | path_or_fileobj=file_path, | 
					
						
						|  | path_in_repo=os.path.basename(file_path), | 
					
						
						|  | repo_id=repo_id, | 
					
						
						|  | repo_type="dataset", | 
					
						
						|  | ) | 
					
						
						|  | print(f"β Uploaded {os.path.basename(file_path)} to {repo_id}") | 
					
						
						|  | return True | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"β Failed to upload {os.path.basename(file_path)}: {e}") | 
					
						
						|  | return False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(skip_upload=False): | 
					
						
						|  | created_files, elapsed = asyncio.run(create_parquet_files(skip_upload=skip_upload)) | 
					
						
						|  |  | 
					
						
						|  | print(f"\nCompleted in {elapsed:.2f} seconds") | 
					
						
						|  | print(f"Created {len(created_files)} parquet files:") | 
					
						
						|  |  | 
					
						
						|  | for file in created_files: | 
					
						
						|  | size = os.path.getsize(file) | 
					
						
						|  | rows = len(pd.read_parquet(file)) | 
					
						
						|  | print(f"  {os.path.basename(file)}: {rows:,} rows, {size:,} bytes") | 
					
						
						|  |  | 
					
						
						|  | if skip_upload: | 
					
						
						|  | print(f"\nRaw JSONL files saved to {CACHE_DIR}/ for recreation") | 
					
						
						|  | print("Use 'python app.py --recreate' to recreate parquet files from JSONL") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | import sys | 
					
						
						|  |  | 
					
						
						|  | if "--recreate" in sys.argv: | 
					
						
						|  | recreate_from_jsonl() | 
					
						
						|  | else: | 
					
						
						|  | skip_upload = "--skip-upload" in sys.argv | 
					
						
						|  | main(skip_upload=skip_upload) | 
					
						
						|  |  |